Package changes implementing the FoldIndexR() equation into idpr and the idprofiles.
... | ... |
@@ -7,8 +7,8 @@ |
7 | 7 |
scaledHydropathyGlobal(sequence, plotResults = FALSE, proteinName = NA, ...) |
8 | 8 |
} |
9 | 9 |
\arguments{ |
10 |
-\item{sequence}{amino acid sequence as a single character string |
|
11 |
-or vector of single characters. |
|
10 |
+\item{sequence}{amino acid sequence as a single character string, |
|
11 |
+a vector of single characters, or an AAString object. |
|
12 | 12 |
It also supports a single character string that specifies |
13 | 13 |
the path to a .fasta or .fa file.} |
14 | 14 |
|
... | ... |
@@ -34,6 +34,17 @@ This is used to calculate the scaled hydropathy of an amino acid |
34 | 34 |
The output is either a data frame or graph |
35 | 35 |
showing the matched scores for each residue along the sequence. |
36 | 36 |
} |
37 |
+\section{Plot Colors}{ |
|
38 |
+ |
|
39 |
+ For users who wish to keep a common aesthetic, the following colors are |
|
40 |
+ used when plotResults = TRUE. \cr |
|
41 |
+ \itemize{ |
|
42 |
+ \item Dynamic line colors: \itemize{ |
|
43 |
+ \item Close to 0 = "skyblue3" or "#6CA6CD" |
|
44 |
+ \item Close to 1 = "chocolate1" or "#FF7F24" |
|
45 |
+ \item Close to midpoint = "grey65" or "#A6A6A6"}} |
|
46 |
+} |
|
47 |
+ |
|
37 | 48 |
\examples{ |
38 | 49 |
#Amino acid sequences can be character strings |
39 | 50 |
aaString <- "ACDEFGHIKLMNPQRSTVWY" |
... | ... |
@@ -42,7 +53,7 @@ aaVector <- c("A", "C", "D", "E", "F", |
42 | 53 |
"G", "H", "I", "K", "L", |
43 | 54 |
"M", "N", "P", "Q", "R", |
44 | 55 |
"S", "T", "V", "W", "Y") |
45 |
-#Alternativly, .fasta files can also be used by providing |
|
56 |
+#Alternatively, .fasta files can also be used by providing |
|
46 | 57 |
##The path to the file as a character string |
47 | 58 |
|
48 | 59 |
exampleDF <- scaledHydropathyGlobal(aaString, |
... | ... |
@@ -40,8 +40,8 @@ aaString <- "ACDEFGHIKLMNPQRSTVWY" |
40 | 40 |
#Amino acid sequences can also be character vectors |
41 | 41 |
aaVector <- c("A", "C", "D", "E", "F", |
42 | 42 |
"G", "H", "I", "K", "L", |
43 |
- "M", "N", "P", "Q", "R", |
|
44 |
- "S", "T", "V", "W", "Y") |
|
43 |
+ "M", "N", "P", "Q", "R", |
|
44 |
+ "S", "T", "V", "W", "Y") |
|
45 | 45 |
#Alternativly, .fasta files can also be used by providing |
46 | 46 |
##The path to the file as a character string |
47 | 47 |
|
... | ... |
@@ -4,8 +4,6 @@ |
4 | 4 |
\alias{scaledHydropathyGlobal} |
5 | 5 |
\title{Protein Scaled Hydropathy Calculations} |
6 | 6 |
\usage{ |
7 |
-scaledHydropathyGlobal(sequence, plotResults = FALSE, proteinName = NA, ...) |
|
8 |
- |
|
9 | 7 |
scaledHydropathyGlobal(sequence, plotResults = FALSE, proteinName = NA, ...) |
10 | 8 |
} |
11 | 9 |
\arguments{ |
... | ... |
@@ -24,12 +22,6 @@ optional setting to include the name in the plot title.} |
24 | 22 |
\item{...}{any additional parameters, especially those for plotting.} |
25 | 23 |
} |
26 | 24 |
\value{ |
27 |
-if \code{plotResults = TRUE}, a graphical representation data. |
|
28 |
- Average is shown by the horizontal line. |
|
29 |
- If \code{plotResults = FALSE}, a dataframe is reported |
|
30 |
- with each amino acid and each residue value shown. |
|
31 |
- Score for each residue shown in the column "Hydropathy". |
|
32 |
- |
|
33 | 25 |
if \code{plotResults = TRUE}, a graphical representation data. |
34 | 26 |
Average is shown by the horizontal line. |
35 | 27 |
If \code{plotResults = FALSE}, a data frame is reported |
... | ... |
@@ -37,11 +29,6 @@ if \code{plotResults = TRUE}, a graphical representation data. |
37 | 29 |
Score for each residue shown in the column "Hydropathy". |
38 | 30 |
} |
39 | 31 |
\description{ |
40 |
-This is used to calculate the scaled hydropathy of an amino acid |
|
41 |
- sequence for each residue in the sequence. |
|
42 |
- The output is either a dataframe or graph |
|
43 |
- showing the matched scores for each residue along the sequence. |
|
44 |
- |
|
45 | 32 |
This is used to calculate the scaled hydropathy of an amino acid |
46 | 33 |
sequence for each residue in the sequence. |
47 | 34 |
The output is either a data frame or graph |
... | ... |
@@ -67,57 +54,19 @@ exampleDF <- scaledHydropathyGlobal(aaVector, |
67 | 54 |
head(exampleDF) |
68 | 55 |
|
69 | 56 |
#plotResults = TRUE will output a ggplot |
70 |
-\dontrun{ |
|
71 |
- scaledHydropathyGlobal(aaString, |
|
72 |
- plot = T) |
|
73 |
- |
|
74 |
- #since it is a ggplot, you can change or annotate the plot |
|
75 |
- gg <- scaledHydropathyGlobal(aaVector, |
|
76 |
- plot = T) |
|
77 |
- gg <- gg + ggplot2::ylab("Local Hydropathy") |
|
78 |
- gg <- gg + ggplot2::geom_text(data = exampleDF, |
|
79 |
- ggplot2::aes(label = AA, |
|
80 |
- y = Hydropathy + 0.1)) |
|
81 |
- plot(gg) |
|
82 |
-} |
|
83 |
-#Amino acid sequences can be character strings |
|
84 |
-aaString <- "ACDEFGHIKLMNPQRSTVWY" |
|
85 |
-#Amino acid sequences can also be character vectors |
|
86 |
-aaVector <- c("A", "C", "D", "E", "F", |
|
87 |
- "G", "H", "I", "K", "L", |
|
88 |
- "M", "N", "P", "Q", "R", |
|
89 |
- "S", "T", "V", "W", "Y") |
|
90 |
-#Alternativly, .fasta files can also be used by providing |
|
91 |
-##The path to the file as a character string |
|
92 |
- |
|
93 |
-exampleDF <- scaledHydropathyGlobal(aaString, |
|
94 |
- plotResults = FALSE) |
|
95 |
-head(exampleDF) |
|
96 |
- |
|
97 |
-exampleDF <- scaledHydropathyGlobal(aaVector, |
|
98 |
- plotResults = FALSE) |
|
99 |
-head(exampleDF) |
|
100 |
- |
|
101 |
-#plotResults = TRUE will output a ggplot |
|
102 |
-\dontrun{ |
|
103 | 57 |
scaledHydropathyGlobal(aaString, |
104 |
- plot = T) |
|
58 |
+ plotResults = TRUE) |
|
105 | 59 |
|
106 | 60 |
#since it is a ggplot, you can change or annotate the plot |
107 | 61 |
gg <- scaledHydropathyGlobal(aaVector, |
108 |
- plot = T) |
|
62 |
+ plotResults = TRUE) |
|
109 | 63 |
gg <- gg + ggplot2::ylab("Local Hydropathy") |
110 | 64 |
gg <- gg + ggplot2::geom_text(data = exampleDF, |
111 | 65 |
ggplot2::aes(label = AA, |
112 | 66 |
y = Hydropathy + 0.1)) |
113 | 67 |
plot(gg) |
114 | 68 |
} |
115 |
-} |
|
116 | 69 |
\references{ |
117 |
-Kyte, J., & Doolittle, R. F. (1982). A simple method for |
|
118 |
- displaying the hydropathic character of a protein. |
|
119 |
- Journal of molecular biology, 157(1), 105-132. |
|
120 |
- |
|
121 | 70 |
Kyte, J., & Doolittle, R. F. (1982). A simple method for |
122 | 71 |
displaying the hydropathic character of a protein. |
123 | 72 |
Journal of molecular biology, 157(1), 105-132. |
... | ... |
@@ -125,13 +74,6 @@ Kyte, J., & Doolittle, R. F. (1982). A simple method for |
125 | 74 |
\seealso{ |
126 | 75 |
\code{\link{KDNorm}} for residue values. |
127 | 76 |
|
128 |
-\code{\link{KDNorm}} for residue values. |
|
129 |
- |
|
130 |
-Other scaled hydropathy functions: |
|
131 |
-\code{\link{KDNorm}}, |
|
132 |
-\code{\link{meanScaledHydropathy}()}, |
|
133 |
-\code{\link{scaledHydropathyLocal}()} |
|
134 |
- |
|
135 | 77 |
Other scaled hydropathy functions: |
136 | 78 |
\code{\link{KDNorm}}, |
137 | 79 |
\code{\link{meanScaledHydropathy}()}, |
Proofreading and updating documentation for the package
... | ... |
@@ -12,7 +12,7 @@ scaledHydropathyGlobal(sequence, plotResults = FALSE, proteinName = NA, ...) |
12 | 12 |
\item{sequence}{amino acid sequence as a single character string |
13 | 13 |
or vector of single characters. |
14 | 14 |
It also supports a single character string that specifies |
15 |
-the locaion of a .fasta or .fa file.} |
|
15 |
+the path to a .fasta or .fa file.} |
|
16 | 16 |
|
17 | 17 |
\item{plotResults}{logical value, FALSE by default. |
18 | 18 |
If \code{plotResults = TRUE} a plot will be the output. |
... | ... |
@@ -32,7 +32,7 @@ if \code{plotResults = TRUE}, a graphical representation data. |
32 | 32 |
|
33 | 33 |
if \code{plotResults = TRUE}, a graphical representation data. |
34 | 34 |
Average is shown by the horizontal line. |
35 |
- If \code{plotResults = FALSE}, a dataframe is reported |
|
35 |
+ If \code{plotResults = FALSE}, a data frame is reported |
|
36 | 36 |
with each amino acid and each residue value shown. |
37 | 37 |
Score for each residue shown in the column "Hydropathy". |
38 | 38 |
} |
... | ... |
@@ -44,7 +44,7 @@ This is used to calculate the scaled hydropathy of an amino acid |
44 | 44 |
|
45 | 45 |
This is used to calculate the scaled hydropathy of an amino acid |
46 | 46 |
sequence for each residue in the sequence. |
47 |
- The output is either a dataframe or graph |
|
47 |
+ The output is either a data frame or graph |
|
48 | 48 |
showing the matched scores for each residue along the sequence. |
49 | 49 |
} |
50 | 50 |
\examples{ |
... | ... |
@@ -1,9 +1,11 @@ |
1 | 1 |
% Generated by roxygen2: do not edit by hand |
2 |
-% Please edit documentation in R/scaledHydropathyGlobal.R |
|
2 |
+% Please edit documentation in R/scaledHydropathy.R |
|
3 | 3 |
\name{scaledHydropathyGlobal} |
4 | 4 |
\alias{scaledHydropathyGlobal} |
5 | 5 |
\title{Protein Scaled Hydropathy Calculations} |
6 | 6 |
\usage{ |
7 |
+scaledHydropathyGlobal(sequence, plotResults = FALSE, proteinName = NA, ...) |
|
8 |
+ |
|
7 | 9 |
scaledHydropathyGlobal(sequence, plotResults = FALSE, proteinName = NA, ...) |
8 | 10 |
} |
9 | 11 |
\arguments{ |
... | ... |
@@ -22,6 +24,12 @@ optional setting to include the name in the plot title.} |
22 | 24 |
\item{...}{any additional parameters, especially those for plotting.} |
23 | 25 |
} |
24 | 26 |
\value{ |
27 |
+if \code{plotResults = TRUE}, a graphical representation data. |
|
28 |
+ Average is shown by the horizontal line. |
|
29 |
+ If \code{plotResults = FALSE}, a dataframe is reported |
|
30 |
+ with each amino acid and each residue value shown. |
|
31 |
+ Score for each residue shown in the column "Hydropathy". |
|
32 |
+ |
|
25 | 33 |
if \code{plotResults = TRUE}, a graphical representation data. |
26 | 34 |
Average is shown by the horizontal line. |
27 | 35 |
If \code{plotResults = FALSE}, a dataframe is reported |
... | ... |
@@ -31,9 +39,85 @@ if \code{plotResults = TRUE}, a graphical representation data. |
31 | 39 |
\description{ |
32 | 40 |
This is used to calculate the scaled hydropathy of an amino acid |
33 | 41 |
sequence for each residue in the sequence. |
34 |
- Results are based on the |
|
42 |
+ The output is either a dataframe or graph |
|
43 |
+ showing the matched scores for each residue along the sequence. |
|
44 |
+ |
|
45 |
+This is used to calculate the scaled hydropathy of an amino acid |
|
46 |
+ sequence for each residue in the sequence. |
|
47 |
+ The output is either a dataframe or graph |
|
48 |
+ showing the matched scores for each residue along the sequence. |
|
49 |
+} |
|
50 |
+\examples{ |
|
51 |
+#Amino acid sequences can be character strings |
|
52 |
+aaString <- "ACDEFGHIKLMNPQRSTVWY" |
|
53 |
+#Amino acid sequences can also be character vectors |
|
54 |
+aaVector <- c("A", "C", "D", "E", "F", |
|
55 |
+ "G", "H", "I", "K", "L", |
|
56 |
+ "M", "N", "P", "Q", "R", |
|
57 |
+ "S", "T", "V", "W", "Y") |
|
58 |
+#Alternativly, .fasta files can also be used by providing |
|
59 |
+##The path to the file as a character string |
|
60 |
+ |
|
61 |
+exampleDF <- scaledHydropathyGlobal(aaString, |
|
62 |
+ plotResults = FALSE) |
|
63 |
+head(exampleDF) |
|
64 |
+ |
|
65 |
+exampleDF <- scaledHydropathyGlobal(aaVector, |
|
66 |
+ plotResults = FALSE) |
|
67 |
+head(exampleDF) |
|
68 |
+ |
|
69 |
+#plotResults = TRUE will output a ggplot |
|
70 |
+\dontrun{ |
|
71 |
+ scaledHydropathyGlobal(aaString, |
|
72 |
+ plot = T) |
|
73 |
+ |
|
74 |
+ #since it is a ggplot, you can change or annotate the plot |
|
75 |
+ gg <- scaledHydropathyGlobal(aaVector, |
|
76 |
+ plot = T) |
|
77 |
+ gg <- gg + ggplot2::ylab("Local Hydropathy") |
|
78 |
+ gg <- gg + ggplot2::geom_text(data = exampleDF, |
|
79 |
+ ggplot2::aes(label = AA, |
|
80 |
+ y = Hydropathy + 0.1)) |
|
81 |
+ plot(gg) |
|
82 |
+} |
|
83 |
+#Amino acid sequences can be character strings |
|
84 |
+aaString <- "ACDEFGHIKLMNPQRSTVWY" |
|
85 |
+#Amino acid sequences can also be character vectors |
|
86 |
+aaVector <- c("A", "C", "D", "E", "F", |
|
87 |
+ "G", "H", "I", "K", "L", |
|
88 |
+ "M", "N", "P", "Q", "R", |
|
89 |
+ "S", "T", "V", "W", "Y") |
|
90 |
+#Alternativly, .fasta files can also be used by providing |
|
91 |
+##The path to the file as a character string |
|
92 |
+ |
|
93 |
+exampleDF <- scaledHydropathyGlobal(aaString, |
|
94 |
+ plotResults = FALSE) |
|
95 |
+head(exampleDF) |
|
96 |
+ |
|
97 |
+exampleDF <- scaledHydropathyGlobal(aaVector, |
|
98 |
+ plotResults = FALSE) |
|
99 |
+head(exampleDF) |
|
100 |
+ |
|
101 |
+#plotResults = TRUE will output a ggplot |
|
102 |
+\dontrun{ |
|
103 |
+ scaledHydropathyGlobal(aaString, |
|
104 |
+ plot = T) |
|
105 |
+ |
|
106 |
+ #since it is a ggplot, you can change or annotate the plot |
|
107 |
+ gg <- scaledHydropathyGlobal(aaVector, |
|
108 |
+ plot = T) |
|
109 |
+ gg <- gg + ggplot2::ylab("Local Hydropathy") |
|
110 |
+ gg <- gg + ggplot2::geom_text(data = exampleDF, |
|
111 |
+ ggplot2::aes(label = AA, |
|
112 |
+ y = Hydropathy + 0.1)) |
|
113 |
+ plot(gg) |
|
114 |
+} |
|
35 | 115 |
} |
36 | 116 |
\references{ |
117 |
+Kyte, J., & Doolittle, R. F. (1982). A simple method for |
|
118 |
+ displaying the hydropathic character of a protein. |
|
119 |
+ Journal of molecular biology, 157(1), 105-132. |
|
120 |
+ |
|
37 | 121 |
Kyte, J., & Doolittle, R. F. (1982). A simple method for |
38 | 122 |
displaying the hydropathic character of a protein. |
39 | 123 |
Journal of molecular biology, 157(1), 105-132. |
... | ... |
@@ -41,6 +125,13 @@ Kyte, J., & Doolittle, R. F. (1982). A simple method for |
41 | 125 |
\seealso{ |
42 | 126 |
\code{\link{KDNorm}} for residue values. |
43 | 127 |
|
128 |
+\code{\link{KDNorm}} for residue values. |
|
129 |
+ |
|
130 |
+Other scaled hydropathy functions: |
|
131 |
+\code{\link{KDNorm}}, |
|
132 |
+\code{\link{meanScaledHydropathy}()}, |
|
133 |
+\code{\link{scaledHydropathyLocal}()} |
|
134 |
+ |
|
44 | 135 |
Other scaled hydropathy functions: |
45 | 136 |
\code{\link{KDNorm}}, |
46 | 137 |
\code{\link{meanScaledHydropathy}()}, |
1 | 1 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,49 @@ |
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 |
+% Please edit documentation in R/scaledHydropathyGlobal.R |
|
3 |
+\name{scaledHydropathyGlobal} |
|
4 |
+\alias{scaledHydropathyGlobal} |
|
5 |
+\title{Protein Scaled Hydropathy Calculations} |
|
6 |
+\usage{ |
|
7 |
+scaledHydropathyGlobal(sequence, plotResults = FALSE, proteinName = NA, ...) |
|
8 |
+} |
|
9 |
+\arguments{ |
|
10 |
+\item{sequence}{amino acid sequence as a single character string |
|
11 |
+or vector of single characters. |
|
12 |
+It also supports a single character string that specifies |
|
13 |
+the locaion of a .fasta or .fa file.} |
|
14 |
+ |
|
15 |
+\item{plotResults}{logical value, FALSE by default. |
|
16 |
+If \code{plotResults = TRUE} a plot will be the output. |
|
17 |
+If \code{plotResults = FALSE} the output is a data frame for each residue.} |
|
18 |
+ |
|
19 |
+\item{proteinName}{character string with length = 1. |
|
20 |
+optional setting to include the name in the plot title.} |
|
21 |
+ |
|
22 |
+\item{...}{any additional parameters, especially those for plotting.} |
|
23 |
+} |
|
24 |
+\value{ |
|
25 |
+if \code{plotResults = TRUE}, a graphical representation data. |
|
26 |
+ Average is shown by the horizontal line. |
|
27 |
+ If \code{plotResults = FALSE}, a dataframe is reported |
|
28 |
+ with each amino acid and each residue value shown. |
|
29 |
+ Score for each residue shown in the column "Hydropathy". |
|
30 |
+} |
|
31 |
+\description{ |
|
32 |
+This is used to calculate the scaled hydropathy of an amino acid |
|
33 |
+ sequence for each residue in the sequence. |
|
34 |
+ Results are based on the |
|
35 |
+} |
|
36 |
+\references{ |
|
37 |
+Kyte, J., & Doolittle, R. F. (1982). A simple method for |
|
38 |
+ displaying the hydropathic character of a protein. |
|
39 |
+ Journal of molecular biology, 157(1), 105-132. |
|
40 |
+} |
|
41 |
+\seealso{ |
|
42 |
+\code{\link{KDNorm}} for residue values. |
|
43 |
+ |
|
44 |
+Other scaled hydropathy functions: |
|
45 |
+\code{\link{KDNorm}}, |
|
46 |
+\code{\link{meanScaledHydropathy}()}, |
|
47 |
+\code{\link{scaledHydropathyLocal}()} |
|
48 |
+} |
|
49 |
+\concept{scaled hydropathy functions} |