Name Mode Size
R 040000
data 040000
man 040000
src 040000
tests 040000
vignettes 040000
.Rbuildignore 100644 0 kb
.gitignore 100644 0 kb
.travis.yml 100644 0 kb
DESCRIPTION 100644 2 kb
NAMESPACE 100644 1 kb
NEWS.md 100644 1 kb
README.md 100644 4 kb
README.md
[![Travis build status](https://travis-ci.com/Ghoshlab/Marr.svg?branch=master)](https://travis-ci.com/Ghoshlab/Marr) [![codecov](https://codecov.io/gh/Ghoshlab/Marr/branch/master/graph/badge.svg?token=K3CDL7MEN2)](https://codecov.io/gh/Ghoshlab/Marr) marr ==== ### `marr`: An R/Bioconductor package for Maximum Rank Reproducibility (marr) for high-dimensional biological data. `marr` measures the reproducibility of features per sample pair and sample pairs per feature in high-dimensional biological replicate experiments. ### Method The `marr` paper published in *Journal of American Statistical Association*: > Philtron, Daisy, et al. “Maximum Rank Reproducibility: A Nonparametric > Approach to Assessing Reproducibility in Replicate Experiments.” > Journal of the American Statistical Association 113.523 (2018): > 1028-1039. <https://doi.org/10.1080/01621459.2017.1397521> `Paper (in preparation)` > Ghosh, Tusharkanti, et al. “Reproducibility of Mass Spectrometry based > Metabolomics Data” ### Installing marr The R-package **marr** can be installed from GitHub using the R package [devtools](https://github.com/hadley/devtools): Use to install the latest version of **marr** from GitHub: if (!require("devtools")) install.packages("devtools") devtools::install_github("Ghoshlab/marr") It can also be installed using Bioconductor: ```s # install BiocManager from CRAN (if not already installed) if (!requireNamespace("BiocManager", quietly=TRUE)) install.packages("BiocManager") # install marr package BiocManager::install("marr") ``` After installation, the package can be loaded into R. ```s library(marr) ``` ### Using marr The main function in the **marr** package is `Marr()`. The `Marr()` function needs one required object and three optional objects: (1) object: a data frame or a matrix or a Summarized Experiment with one assay object with observations (e.g., metabolites or genes) on the rows and samples as the columns (e.g. let’s call it `dataSE`). (2) pSamplepairs (Optional) a threshold value that lies between 0 and 1, used to assign a feature to be reproducible based on the reproducibility output of the sample pairs per feature. Default is 0.75. (3) pFeatures (Optional) a threshold value that lies between 0 and 1, used to assign a sample pair to be reproducible based on the reproducibility output of the features per sample pair. Default is 0.75. (4) alpha (Optional) level of significance to control the False Discovery Rate (FDR). Default is 0.05. To run the `Marr()` function, MarrOutput <- Marr(object = dataSE, pSamplepairs=0.75, pFeatures=0.75, alpha=0.05) Individual slots can be extracted using accessor methods: MarrSamplepairs(MarrOutput) # extract the distribution of percent #reproducible features (column-wise) per sample pair MarrFeatures(MarrOutput) # extract the distribution of percent #reproducible sample pairs (row-wise) per feature MarrSamplepairsfiltered(MarrOutput) # extract the percent of reproducible #features based on a threshold value MarrFeaturesfiltered(MarrOutput) # extract the percent of reproducible #sample pairs based on a threshold value The percent reproducible sample pairs per feature can be directly plotted using the `MarrPlotFeatures()` function. MarrPlotFeatures(MarrOutput) The percent reproducible features per sample pair can be directly plotted using the `MarrPlotSamplepairs()` function. MarrPlotSamplepairs(MarrOutput) For more details, see `vignettes`. Bug reports =========== Report bugs as issues on the [GitHub repository new issue](https://github.com/Ghoshlab/marr/issues/new) Contributors ============ - [Tusharkanti Ghosh](https://github.com/tghosh30) - [Max McGrath]() - [Daisy Philtron]() - [Katerina Kechris]() - [Debashis Ghosh](https://github.com/ghoshd)