... | ... |
@@ -1,6 +1,6 @@ |
1 | 1 |
Package: hipathia |
2 | 2 |
Title: HiPathia: High-throughput Pathway Analysis |
3 |
-Version: 1.99.4 |
|
3 |
+Version: 1.99.5 |
|
4 | 4 |
Authors@R: c(person("Marta R.", "Hidalgo", email = "marta.hidalgo@outlook.es", role = c("aut", "cre")), |
5 | 5 |
person("José", "Carbonell-Caballero", role = c("ctb")), |
6 | 6 |
person("Francisco", "Salavert", role = c("ctb")), |
... | ... |
@@ -378,8 +378,8 @@ compute_node_signal <- function(actnode, node_val, node_signal, subgraph, |
378 | 378 |
} |
379 | 379 |
|
380 | 380 |
# If signal too low, signal do not propagate |
381 |
- if(sum(nas) == 0 && signal < response_tol) |
|
382 |
- signal <- rep(0, length(node_val)) |
|
381 |
+ if(sum(nas) == 0 && any(signal < response_tol)) |
|
382 |
+ signal[signal < response_tol] <- 0 |
|
383 | 383 |
|
384 | 384 |
} |
385 | 385 |
|
... | ... |
@@ -587,8 +587,13 @@ get_pathways_summary <- function(comp, metaginfo, conf = 0.05){ |
587 | 587 |
#' |
588 | 588 |
top_pathways <- function(comp){ |
589 | 589 |
|
590 |
- path_names <- as.character(comp$path_names) |
|
591 |
- comp$pathways <- sapply(strsplit(path_names, split = ":"), "[[", 1) |
|
590 |
+ if("name" %in% colnames(comp)){ |
|
591 |
+ path_names <- as.character(comp$name) |
|
592 |
+ comp$pathways <- sapply(strsplit(path_names, split = ":"), "[[", 1) |
|
593 |
+ }else{ |
|
594 |
+ path_names <- rownames(comp) |
|
595 |
+ comp$pathways <- sapply(strsplit(path_names, split = "-"), "[[", 2) |
|
596 |
+ } |
|
592 | 597 |
pathways <- unique(comp$pathways) |
593 | 598 |
|
594 | 599 |
tests <- do.call(rbind, lapply(pathways, function(path) { |
... | ... |
@@ -859,10 +859,11 @@ paths_to_go_ancestor <- function(pathways, comp_paths, comp_go, pval = 0.05){ |
859 | 859 |
#' by dividing by the value obtained from running the method with a basal |
860 | 860 |
#' value of 0.5 at each node. |
861 | 861 |
#' |
862 |
-#' @param path_vals Matrix of the pathway values |
|
862 |
+#' @param path_vals SummarizedExperiment or matrix of the pathway values |
|
863 | 863 |
#' @param metaginfo Pathways object |
864 | 864 |
#' |
865 |
-#' @return Matrix of normalized pathway values |
|
865 |
+#' @return SummarizedExperiment or matrix of normalized pathway values, |
|
866 |
+#' depending on the class of \code{path_vals}. |
|
866 | 867 |
#' |
867 | 868 |
#' @examples |
868 | 869 |
#' data(path_vals) |
... | ... |
@@ -876,17 +877,24 @@ normalize_paths <- function(path_vals, metaginfo){ |
876 | 877 |
decomposed <- is_decomposed_matrix(path_vals) |
877 | 878 |
if(decomposed == TRUE){ |
878 | 879 |
norm_factors <- metaginfo$path.norm[rownames(path_vals)] |
879 |
- path_norm <- normalize_data(path_vals/(norm_factors*0.99+0.01), |
|
880 |
- by_quantiles = FALSE, |
|
881 |
- by_gene = FALSE, |
|
882 |
- percentil = FALSE) |
|
883 | 880 |
}else{ |
884 | 881 |
norm_factors <- metaginfo$eff.norm[rownames(path_vals)] |
885 |
- path_norm <- normalize_data(path_vals/(norm_factors*0.99+0.01), |
|
886 |
- by_quantiles = FALSE, |
|
887 |
- by_gene = FALSE, |
|
888 |
- percentil = FALSE) |
|
889 | 882 |
} |
883 |
+ if(is(path_vals, "SummarizedExperiment")){ |
|
884 |
+ coldata <- colData(path_vals) |
|
885 |
+ path_vals <- assay(path_vals, "paths") |
|
886 |
+ se_flag <- TRUE |
|
887 |
+ }else{ |
|
888 |
+ se_flag <- FALSE |
|
889 |
+ } |
|
890 |
+ path_norm <- normalize_data(path_vals/(norm_factors*0.99+0.01), |
|
891 |
+ by_quantiles = FALSE, |
|
892 |
+ by_gene = FALSE, |
|
893 |
+ percentil = FALSE) |
|
894 |
+ if(se_flag == TRUE) |
|
895 |
+ path_norm <- SummarizedExperiment(list(path_norm = path_norm), |
|
896 |
+ colData = coldata) |
|
897 |
+ |
|
890 | 898 |
return(path_norm) |
891 | 899 |
} |
892 | 900 |
|
... | ... |
@@ -7,12 +7,13 @@ |
7 | 7 |
normalize_paths(path_vals, metaginfo) |
8 | 8 |
} |
9 | 9 |
\arguments{ |
10 |
-\item{path_vals}{Matrix of the pathway values} |
|
10 |
+\item{path_vals}{SummarizedExperiment or matrix of the pathway values} |
|
11 | 11 |
|
12 | 12 |
\item{metaginfo}{Pathways object} |
13 | 13 |
} |
14 | 14 |
\value{ |
15 |
-Matrix of normalized pathway values |
|
15 |
+SummarizedExperiment or matrix of normalized pathway values, |
|
16 |
+depending on the class of \code{path_vals}. |
|
16 | 17 |
} |
17 | 18 |
\description{ |
18 | 19 |
Due to the nature of the Hipathia method, the length of a pathway may |