Three functions based on IUPred2A have been added to the idpr package.
This includes iupred(), iupredAnchor(), and iupredRedox(). These functions do not activly predict disorder, but fetch data from the IUPred2A REST API based on UniProt Accession ID.
IUPred2A citation: Mészáros et al (2019)
... | ... |
@@ -4,6 +4,9 @@ export(chargeCalculationGlobal) |
4 | 4 |
export(chargeCalculationLocal) |
5 | 5 |
export(chargeHydropathyPlot) |
6 | 6 |
export(hendersonHasselbalch) |
7 |
+export(iupred) |
|
8 |
+export(iupredAnchor) |
|
9 |
+export(iupredRedox) |
|
7 | 10 |
export(meanScaledHydropathy) |
8 | 11 |
export(netCharge) |
9 | 12 |
export(scaledHydropathyGlobal) |
10 | 13 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,315 @@ |
1 |
+#' Prediction of Intrinsic Disorder with IUPred2A |
|
2 |
+#' |
|
3 |
+#' This function makes a connection to the IUPred2A REST API based on the type |
|
4 |
+#' of analysis and UniProt accession number. This requires the user to know |
|
5 |
+#' the accession number of their protein and a connection to the internet. |
|
6 |
+#' The results are then formatted to match output in the idpr package. \cr \cr |
|
7 |
+#' Predictions are made on a scale of 0-1, where any residues with a score |
|
8 |
+#' over 0.5 are predicted to be disordered, and any residue scoring below 0.5 |
|
9 |
+#' are predicted to be ordered (when using "long" and "short" predictions).\cr |
|
10 |
+#' The output is either a graph (ggplot) or data frame of predictions. |
|
11 |
+#' \cr\cr |
|
12 |
+#' \strong{iupred()} is used for standard predictions of intrinsic disorder |
|
13 |
+#' of an amino acid sequence. This is the core of predictions. |
|
14 |
+#' Predictions vary by iupredType (details below) |
|
15 |
+#' The results are either a ggplot or data frame of the fetched IUPred2. |
|
16 |
+#' predictions. |
|
17 |
+#' \cr |
|
18 |
+#' \strong{iupredAnchor()} is used to combine the output of IUPred2 long with |
|
19 |
+#' ANCHOR2 predictions. ANCHOR2 is a context-dependent predictor of binding |
|
20 |
+#' regions for protein-protein interactions. The results are either a ggplot |
|
21 |
+#' with 2 lines, one for IUPred2 long and another for ANCHOR predictions, or |
|
22 |
+#' a data frame with both IUPred2 long and ANCHOR Predictions. Values are |
|
23 |
+#' fetched by the IUPred2A REST API. |
|
24 |
+#' \cr |
|
25 |
+#' \strong{iupredRedox()} is used to predict redox-senstitive regions that may |
|
26 |
+#' experience induced folding upon changing environments. |
|
27 |
+#' This is a context-dependent predictor of disordered regions depending on |
|
28 |
+#' a reducing (plus) or oxidizing (minus) enviornment. The results can be |
|
29 |
+#' a ggplot with two IUPred2 long predictions, one for plus and another for |
|
30 |
+#' minus enviornments, with redox senstitive regions shaded (if predicted). |
|
31 |
+#' Alternativly, the results can be a data frame with both IUPred2 long plus |
|
32 |
+#' and minus predictions as well as a column of logical values where a residue |
|
33 |
+#' that is TRUE is predicted to be in a redox senstitive region. Values are |
|
34 |
+#' fetched by the IUPred2A REST API. |
|
35 |
+#' \cr \cr |
|
36 |
+#' IUPred2 website is located at \url{https://iupred2a.elte.hu/}. |
|
37 |
+#' For detailed information on using IUPred2A, please refer to |
|
38 |
+#' \href{https://doi.org/10.1002/cpbi.99}{Erdős & Dosztány (2020)} |
|
39 |
+#' Analyzing protein disorder with IUPred2A. |
|
40 |
+#' Current Protocols in Bioinformatics, 70, e99. |
|
41 |
+#' Additionally, please see |
|
42 |
+#' \href{https://doi.org/10.1093/nar/gky384}{Mészáros et al (2019)} |
|
43 |
+#' for further information, theory, and applications of IUPred2A. |
|
44 |
+#' \cr \cr |
|
45 |
+#' \strong{Please cite these articles if you use any iupred function.} |
|
46 |
+#' |
|
47 |
+#' @param uniprotAccession character string specifying the UniProt Accession |
|
48 |
+#' number of the protein used to fetch IUPred predictions. |
|
49 |
+#' @param iupredType character string. "long" by default. accepted types are |
|
50 |
+#' c("long", "short", "glob"). See "Prediction Type" information below. |
|
51 |
+#' @param proteinName character string, optional. Used to add protein name |
|
52 |
+#' to the title in ggplot. Ignored if \code{plotResults = FALSE}. |
|
53 |
+#' @param plotResults logical value. TRUE by default. |
|
54 |
+#' If \code{plotResults = TRUE}, a ggplot of IUPred predictions is returned |
|
55 |
+#' If \code{plotResults = FALSE}, a dataframe of predictions is returned. |
|
56 |
+#' @return see plotResults argument. |
|
57 |
+#' @section Prediction Type: |
|
58 |
+#' Information from \url{https://iupred2a.elte.hu/help_new} on 5.22.20 |
|
59 |
+#' Additionally, see the sources for futher details and source information. |
|
60 |
+#' This is only relevant for iupred(). iupredAnchor() and iupredRedox() |
|
61 |
+#' always utilize "long" for data in the REST API. |
|
62 |
+#' \itemize{ |
|
63 |
+#' \item Long predictions of disorder (Default) |
|
64 |
+#' \itemize{ |
|
65 |
+#' \item when iupredType = "long" |
|
66 |
+#' \item Optimized for global predictions of disorder, specifically |
|
67 |
+#' disordered regions over 30 amino acids in length. |
|
68 |
+#' \item "long" is always used for iupredAnchor() and iupredRedox(). |
|
69 |
+#' } |
|
70 |
+#' \item Short predictions of disorder |
|
71 |
+#' \itemize{ |
|
72 |
+#' \item when iupredType = "short" |
|
73 |
+#' \item Best for predicting small regions of disorder, especially |
|
74 |
+#' in mostly structured proteins. |
|
75 |
+#' \item Has adjustments for termini, since sequence ends are often |
|
76 |
+#' disordered. |
|
77 |
+#' } |
|
78 |
+#' \item Structured predictions |
|
79 |
+#' \itemize{ |
|
80 |
+#' \item when iupredType = "glob" |
|
81 |
+#' \item Used to predict regions of globular folding. |
|
82 |
+#' \item please see |
|
83 |
+#' \href{https://doi.org/10.1002/cpbi.99}{Erdős & Dosztány (2020)} |
|
84 |
+#' for further information on interpreting these results. |
|
85 |
+#' } |
|
86 |
+#' } |
|
87 |
+#' @source Bálint Mészáros, Gábor Erdős, Zsuzsanna Dosztányi, |
|
88 |
+#' IUPred2A: context-dependent prediction of protein disorder as a function of |
|
89 |
+#' redox state and protein binding, Nucleic Acids Research, Volume 46, Issue |
|
90 |
+#' W1, 2 July 2018, Pages W329–W337, \url{https://doi.org/10.1093/nar/gky384} |
|
91 |
+#' \cr\cr |
|
92 |
+#' Erdős, G., & Dosztányi, Z. (2020). Analyzing protein disorder with |
|
93 |
+#' IUPred2A. Current Protocols in Bioinformatics, 70, e99. |
|
94 |
+#' \url{https://doi.org/10.1002/cpbi.99} |
|
95 |
+#' @export |
|
96 |
+ |
|
97 |
+#---- |
|
98 |
+iupred <- function( |
|
99 |
+ uniprotAccession, |
|
100 |
+ iupredType = "long", |
|
101 |
+ plotResults = TRUE, |
|
102 |
+ proteinName = NA) { |
|
103 |
+ |
|
104 |
+ #------ |
|
105 |
+ #Connecting to IUPred2A REST API |
|
106 |
+ iupredURL <- paste("https://iupred2a.elte.hu/iupred2a/", |
|
107 |
+ iupredType, |
|
108 |
+ "/", |
|
109 |
+ uniprotAccession, |
|
110 |
+ ".json", |
|
111 |
+ sep = "") |
|
112 |
+ iupredJson <- jsonlite::fromJSON(iupredURL) |
|
113 |
+ #----- |
|
114 |
+ #Reformatting data to be consistent in formatting across idpr |
|
115 |
+ iupredPrediction <- iupredJson$iupred2 |
|
116 |
+ iupredSequence <- unlist(strsplit(iupredJson$sequence, "")) |
|
117 |
+ iupredSequence <- unlist(iupredSequence) |
|
118 |
+ seqLength <- length(iupredSequence) |
|
119 |
+ iupredDF <- data.frame(Position = 1:seqLength, |
|
120 |
+ AA = iupredSequence, |
|
121 |
+ IUPred2 = iupredPrediction) |
|
122 |
+ #------ |
|
123 |
+ #Returning |
|
124 |
+ if (plotResults) { |
|
125 |
+ if (!is.na(proteinName)) { |
|
126 |
+ plotTitle <- paste("Prediction of Intrinsic Disorder in ", |
|
127 |
+ proteinName, |
|
128 |
+ sep = "") |
|
129 |
+ } else { |
|
130 |
+ plotTitle <- "Prediction of Intrinsic Disorder" |
|
131 |
+ } |
|
132 |
+ jsonType <- iupredJson$type |
|
133 |
+ plotSubtitle <- paste("By IUPred2A ", |
|
134 |
+ jsonType, |
|
135 |
+ sep = "") |
|
136 |
+ |
|
137 |
+ gg <- sequencePlot( |
|
138 |
+ position = iupredDF$Position, |
|
139 |
+ property = iupredDF$IUPred2, |
|
140 |
+ hline = 0.5, |
|
141 |
+ dynamicColor = iupredDF$IUPred2, |
|
142 |
+ customColors = c("darkolivegreen3", "darkorchid1", "grey65"), |
|
143 |
+ customTitle = NA, |
|
144 |
+ propertyLimits = c(0, 1)) |
|
145 |
+ |
|
146 |
+ gg <- gg + ggplot2::labs(title = plotTitle, |
|
147 |
+ subtitle = plotSubtitle) |
|
148 |
+ return(gg) |
|
149 |
+ } else { |
|
150 |
+ return(iupredDF) |
|
151 |
+ } |
|
152 |
+ |
|
153 |
+} |
|
154 |
+ |
|
155 |
+ |
|
156 |
+#' @rdname iupred |
|
157 |
+#' @export |
|
158 |
+#---- |
|
159 |
+iupredAnchor <- function( |
|
160 |
+ uniprotAccession, |
|
161 |
+ plotResults = TRUE, |
|
162 |
+ proteinName = NA) { |
|
163 |
+ |
|
164 |
+ #------ |
|
165 |
+ #Connecting to IUPred2A REST API |
|
166 |
+ iupredURL <- paste("https://iupred2a.elte.hu/iupred2a/", |
|
167 |
+ "anchor", |
|
168 |
+ "/", |
|
169 |
+ uniprotAccession, |
|
170 |
+ ".json", |
|
171 |
+ sep = "") |
|
172 |
+ iupredJson <- jsonlite::fromJSON(iupredURL) |
|
173 |
+ #----- |
|
174 |
+ #Reformatting data to be consistent in formatting across idpr |
|
175 |
+ iupredPrediction <- iupredJson$iupred2 |
|
176 |
+ anchorPrediction <- iupredJson$anchor2 |
|
177 |
+ iupredSequence <- unlist(strsplit(iupredJson$sequence, "")) |
|
178 |
+ iupredSequence <- unlist(iupredSequence) |
|
179 |
+ seqLength <- length(iupredSequence) |
|
180 |
+ iupredDF <- data.frame(Position = 1:seqLength, |
|
181 |
+ AA = iupredSequence, |
|
182 |
+ IUPred2 = iupredPrediction, |
|
183 |
+ ANCHOR2 = anchorPrediction) |
|
184 |
+ #------ |
|
185 |
+ #Returning |
|
186 |
+ if (plotResults) { |
|
187 |
+ if (!is.na(proteinName)) { |
|
188 |
+ plotTitle <- paste("Prediction of Intrinsic Disorder in ", |
|
189 |
+ proteinName, |
|
190 |
+ sep = "") |
|
191 |
+ } else { |
|
192 |
+ plotTitle <- "Prediction of Intrinsic Disorder" |
|
193 |
+ } |
|
194 |
+ jsonType <- iupredJson$type |
|
195 |
+ plotSubtitle <- paste("By IUPred2A ", |
|
196 |
+ jsonType, |
|
197 |
+ " and ANCHOR2", |
|
198 |
+ sep = "") |
|
199 |
+ |
|
200 |
+ gg <- sequencePlot( |
|
201 |
+ position = iupredDF$Position, |
|
202 |
+ property = iupredDF$IUPred2, |
|
203 |
+ hline = 0.5, |
|
204 |
+ dynamicColor = iupredDF$IUPred2, |
|
205 |
+ customColors = c("darkolivegreen3", "darkorchid1", "grey65"), |
|
206 |
+ customTitle = NA, |
|
207 |
+ propertyLimits = c(0, 1)) |
|
208 |
+ gg <- gg + ggplot2::geom_line(data = iupredDF, |
|
209 |
+ ggplot2::aes_(x = ~ Position, |
|
210 |
+ y = ~ ANCHOR2), |
|
211 |
+ color = "#92140C", |
|
212 |
+ inherit.aes = FALSE) |
|
213 |
+ gg <- gg + ggplot2::labs(title = plotTitle, |
|
214 |
+ subtitle = plotSubtitle) |
|
215 |
+ return(gg) |
|
216 |
+ } else { |
|
217 |
+ return(iupredDF) |
|
218 |
+ } |
|
219 |
+ |
|
220 |
+} |
|
221 |
+ |
|
222 |
+#' @rdname iupred |
|
223 |
+#' @export |
|
224 |
+iupredRedox <- function( |
|
225 |
+ uniprotAccession, |
|
226 |
+ plotResults = TRUE, |
|
227 |
+ proteinName = NA) { |
|
228 |
+ |
|
229 |
+ #------ |
|
230 |
+ #Connecting to IUPred2A REST API |
|
231 |
+ iupredURL <- paste("https://iupred2a.elte.hu/iupred2a/", |
|
232 |
+ "redox", |
|
233 |
+ "/", |
|
234 |
+ uniprotAccession, |
|
235 |
+ ".json", |
|
236 |
+ sep = "") |
|
237 |
+ iupredJson <- jsonlite::fromJSON(iupredURL) |
|
238 |
+ #----- |
|
239 |
+ #Reformatting data to be consistent in formatting across idpr |
|
240 |
+ iupredPlus <- iupredJson$iupred2_redox_plus |
|
241 |
+ iupredMinus <- iupredJson$iupred2_redox_minus |
|
242 |
+ redoxSenstitiveMat <- iupredJson$redox_sensitive_regions |
|
243 |
+ redoxSenstitiveDF <- as.data.frame(redoxSenstitiveMat) |
|
244 |
+ iupredSequence <- unlist(strsplit(iupredJson$sequence, "")) |
|
245 |
+ iupredSequence <- unlist(iupredSequence) |
|
246 |
+ seqLength <- length(iupredSequence) |
|
247 |
+ iupredDF <- data.frame(Position = 1:seqLength, |
|
248 |
+ AA = iupredSequence, |
|
249 |
+ iupredPlus = iupredPlus, |
|
250 |
+ iupredMinus = iupredMinus) |
|
251 |
+ #------ |
|
252 |
+ #Returning |
|
253 |
+ if (plotResults) { |
|
254 |
+ if (!is.na(proteinName)) { |
|
255 |
+ plotTitle <- paste("Prediction of Intrinsic Disorder in ", |
|
256 |
+ proteinName, |
|
257 |
+ sep = "") |
|
258 |
+ } else { |
|
259 |
+ plotTitle <- "Prediction of Intrinsic Disorder" |
|
260 |
+ } |
|
261 |
+ jsonType <- iupredJson$type |
|
262 |
+ plotSubtitle <- paste("By IUPred2 ", |
|
263 |
+ jsonType, |
|
264 |
+ "|Based on Environmental Redox State", |
|
265 |
+ sep = "") |
|
266 |
+ gg <- ggplot2::ggplot(iupredDF, |
|
267 |
+ ggplot2::aes(x = Position)) |
|
268 |
+ |
|
269 |
+ if (!is.null(redoxSenstitiveDF[1, 1])) { |
|
270 |
+ gg <- gg + ggplot2::geom_rect(inherit.aes = F, |
|
271 |
+ data = redoxSenstitiveDF, |
|
272 |
+ ggplot2::aes_(xmin = ~ V1, |
|
273 |
+ xmax = ~ V2, |
|
274 |
+ ymin = 0, |
|
275 |
+ ymax = 1), |
|
276 |
+ alpha = 0.5, |
|
277 |
+ fill = "#5DD39E") |
|
278 |
+ } |
|
279 |
+ legendTitle <- "Redox-Sensitive\nDisorder Prediction" |
|
280 |
+ gg <- gg + ggplot2::geom_hline(yintercept = 0.5, |
|
281 |
+ linetype = "dotdash", |
|
282 |
+ color = "gray13", |
|
283 |
+ size = 1, |
|
284 |
+ alpha = 0.5) |
|
285 |
+ gg <- gg + ggplot2::geom_line(ggplot2::aes(y = iupredMinus, |
|
286 |
+ color = "iupredMin"), |
|
287 |
+ linetype = "solid") + |
|
288 |
+ ggplot2::geom_line(ggplot2::aes(y = iupredPlus, |
|
289 |
+ color = "iupredPlus"), |
|
290 |
+ linetype = "solid") + |
|
291 |
+ ggplot2::scale_color_manual(values = c("iupredPlus" = "#BF3EFF", |
|
292 |
+ "iupredMin" = "#348AA7"), |
|
293 |
+ labels = c("Plus", |
|
294 |
+ "Minus"), |
|
295 |
+ name = legendTitle) |
|
296 |
+ gg <- gg + ggplot2::labs(title = plotTitle, |
|
297 |
+ subtitle = plotSubtitle, |
|
298 |
+ x = "Residue", |
|
299 |
+ y = "Score") + |
|
300 |
+ ggplot2::theme_minimal() + |
|
301 |
+ ggplot2::geom_hline(yintercept = c(0, 1), color = "gray2") |
|
302 |
+ return(gg) |
|
303 |
+ } else { |
|
304 |
+ if (!is.null(redoxSenstitiveDF[1, 1])) { |
|
305 |
+ senstitiveRegions <- unlist(Map(":", |
|
306 |
+ redoxSenstitiveDF$V1, |
|
307 |
+ redoxSenstitiveDF$V2)) |
|
308 |
+ senstitivePositions <- 1:seqLength %in% unlist(senstitiveRegions) |
|
309 |
+ iupredDF$redoxSensitive <- senstitivePositions |
|
310 |
+ } else { |
|
311 |
+ iupredDF$redoxSensitive <- rep(FALSE, nrow(iupredDF)) |
|
312 |
+ } |
|
313 |
+ return(iupredDF) |
|
314 |
+ } |
|
315 |
+} |
0 | 316 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,124 @@ |
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 |
+% Please edit documentation in R/iupred.R |
|
3 |
+\name{iupred} |
|
4 |
+\alias{iupred} |
|
5 |
+\alias{iupredAnchor} |
|
6 |
+\alias{iupredRedox} |
|
7 |
+\title{Prediction of Intrinsic Disorder with IUPred2A} |
|
8 |
+\source{ |
|
9 |
+Bálint Mészáros, Gábor Erdős, Zsuzsanna Dosztányi, |
|
10 |
+ IUPred2A: context-dependent prediction of protein disorder as a function of |
|
11 |
+ redox state and protein binding, Nucleic Acids Research, Volume 46, Issue |
|
12 |
+ W1, 2 July 2018, Pages W329–W337, \url{https://doi.org/10.1093/nar/gky384} |
|
13 |
+ \cr\cr |
|
14 |
+ Erdős, G., & Dosztányi, Z. (2020). Analyzing protein disorder with |
|
15 |
+ IUPred2A. Current Protocols in Bioinformatics, 70, e99. |
|
16 |
+ \url{https://doi.org/10.1002/cpbi.99} |
|
17 |
+} |
|
18 |
+\usage{ |
|
19 |
+iupred( |
|
20 |
+ uniprotAccession, |
|
21 |
+ iupredType = "long", |
|
22 |
+ plotResults = TRUE, |
|
23 |
+ proteinName = NA |
|
24 |
+) |
|
25 |
+ |
|
26 |
+iupredAnchor(uniprotAccession, plotResults = TRUE, proteinName = NA) |
|
27 |
+ |
|
28 |
+iupredRedox(uniprotAccession, plotResults = TRUE, proteinName = NA) |
|
29 |
+} |
|
30 |
+\arguments{ |
|
31 |
+\item{uniprotAccession}{character string specifying the UniProt Accession |
|
32 |
+number of the protein used to fetch IUPred predictions.} |
|
33 |
+ |
|
34 |
+\item{iupredType}{character string. "long" by default. accepted types are |
|
35 |
+c("long", "short", "glob"). See "Prediction Type" information below.} |
|
36 |
+ |
|
37 |
+\item{plotResults}{logical value. TRUE by default. |
|
38 |
+If \code{plotResults = TRUE}, a ggplot of IUPred predictions is returned |
|
39 |
+If \code{plotResults = FALSE}, a dataframe of predictions is returned.} |
|
40 |
+ |
|
41 |
+\item{proteinName}{character string, optional. Used to add protein name |
|
42 |
+to the title in ggplot. Ignored if \code{plotResults = FALSE}.} |
|
43 |
+} |
|
44 |
+\value{ |
|
45 |
+see plotResults argument. |
|
46 |
+} |
|
47 |
+\description{ |
|
48 |
+This function makes a connection to the IUPred2A REST API based on the type |
|
49 |
+ of analysis and UniProt accession number. This requires the user to know |
|
50 |
+ the accession number of their protein and a connection to the internet. |
|
51 |
+ The results are then formatted to match output in the idpr package. \cr \cr |
|
52 |
+ Predictions are made on a scale of 0-1, where any residues with a score |
|
53 |
+ over 0.5 are predicted to be disordered, and any residue scoring below 0.5 |
|
54 |
+ are predicted to be ordered (when using "long" and "short" predictions).\cr |
|
55 |
+ The output is either a graph (ggplot) or data frame of predictions. |
|
56 |
+ \cr\cr |
|
57 |
+ \strong{iupred()} is used for standard predictions of intrinsic disorder |
|
58 |
+ of an amino acid sequence. This is the core of predictions. |
|
59 |
+ Predictions vary by iupredType (details below) |
|
60 |
+ The results are either a ggplot or data frame of the fetched IUPred2. |
|
61 |
+ predictions. |
|
62 |
+ \cr |
|
63 |
+ \strong{iupredAnchor()} is used to combine the output of IUPred2 long with |
|
64 |
+ ANCHOR2 predictions. ANCHOR2 is a context-dependent predictor of binding |
|
65 |
+ regions for protein-protein interactions. The results are either a ggplot |
|
66 |
+ with 2 lines, one for IUPred2 long and another for ANCHOR predictions, or |
|
67 |
+ a data frame with both IUPred2 long and ANCHOR Predictions. Values are |
|
68 |
+ fetched by the IUPred2A REST API. |
|
69 |
+ \cr |
|
70 |
+ \strong{iupredRedox()} is used to predict redox-senstitive regions that may |
|
71 |
+ experience induced folding upon changing environments. |
|
72 |
+ This is a context-dependent predictor of disordered regions depending on |
|
73 |
+ a reducing (plus) or oxidizing (minus) enviornment. The results can be |
|
74 |
+ a ggplot with two IUPred2 long predictions, one for plus and another for |
|
75 |
+ minus enviornments, with redox senstitive regions shaded (if predicted). |
|
76 |
+ Alternativly, the results can be a data frame with both IUPred2 long plus |
|
77 |
+ and minus predictions as well as a column of logical values where a residue |
|
78 |
+ that is TRUE is predicted to be in a redox senstitive region. Values are |
|
79 |
+ fetched by the IUPred2A REST API. |
|
80 |
+ \cr \cr |
|
81 |
+ IUPred2 website is located at \url{https://iupred2a.elte.hu/}. |
|
82 |
+ For detailed information on using IUPred2A, please refer to |
|
83 |
+ \href{https://doi.org/10.1002/cpbi.99}{Erdős & Dosztány (2020)} |
|
84 |
+ Analyzing protein disorder with IUPred2A. |
|
85 |
+ Current Protocols in Bioinformatics, 70, e99. |
|
86 |
+ Additionally, please see |
|
87 |
+ \href{https://doi.org/10.1093/nar/gky384}{Mészáros et al (2019)} |
|
88 |
+ for further information, theory, and applications of IUPred2A. |
|
89 |
+ \cr \cr |
|
90 |
+ \strong{Please cite these articles if you use any iupred function.} |
|
91 |
+} |
|
92 |
+\section{Prediction Type}{ |
|
93 |
+ |
|
94 |
+ Information from \url{https://iupred2a.elte.hu/help_new} on 5.22.20 |
|
95 |
+ Additionally, see the sources for futher details and source information. |
|
96 |
+ This is only relevant for iupred(). iupredAnchor() and iupredRedox() |
|
97 |
+ always utilize "long" for data in the REST API. |
|
98 |
+ \itemize{ |
|
99 |
+ \item Long predictions of disorder (Default) |
|
100 |
+ \itemize{ |
|
101 |
+ \item when iupredType = "long" |
|
102 |
+ \item Optimized for global predictions of disorder, specifically |
|
103 |
+ disordered regions over 30 amino acids in length. |
|
104 |
+ \item "long" is always used for iupredAnchor() and iupredRedox(). |
|
105 |
+ } |
|
106 |
+ \item Short predictions of disorder |
|
107 |
+ \itemize{ |
|
108 |
+ \item when iupredType = "short" |
|
109 |
+ \item Best for predicting small regions of disorder, especially |
|
110 |
+ in mostly structured proteins. |
|
111 |
+ \item Has adjustments for termini, since sequence ends are often |
|
112 |
+ disordered. |
|
113 |
+ } |
|
114 |
+ \item Structured predictions |
|
115 |
+ \itemize{ |
|
116 |
+ \item when iupredType = "glob" |
|
117 |
+ \item Used to predict regions of globular folding. |
|
118 |
+ \item please see |
|
119 |
+ \href{https://doi.org/10.1002/cpbi.99}{Erdős & Dosztány (2020)} |
|
120 |
+ for further information on interpreting these results. |
|
121 |
+ } |
|
122 |
+ } |
|
123 |
+} |
|
124 |
+ |