... | ... |
@@ -114,7 +114,7 @@ |
114 | 114 |
#' ggplot2::aes(label = AA, |
115 | 115 |
#' y = Charge + 0.1)) |
116 | 116 |
#' plot(gg) |
117 |
-#' #alternativly, you can pass the data frame to sequenceMap() |
|
117 |
+#' #alternatively, you can pass the data frame to sequenceMap() |
|
118 | 118 |
#' sequenceMap(sequence = exampleDF$AA, |
119 | 119 |
#' property = exampleDF$Charge) |
120 | 120 |
|
... | ... |
@@ -25,16 +25,33 @@ packages. |
25 | 25 |
|
26 | 26 |
**Please Refer to idpr-vignette.Rmd file for a detailed introduction to the** |
27 | 27 |
**idpr package.** |
28 |
+Links to the vignettes found at the |
|
29 |
+[Bioconductor landing page](https://doi.org/doi:10.18129/B9.bioc.idpr) |
|
30 |
+ |
|
28 | 31 |
|
29 | 32 |
## Installation |
30 | 33 |
|
31 |
-You can install the development version from [GitHub](https://github.com/) with: |
|
34 |
+You can install the development version from |
|
35 |
+[Bioconductor](https://doi.org/doi:10.18129/B9.bioc.idpr) with: |
|
36 |
+``` r |
|
37 |
+if (!requireNamespace("BiocManager", quietly = TRUE)) |
|
38 |
+ install.packages("BiocManager") |
|
39 |
+ |
|
40 |
+# The following initializes usage of Bioc devel |
|
41 |
+BiocManager::install(version='devel') |
|
42 |
+ |
|
43 |
+BiocManager::install("idpr") |
|
44 |
+``` |
|
45 |
+ |
|
46 |
+Or you can install the development version from |
|
47 |
+[GitHub](https://github.com/wmm27/idpr) with: |
|
32 | 48 |
|
33 | 49 |
``` r |
34 | 50 |
# install.packages("devtools") #if not already installed |
35 | 51 |
devtools::install_github("wmm27/idpr") |
36 | 52 |
``` |
37 | 53 |
|
54 |
+ |
|
38 | 55 |
## Example |
39 | 56 |
This is a basic example to quickly profile your protein of interest: |
40 | 57 |
|
... | ... |
@@ -51,3 +68,20 @@ idprofile(sequence = P53_HUMAN, #Generates the Profi |
51 | 68 |
``` |
52 | 69 |
|
53 | 70 |
|
71 |
+ |
|
72 |
+**Please Refer to idpr-vignette.Rmd file for a detailed introduction to the** |
|
73 |
+**idpr package.** |
|
74 |
+ |
|
75 |
+## Appendix |
|
76 |
+ |
|
77 |
+### Package citation |
|
78 |
+```{r} |
|
79 |
+citation("idpr") |
|
80 |
+``` |
|
81 |
+ |
|
82 |
+### Additional Information |
|
83 |
+```{r} |
|
84 |
+Sys.time() |
|
85 |
+Sys.Date() |
|
86 |
+R.version |
|
87 |
+``` |
|
54 | 88 |
\ No newline at end of file |
... | ... |
@@ -11,12 +11,26 @@ also includes tools for IDP-based sequence analysis to be used in |
11 | 11 |
conjunction with other R packages. |
12 | 12 |
|
13 | 13 |
**Please Refer to idpr-vignette.Rmd file for a detailed introduction to |
14 |
-the** **idpr package.** |
|
14 |
+the** **idpr package.** Links to the vignettes found at the |
|
15 |
+[Bioconductor landing page](https://doi.org/doi:10.18129/B9.bioc.idpr) |
|
15 | 16 |
|
16 | 17 |
## Installation |
17 | 18 |
|
18 | 19 |
You can install the development version from |
19 |
-[GitHub](https://github.com/) with: |
|
20 |
+[Bioconductor](https://doi.org/doi:10.18129/B9.bioc.idpr) with: |
|
21 |
+ |
|
22 |
+``` r |
|
23 |
+if (!requireNamespace("BiocManager", quietly = TRUE)) |
|
24 |
+ install.packages("BiocManager") |
|
25 |
+ |
|
26 |
+# The following initializes usage of Bioc devel |
|
27 |
+BiocManager::install(version='devel') |
|
28 |
+ |
|
29 |
+BiocManager::install("idpr") |
|
30 |
+``` |
|
31 |
+ |
|
32 |
+Or you can install the development version from |
|
33 |
+[GitHub](https://github.com/wmm27/idpr) with: |
|
20 | 34 |
|
21 | 35 |
``` r |
22 | 36 |
# install.packages("devtools") #if not already installed |
... | ... |
@@ -63,3 +77,54 @@ idprofile(sequence = P53_HUMAN, #Generates the Profi |
63 | 77 |
#> [[5]] |
64 | 78 |
|
65 | 79 |
<img src="man/figures/README-example-5.png" width="75%" /> |
80 |
+ |
|
81 |
+**Please Refer to idpr-vignette.Rmd file for a detailed introduction to |
|
82 |
+the** **idpr package.** |
|
83 |
+ |
|
84 |
+## Appendix |
|
85 |
+ |
|
86 |
+### Package citation |
|
87 |
+ |
|
88 |
+``` r |
|
89 |
+citation("idpr") |
|
90 |
+#> |
|
91 |
+#> To cite package 'idpr' in publications use: |
|
92 |
+#> |
|
93 |
+#> William McFadden and Judith Yanowitz (2020). idpr: Profiling and |
|
94 |
+#> Analyzing Intrinsically Disordered Proteins in R. R package version |
|
95 |
+#> 0.99.25. |
|
96 |
+#> |
|
97 |
+#> A BibTeX entry for LaTeX users is |
|
98 |
+#> |
|
99 |
+#> @Manual{, |
|
100 |
+#> title = {idpr: Profiling and Analyzing Intrinsically Disordered Proteins in R}, |
|
101 |
+#> author = {William McFadden and Judith Yanowitz}, |
|
102 |
+#> year = {2020}, |
|
103 |
+#> note = {R package version 0.99.25}, |
|
104 |
+#> } |
|
105 |
+``` |
|
106 |
+ |
|
107 |
+### Additional Information |
|
108 |
+ |
|
109 |
+``` r |
|
110 |
+Sys.time() |
|
111 |
+#> [1] "2020-10-17 14:40:21 EDT" |
|
112 |
+Sys.Date() |
|
113 |
+#> [1] "2020-10-17" |
|
114 |
+R.version |
|
115 |
+#> _ |
|
116 |
+#> platform x86_64-apple-darwin17.0 |
|
117 |
+#> arch x86_64 |
|
118 |
+#> os darwin17.0 |
|
119 |
+#> system x86_64, darwin17.0 |
|
120 |
+#> status |
|
121 |
+#> major 4 |
|
122 |
+#> minor 0.2 |
|
123 |
+#> year 2020 |
|
124 |
+#> month 06 |
|
125 |
+#> day 22 |
|
126 |
+#> svn rev 78730 |
|
127 |
+#> language R |
|
128 |
+#> version.string R version 4.0.2 (2020-06-22) |
|
129 |
+#> nickname Taking Off Again |
|
130 |
+``` |
... | ... |
@@ -328,7 +328,7 @@ netCharge(HUMAN_P53, |
328 | 328 |
There are also many pKa sets that are preloaded in **idpr**. |
329 | 329 |
pKa datasets used within this vignette are cited. See the documentation for |
330 | 330 |
netCharge or pKaData within **idpr** for additional information and citations |
331 |
-for avaliable pKa sets. |
|
331 |
+for available pKa sets. |
|
332 | 332 |
Additionally, see Kozlowski (2016) for further details on pKa data sets. |
333 | 333 |
|
334 | 334 |
* "EMBOSS" - (Rice, Longden, & Bleasby, 2000) |
... | ... |
@@ -359,7 +359,7 @@ netCharge(HUMAN_P53, |
359 | 359 |
``` |
360 | 360 |
|
361 | 361 |
|
362 |
-Alternativly, the user may supply a custom pKa dataset. |
|
362 |
+Alternatively, the user may supply a custom pKa dataset. |
|
363 | 363 |
The format must be a data frame where: Column 1 must be a |
364 | 364 |
character vector of residues AND Column 2 must be a numeric vector of pKa |
365 | 365 |
values. This can be helpful if there is a data set the user prefers or if |
... | ... |
@@ -389,7 +389,7 @@ netCharge(HUMAN_P53, |
389 | 389 |
### Global Charge Distibution |
390 | 390 |
|
391 | 391 |
chargeCalculationGlobal is a function used to calculate the charge of |
392 |
-each residue, indepenent of other amino acids, within a sequence. |
|
392 |
+each residue, independent of other amino acids, within a sequence. |
|
393 | 393 |
The results are returned as a data frame (default) or a plot. |
394 | 394 |
|
395 | 395 |
chargeCalculationGlobal accepts the same pKa and pH arguments as netCharge. |
... | ... |
@@ -406,14 +406,14 @@ P53_ccg <- chargeCalculationGlobal(HUMAN_P53) |
406 | 406 |
head(P53_ccg) |
407 | 407 |
``` |
408 | 408 |
|
409 |
-The results can return a ggplot visalizing the charge distribution. |
|
409 |
+The results can return a ggplot visualizing the charge distribution. |
|
410 | 410 |
```{r} |
411 | 411 |
chargeCalculationGlobal(HUMAN_P53, |
412 | 412 |
plotResults = TRUE) |
413 | 413 |
``` |
414 | 414 |
|
415 | 415 |
(This is not the most aesthetically pleasing plot, so a sequenceMap from |
416 |
-**idpr** is reccomended in this case for visualizations.) |
|
416 |
+**idpr** is recommended in this case for visualizations.) |
|
417 | 417 |
|
418 | 418 |
```{r} |
419 | 419 |
P53_ccg <- chargeCalculationGlobal(HUMAN_P53) #repeating from above |
... | ... |
@@ -425,7 +425,7 @@ sequenceMap(sequence = P53_ccg$AA, |
425 | 425 |
|
426 | 426 |
The C-terminus here has a charge of ~ -2 since the function aggregates the |
427 | 427 |
termini values with residue charges by default. If you wish to calculate |
428 |
-the termini as seperate values, use sumTermini = FALSE. This will add 2 residues |
|
428 |
+the termini as separate values, use sumTermini = FALSE. This will add 2 residues |
|
429 | 429 |
to the data frame as "NH3" and "COO" |
430 | 430 |
|
431 | 431 |
```{r} |
... | ... |
@@ -435,7 +435,7 @@ head(P53_ccg) |
435 | 435 |
``` |
436 | 436 |
|
437 | 437 |
|
438 |
-If you wish to completly ignore the termini for calculation, set includeTermini |
|
438 |
+If you wish to completely ignore the termini for calculation, set includeTermini |
|
439 | 439 |
= FALSE. |
440 | 440 |
|
441 | 441 |
```{r} |
... | ... |
@@ -472,7 +472,7 @@ P53_cgl <- chargeCalculationLocal(HUMAN_P53) |
472 | 472 |
head(P53_cgl) |
473 | 473 |
``` |
474 | 474 |
|
475 |
-Alternativly, results can be returned as a plot of each window's charge. |
|
475 |
+Alternatively, results can be returned as a plot of each window's charge. |
|
476 | 476 |
```{r} |
477 | 477 |
chargeCalculationLocal(HUMAN_P53, |
478 | 478 |
plotResults = TRUE) |
... | ... |
@@ -554,7 +554,7 @@ R Version |
554 | 554 |
R.version.string |
555 | 555 |
``` |
556 | 556 |
|
557 |
-System Infomation |
|
557 |
+System Information |
|
558 | 558 |
```{r} |
559 | 559 |
as.data.frame(Sys.info()) |
560 | 560 |
``` |
... | ... |
@@ -103,7 +103,7 @@ containing a sequence of interest. All forms are handled automatically without |
103 | 103 |
user specification, and fasta files will be loaded using the ‘Bioconductor’ |
104 | 104 |
package. Additionally, all visualizations generated by |
105 | 105 |
‘idpr’ are made using the ‘ggplot2’ package (30). This is to allow further |
106 |
-customizations on returned graphics. |
|
106 |
+customization on returned graphics. |
|
107 | 107 |
|
108 | 108 |
Overall, ‘idpr’ aims to integrate tools for the computational analysis of |
109 | 109 |
intrinsically disordered proteins within R. This package is used to identify |
... | ... |
@@ -184,10 +184,14 @@ are plotted, extended IDPs occupy a unique area on the plot. Therefore, this |
184 | 184 |
graphic can be used to distinguish proteins that are extended or compact under |
185 | 185 |
native conditions. However, it is important to note that IDPs can have the |
186 | 186 |
characteristics of a collapsed protein or an extended protein. Therefore a |
187 |
-protein within the “collapsed protein” field does not necessarly mean that it |
|
187 |
+protein within the “collapsed protein” field does not necessary mean that it |
|
188 | 188 |
lacks intrinsic disorder under native conditions (15, 31). |
189 | 189 |
|
190 | 190 |
|
191 |
+**For further theory and details, please refer to idpr's ** |
|
192 |
+**"Charge and Hydropathy Vignette" file.** |
|
193 |
+ |
|
194 |
+ |
|
191 | 195 |
### Structural Tendency Plot |
192 | 196 |
|
193 | 197 |
The composition of amino acids and the overall chemistry of IDPs are distinctly |
... | ... |
@@ -204,6 +208,9 @@ Disorder-promoting residues are P, E, S, Q, K, A, and G; |
204 | 208 |
order-promoting residues are M, N, V, H, L, F, Y, I, W, and C; |
205 | 209 |
disorder‐neutral residues are D, T, and R (32). |
206 | 210 |
|
211 |
+**For further theory and details, please refer to idpr's ** |
|
212 |
+**"Structural Tendency Vignette" file.** |
|
213 |
+ |
|
207 | 214 |
|
208 | 215 |
### Local Charge Calculations |
209 | 216 |
|
... | ... |
@@ -211,11 +218,15 @@ As stated, IDPs are enriched in charged residues. Residues of similar charge |
211 | 218 |
tend to repel one another which can prevent protein packing and promote an |
212 | 219 |
unstructured protein configuration under native conditions (15). There are many |
213 | 220 |
pKa data sets, we utilize the IPC pKa data set for calculations (33). Beyond the |
214 |
-use of IDP predictions, local charge is an impotant biochemical measurement with |
|
215 |
-many applications. Charges are calculated using a sliding window to help |
|
221 |
+use of IDP predictions, local charge is an important biochemical measurement |
|
222 |
+with many applications. Charges are calculated using a sliding window to help |
|
216 | 223 |
identify regions of extreme charge. The resulting figure is similar to ProtScale |
217 | 224 |
from ExPASy (34). |
218 | 225 |
|
226 |
+**For further theory and details, please refer to idpr's ** |
|
227 |
+**"Charge and Hydropathy Vignette" file.** |
|
228 |
+ |
|
229 |
+ |
|
219 | 230 |
### Local Hydropathy |
220 | 231 |
|
221 | 232 |
As stated, hydrophobic residues are disfavored in IDPs (15). The hydrophobic |
... | ... |
@@ -229,6 +240,10 @@ The resulting figure is similar to ProtScale from ExPASy (34). |
229 | 240 |
Scaled hydropathy is averaged locally along the protein using a |
230 | 241 |
sliding window to identify regions devoid of hydropathic characteristics. |
231 | 242 |
|
243 |
+**For further theory and details, please refer to idpr's ** |
|
244 |
+**"Charge and Hydropathy Vignette" file.** |
|
245 |
+ |
|
246 |
+ |
|
232 | 247 |
### IUPred |
233 | 248 |
|
234 | 249 |
IUPred2 analyzes an amino acid sequence and returns a score of intrinsic |
... | ... |
@@ -255,9 +270,12 @@ iupredAnchor(P53_ID) #IUPred2 long + ANCHOR2 prediction of scaffolding |
255 | 270 |
|
256 | 271 |
Redox-sensitive regions are shaded with a green background. |
257 | 272 |
```{r} |
258 |
-iupredRedox(P53_ID) #IUPred2 long with enviornmental context |
|
273 |
+iupredRedox(P53_ID) #IUPred2 long with environmental context |
|
259 | 274 |
``` |
260 | 275 |
|
276 |
+**For further theory, use, and details, please refer to idpr's ** |
|
277 |
+**"IUPred Vignette" file.** |
|
278 |
+ |
|
261 | 279 |
*** |
262 | 280 |
|
263 | 281 |
## Visualizing Discrete Values |
... | ... |
@@ -326,8 +344,6 @@ et al. (2001) (25). |
326 | 344 |
## References |
327 | 345 |
|
328 | 346 |
|
329 |
-References |
|
330 |
- |
|
331 | 347 |
1. Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, et al. Intrinsically disordered protein. Journal of Molecular Graphics and Modelling. 2001;19(1):26-59. |
332 | 348 |
2. Tompa P. Intrinsically unstructured proteins. Trends in biochemical sciences. 2002;27(10):527-33. |
333 | 349 |
3. Uversky VN. Intrinsically disordered proteins from A to Z. The International Journal of Biochemistry & Cell Biology. 2011;43(8):1090-103. |
... | ... |
@@ -371,3 +387,28 @@ References |
371 | 387 |
41. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web interface. Nucleic Acids Research. 2008;36(suppl_2):W5-W9. |
372 | 388 |
42. Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic acids research. 2019;47(W1):W636-W41. |
373 | 389 |
43. Pagès H, Aboyoun P, Gentleman R, DebRoy S. Biostrings: Efficient manipulation of biological strings. R package version. 2020;2(0). |
390 |
+ |
|
391 |
+ |
|
392 |
+ |
|
393 |
+ |
|
394 |
+### Additional Information |
|
395 |
+R Version |
|
396 |
+```{r} |
|
397 |
+R.version.string |
|
398 |
+``` |
|
399 |
+ |
|
400 |
+System Information |
|
401 |
+```{r} |
|
402 |
+as.data.frame(Sys.info()) |
|
403 |
+``` |
|
404 |
+ |
|
405 |
+```{r} |
|
406 |
+sessionInfo() |
|
407 |
+``` |
|
408 |
+ |
|
409 |
+```{r, results="asis"} |
|
410 |
+citation() |
|
411 |
+``` |
|
412 |
+ |
|
413 |
+ |
|
414 |
+ |
... | ... |
@@ -146,7 +146,9 @@ head(iupredLongDF) |
146 | 146 |
### iupredType = "short" |
147 | 147 |
iupredType = “short” is the setting to predict small regions of intrinsic |
148 | 148 |
disorder in proteins, optimized for missing regions of protein structures saved |
149 |
-to the Protein Databank (PDB). It is important to note that this tends to favor |
|
149 |
+to the Protein Databank (PDB). Its goal is to predict |
|
150 |
+regions that are not represented in crystallographic experiments. |
|
151 |
+It is important to note that this tends to favor |
|
150 | 152 |
disorder at the N- and C- terminus (Dosztányi, 2018). |
151 | 153 |
|
152 | 154 |
```{r} |
... | ... |
@@ -166,8 +168,7 @@ head(iupredShortDF) |
166 | 168 |
### iupredType = "glob" |
167 | 169 |
iupredType = “glob” is the setting that is to help reduce the noise of small |
168 | 170 |
disordered regions in otherwise ordered regions and to help identify sequences |
169 |
-that are likely to have a specific and rigid fold. Its goal is to predict |
|
170 |
-regions that are not represented in crystallographic experiments |
|
171 |
+that are likely to have a specific and rigid fold. |
|
171 | 172 |
(Dosztányi, 2018). |
172 | 173 |
```{r} |
173 | 174 |
p53_ID <- "P04637" |
... | ... |
@@ -233,9 +234,9 @@ cystine residues to serine when simulating a reducing or |
233 | 234 |
This eliminates any structural stabilization by disulfide bonds |
234 | 235 |
(Mészáros et al., 2018). |
235 | 236 |
|
236 |
-Redox-plus predictions are shown in blue, Redox-minus predications are shown |
|
237 |
-in purple. Any region identified as "Redox Senstitive" will be highlighted in |
|
238 |
-light green (does not appear if there are no senstitive regions predicted). |
|
237 |
+Redox-plus predictions are shown in blue, Redox-minus predictions are shown |
|
238 |
+in purple. Any region identified as "Redox Sensitive" will be highlighted in |
|
239 |
+light green (does not appear if there are no sensitive regions predicted). |
|
239 | 240 |
```{r} |
240 | 241 |
p53_ID <- "P04637" |
241 | 242 |
iupredRedox(p53_ID, |
... | ... |
@@ -258,10 +259,10 @@ head(iupredRedoxDF) |
258 | 259 |
|
259 | 260 |
|
260 | 261 |
While the aesthetics of the plots above are meant to represent a middleground of |
261 |
-the graphics avaliable on |
|
262 |
+the graphics available on |
|
262 | 263 |
and the other plots generated by **idpr**, a user may wish to use the data |
263 | 264 |
frames for data analysis or unique graphics. Another way to represent the data |
264 |
-is using the sequenceMap() funciton. |
|
265 |
+is using the sequenceMap() function. |
|
265 | 266 |
|
266 | 267 |
```{r} |
267 | 268 |
iupredLongDF <- iupred(p53_ID, |
... | ... |
@@ -280,6 +281,10 @@ sequenceMap(sequence = iupredLongDF$AA, |
280 | 281 |
``` |
281 | 282 |
|
282 | 283 |
|
284 |
+**For further details, please refer to idpr's ** |
|
285 |
+**"Sequence Map Vignette" file.** |
|
286 |
+ |
|
287 |
+ |
|
283 | 288 |
## Getting the UniProt Accession |
284 | 289 |
|
285 | 290 |
To make a connection to the IUPred2A REST API, a UniProt Accession ID is |
... | ... |
@@ -290,6 +295,28 @@ If a user does not have the protein name or info to search, a BLAST search on |
290 | 295 |
UniProt may be helpful at https://www.uniprot.org/blast/ |
291 | 296 |
(UniProt Consortium, 2019). |
292 | 297 |
|
298 |
+## Use |
|
299 |
+Please note that these functions are only meant to access the IUPred2A REST API. |
|
300 |
+The functions within **idpr** are **not** designed by the IUPred2A developers. |
|
301 |
+The authors of **idpr** do not control, manage, or maintain any |
|
302 |
+aspect of IUPred2A. Therefore, **idpr** is unable to guarantee access to |
|
303 |
+the API. |
|
304 |
+ |
|
305 |
+ |
|
306 |
+The user MUST follow the IUPred2A Terms of Use in addition to the terms |
|
307 |
+for use of **idpr**. |
|
308 |
+ |
|
309 |
+When publishing or using any data generated with IUPred2A, the user must cite the |
|
310 |
+appropriate publication(s) for the IUPred2A service. This may change as the |
|
311 |
+program updates or improves. **idpr** does not control updates to IUPred2A. |
|
312 |
+ |
|
313 |
+ |
|
314 |
+The current website (as of 10/15/20) for IUPred2A is found here: |
|
315 |
+[https://iupred2a.elte.hu/](https://iupred2a.elte.hu/). |
|
316 |
+The authors of **idpr** strongly recommend visiting this page to follow any |
|
317 |
+updates and changes as well as confirming appropriate use per the IUPred2A |
|
318 |
+terms of use. |
|
319 |
+ |
|
293 | 320 |
|
294 | 321 |
## References |
295 | 322 |
|
... | ... |
@@ -344,7 +371,7 @@ R Version |
344 | 371 |
R.version.string |
345 | 372 |
``` |
346 | 373 |
|
347 |
-System Infomation |
|
374 |
+System Information |
|
348 | 375 |
```{r} |
349 | 376 |
as.data.frame(Sys.info()) |
350 | 377 |
``` |
... | ... |
@@ -105,7 +105,7 @@ sequenceMap( |
105 | 105 |
There are multiple customization options to allow for improved graphing. |
106 | 106 |
One is the organization of the labels. |
107 | 107 |
You are able to represent the sequence with both amino acid residues and their |
108 |
-location in the sequence, but you can choose one or the other (or nethier). |
|
108 |
+location in the sequence, but you can choose one or the other (or neither). |
|
109 | 109 |
This is specified by the 'labelType' argument |
110 | 110 |
|
111 | 111 |
```{r} |
... | ... |
@@ -138,7 +138,7 @@ sequenceMap( |
138 | 138 |
``` |
139 | 139 |
|
140 | 140 |
The text can also be rotated, via the 'rotationAngle' argument, for ease of |
141 |
-reading. This is espeically helpful for larger sequences with dense graphics. |
|
141 |
+reading. This is especially helpful for larger sequences with dense graphics. |
|
142 | 142 |
```{r} |
143 | 143 |
sequenceMap( |
144 | 144 |
sequence = tendencyDF$AA, |
... | ... |
@@ -217,7 +217,7 @@ sequenceMap( |
217 | 217 |
|
218 | 218 |
Since the output is a ggplot, the visualization is able to be assigned to an |
219 | 219 |
object and additional features can be added and annotated. The example below |
220 |
-will annotate a metal binding residue and the region that the P53 protien binds |
|
220 |
+will annotate a metal binding residue and the region that the P53 protein binds |
|
221 | 221 |
DNA. These annotations and locations were retrieved from UniProt |
222 | 222 |
(UniProt Consortium 2019). |
223 | 223 |
```{r} |
... | ... |
@@ -299,10 +299,10 @@ of the residues on the map. |
299 | 299 |
|
300 | 300 |
To solve this, sequenceMapCoordinates() will return the row (y value) and the |
301 | 301 |
column (x value) as a data frame for each residue visualized with sequenceMap(). |
302 |
-The puporse of this is to make adding annotations easier and customizable. |
|
302 |
+The purpose of this is to make adding annotations easier and customizable. |
|
303 | 303 |
|
304 | 304 |
|
305 |
-As shown before, nbResidues deterines how many residues will be on each |
|
305 |
+As shown before, nbResidues determines how many residues will be on each |
|
306 | 306 |
row. Make sure nbResidues is equal to the value used in sequenceMap(). |
307 | 307 |
|
308 | 308 |
To get the coordinates, the amino acid sequence must be supplied. The output |
... | ... |
@@ -319,7 +319,7 @@ head(coord_DF) |
319 | 319 |
|
320 | 320 |
## Sequence Plot |
321 | 321 |
|
322 |
-The funtions for calculating charge and scaled hydropathy and the iupred |
|
322 |
+The functions for calculating charge and scaled hydropathy and the iupred |
|
323 | 323 |
functions all have plotting options. The plotting for these are done with the |
324 | 324 |
sequencePlot() function to have a uniform aesthetic. If you wish to make a plot |
325 | 325 |
with custom values, sequencePlot() can still be used. |
... | ... |
@@ -399,7 +399,7 @@ R Version |
399 | 399 |
R.version.string |
400 | 400 |
``` |
401 | 401 |
|
402 |
-System Infomation |
|
402 |
+System Information |
|
403 | 403 |
```{r} |
404 | 404 |
as.data.frame(Sys.info()) |
405 | 405 |
``` |
... | ... |
@@ -78,7 +78,7 @@ head(tendencyDF) |
78 | 78 |
``` |
79 | 79 |
|
80 | 80 |
|
81 |
-For convient plotting, use structuralTendencyPlot(). |
|
81 |
+For convenient plotting, use structuralTendencyPlot(). |
|
82 | 82 |
Results can be as a pie chart or bar plot. |
83 | 83 |
|
84 | 84 |
```{r} |
... | ... |
@@ -188,7 +188,7 @@ structuralTendencyPlot(P53_MOUSE, |
188 | 188 |
In addition to the compositional profile of each residue, a summary of the |
189 | 189 |
profile focused only on the structural tendency can be given by setting |
190 | 190 |
summarize = TRUE. This shifts the focus from amino acid identity to the general |
191 |
-composition. The graphType is preseved. |
|
191 |
+composition. The graphType is preserved. |
|
192 | 192 |
|
193 | 193 |
```{r} |
194 | 194 |
structuralTendencyPlot(P53_MOUSE, |
... | ... |
@@ -246,7 +246,7 @@ R Version |
246 | 246 |
R.version.string |
247 | 247 |
``` |
248 | 248 |
|
249 |
-System Infomation |
|
249 |
+System Information |
|
250 | 250 |
```{r} |
251 | 251 |
as.data.frame(Sys.info()) |
252 | 252 |
``` |