Browse code

update vignettes

guangchuang yu authored on 03/01/2018 09:55:53
Showing33 changed files

... ...
@@ -2,7 +2,7 @@ PKGNAME := $(shell sed -n "s/Package: *\([^ ]*\)/\1/p" DESCRIPTION)
2 2
 PKGVERS := $(shell sed -n "s/Version: *\([^ ]*\)/\1/p" DESCRIPTION)
3 3
 PKGSRC  := $(shell basename `pwd`)
4 4
 
5
-all: rd readme check clean
5
+all: rd check clean
6 6
 
7 7
 alldocs: site rd readme
8 8
 
... ...
@@ -1,5 +1,6 @@
1 1
 # Generated by roxygen2: do not edit by hand
2 2
 
3
+S3method(collapse,ggtree)
3 4
 S3method(fortify,multiPhylo)
4 5
 S3method(fortify,obkData)
5 6
 S3method(fortify,phylo)
... ...
@@ -29,6 +30,7 @@ export(decimal2Date)
29 30
 export(expand)
30 31
 export(facet_plot)
31 32
 export(flip)
33
+export(fortify)
32 34
 export(geom_aline)
33 35
 export(geom_balance)
34 36
 export(geom_cladelabel)
... ...
@@ -61,6 +63,7 @@ export(get_balance_position)
61 63
 export(get_clade_position)
62 64
 export(get_heatmap_column_position)
63 65
 export(get_taxa_name)
66
+export(ggplot)
64 67
 export(ggsave)
65 68
 export(ggtree)
66 69
 export(gheatmap)
... ...
@@ -76,6 +79,21 @@ export(nodepie)
76 79
 export(open_tree)
77 80
 export(phylopic)
78 81
 export(range_format)
82
+export(read.beast)
83
+export(read.codeml)
84
+export(read.codeml_mlc)
85
+export(read.hyphy)
86
+export(read.jplace)
87
+export(read.jtree)
88
+export(read.mrbayes)
89
+export(read.newick)
90
+export(read.nexus)
91
+export(read.nhx)
92
+export(read.paml_rst)
93
+export(read.phylip)
94
+export(read.phyloT)
95
+export(read.r8s)
96
+export(read.raxml)
79 97
 export(read.tree)
80 98
 export(reroot)
81 99
 export(rescale_tree)
... ...
@@ -105,9 +123,11 @@ importFrom(ape,di2multi)
105 123
 importFrom(ape,extract.clade)
106 124
 importFrom(ape,getMRCA)
107 125
 importFrom(ape,ladderize)
126
+importFrom(ape,read.nexus)
108 127
 importFrom(ape,read.tree)
109 128
 importFrom(ape,reorder.phylo)
110 129
 importFrom(ape,rtree)
130
+importFrom(dplyr,collapse)
111 131
 importFrom(dplyr,full_join)
112 132
 importFrom(dplyr,mutate_)
113 133
 importFrom(ggplot2,Geom)
... ...
@@ -200,7 +220,21 @@ importFrom(treeio,Nnode)
200 220
 importFrom(treeio,Ntip)
201 221
 importFrom(treeio,as.phylo)
202 222
 importFrom(treeio,as.treedata)
223
+importFrom(treeio,read.beast)
224
+importFrom(treeio,read.codeml)
225
+importFrom(treeio,read.codeml_mlc)
203 226
 importFrom(treeio,read.fasta)
227
+importFrom(treeio,read.hyphy)
228
+importFrom(treeio,read.jplace)
229
+importFrom(treeio,read.jtree)
230
+importFrom(treeio,read.mrbayes)
231
+importFrom(treeio,read.newick)
232
+importFrom(treeio,read.nhx)
233
+importFrom(treeio,read.paml_rst)
234
+importFrom(treeio,read.phylip)
235
+importFrom(treeio,read.phyloT)
236
+importFrom(treeio,read.r8s)
237
+importFrom(treeio,read.raxml)
204 238
 importFrom(utils,modifyList)
205 239
 importFrom(utils,packageDescription)
206 240
 importFrom(utils,packageVersion)
... ...
@@ -1,5 +1,7 @@
1 1
 # ggtree 1.11.4
2 2
 
3
++ re-implement collapse as collapse.ggtree method by importing dplyr::collapse
4
+  generic to prevent function name collision (2018-01-03, Wed)
3 5
 + update treeVisualization vignette, with more layout examples added (2017-12-22, Fri)
4 6
 + update vignette (2017-12-21, Thu)
5 7
     - remove ggtreeUtilities.Rmd
... ...
@@ -59,15 +59,18 @@ is.viewClade <- function(tree_view) {
59 59
 ##' collapse a clade
60 60
 ##'
61 61
 ##'
62
-##' @title collapse
63
-##' @param tree_view tree view
62
+##' @title collapse-ggtree
63
+##' @rdname collapse
64
+##' @param x tree view
64 65
 ##' @param node clade node
66
+##' @param ... additional parameters
65 67
 ##' @return tree view
68
+##' @method collapse ggtree
66 69
 ##' @export
67 70
 ##' @seealso expand
68 71
 ##' @author Guangchuang Yu
69
-collapse <- function(tree_view=NULL, node) {
70
-    tree_view %<>% get_tree_view
72
+collapse.ggtree <- function(x=NULL, node, ...) {
73
+    tree_view <- get_tree_view(x)
71 74
 
72 75
     df <- tree_view$data
73 76
 
... ...
@@ -12,7 +12,7 @@
12 12
 ##' @importFrom ggplot2 GeomRect
13 13
 ##' @author Guangchuang Yu
14 14
 geom_hilight <- function(node, fill="steelblue", alpha=.5, extend=0, extendto=NULL) {
15
-  
15
+
16 16
   data = NULL
17 17
   stat = "hilight"
18 18
   position = "identity"
... ...
@@ -20,10 +20,10 @@ geom_hilight <- function(node, fill="steelblue", alpha=.5, extend=0, extendto=NU
20 20
   na.rm = TRUE
21 21
   inherit.aes = FALSE
22 22
   check.aes = FALSE
23
-  
23
+
24 24
   default_aes <- aes_(x=~x, y=~y, node=~node, parent=~parent, branch.length=~branch.length)
25 25
   mapping <- default_aes
26
-  
26
+
27 27
   l <- layer(
28 28
     stat=StatHilight,
29 29
     data = data,
... ...
@@ -40,7 +40,7 @@ geom_hilight <- function(node, fill="steelblue", alpha=.5, extend=0, extendto=NU
40 40
                   extendto=extendto,
41 41
                   na.rm = na.rm)
42 42
   )
43
-  
43
+
44 44
   return(l)
45 45
 }
46 46
 
... ...
@@ -67,15 +67,15 @@ stat_hilight <- function(mapping=NULL, data=NULL, geom="rect",
67 67
                          show.legend=NA, inherit.aes=FALSE,
68 68
                          fill, alpha, extend=0, extendto=NULL,
69 69
                          ...) {
70
-  
70
+
71 71
   default_aes <- aes_(x=~x, y=~y, node=~node, parent=~parent, branch.length=~branch.length)
72
-  
72
+
73 73
   if (is.null(mapping)) {
74 74
     mapping <- default_aes
75 75
   } else {
76 76
     mapping <- modifyList(mapping, default_aes)
77 77
   }
78
-  
78
+
79 79
   layer(
80 80
     stat=StatHilight,
81 81
     data = data,
... ...
@@ -101,7 +101,7 @@ stat_hilight <- function(mapping=NULL, data=NULL, geom="rect",
101 101
 ##' @export
102 102
 StatHilight <- ggproto("StatHilight", Stat,
103 103
                        compute_group = function(self, data, scales, params, node, extend, extendto) {
104
-                         
104
+
105 105
                          df <- get_clade_position_(data, node)
106 106
                          df$xmax <- df$xmax + extend
107 107
                          if (!is.null(extendto) && !is.na(extendto)) {
... ...
@@ -146,7 +146,7 @@ get_clade_position_ <- function(data, node) {
146 146
     y <- sp.df$y
147 147
 
148 148
     if ("branch.length" %in% colnames(data)) {
149
-        xmin <- min(x, na.rm=TRUE)-data[i, "branch.length"]/2
149
+        xmin <- min(x, na.rm=TRUE)-data[["branch.length"]][i]/2
150 150
     } else {
151 151
         xmin <- min(sp.df$branch, na.rm=TRUE)
152 152
     }
... ...
@@ -14,7 +14,7 @@
14 14
 ##' @return tree view with insets
15 15
 ##' @export
16 16
 ##' @author Guangchuang Yu
17
-inset <- function(tree_view, insets, width=0.1, height=0.1, hjust=0, vjust=0,
17
+inset <- function(tree_view, insets, width, height, hjust=0, vjust=0,
18 18
                   x="node", reverse_x=FALSE, reverse_y=FALSE) {
19 19
 
20 20
     df <- tree_view$data[as.numeric(names(insets)),]
... ...
@@ -6,6 +6,10 @@ ape::rtree
6 6
 ##' @export
7 7
 ape::read.tree
8 8
 
9
+##' @importFrom ape read.nexus
10
+##' @export
11
+ape::read.nexus
12
+
9 13
 ##' @importFrom tidytree groupOTU
10 14
 ##' @export
11 15
 tidytree::groupOTU
... ...
@@ -14,6 +18,18 @@ tidytree::groupOTU
14 18
 ##' @export
15 19
 tidytree::groupClade
16 20
 
21
+##' @importFrom dplyr collapse
22
+##' @export
23
+dplyr::collapse
24
+
25
+##' @importFrom ggplot2 fortify
26
+##' @export
27
+ggplot2::fortify
28
+
29
+##' @importFrom ggplot2 ggplot
30
+##' @export
31
+ggplot2::ggplot
32
+
17 33
 ##' @importFrom ggplot2 xlim
18 34
 ##' @export
19 35
 ggplot2::xlim
... ...
@@ -43,6 +59,59 @@ ggplot2::geom_label
43 59
 ggplot2::geom_point
44 60
 
45 61
 
62
+##' @importFrom treeio read.beast
63
+##' @export
64
+treeio::read.beast
46 65
 
66
+##' @importFrom treeio read.codeml
67
+##' @export
68
+treeio::read.codeml
69
+
70
+##' @importFrom treeio read.codeml_mlc
71
+##' @export
72
+treeio::read.codeml_mlc
73
+
74
+##' @importFrom treeio read.hyphy
75
+##' @export
76
+treeio::read.hyphy
77
+
78
+##' @importFrom treeio read.jplace
79
+##' @export
80
+treeio::read.jplace
47 81
 
82
+##' @importFrom treeio read.jtree
83
+##' @export
84
+treeio::read.jtree
85
+
86
+##' @importFrom treeio read.mrbayes
87
+##' @export
88
+treeio::read.mrbayes
89
+
90
+##' @importFrom treeio read.newick
91
+##' @export
92
+treeio::read.newick
93
+
94
+##' @importFrom treeio read.nhx
95
+##' @export
96
+treeio::read.nhx
97
+
98
+##' @importFrom treeio read.paml_rst
99
+##' @export
100
+treeio::read.paml_rst
101
+
102
+##' @importFrom treeio read.phylip
103
+##' @export
104
+treeio::read.phylip
105
+
106
+##' @importFrom treeio read.phyloT
107
+##' @export
108
+treeio::read.phyloT
109
+
110
+##' @importFrom treeio read.r8s
111
+##' @export
112
+treeio::read.r8s
113
+
114
+##' @importFrom treeio read.raxml
115
+##' @export
116
+treeio::read.raxml
48 117
 
... ...
@@ -4,9 +4,9 @@ ggtree: an R package for visualization and annotation of phylogenetic trees with
4 4
 
5 5
 <img src="https://raw.githubusercontent.com/Bioconductor/BiocStickers/master/ggtree/ggtree.png" height="200" align="right" />
6 6
 
7
-[![releaseVersion](https://img.shields.io/badge/release%20version-1.10.0-green.svg?style=flat)](https://bioconductor.org/packages/ggtree) [![develVersion](https://img.shields.io/badge/devel%20version-1.11.4-green.svg?style=flat)](https://github.com/guangchuangyu/ggtree) [![Bioc](http://www.bioconductor.org/shields/years-in-bioc/ggtree.svg)](https://www.bioconductor.org/packages/devel/bioc/html/ggtree.html#since) [![total](https://img.shields.io/badge/downloads-22621/total-blue.svg?style=flat)](https://bioconductor.org/packages/stats/bioc/ggtree) [![month](https://img.shields.io/badge/downloads-1218/month-blue.svg?style=flat)](https://bioconductor.org/packages/stats/bioc/ggtree)
7
+[![releaseVersion](https://img.shields.io/badge/release%20version-1.10.0-green.svg?style=flat)](https://bioconductor.org/packages/ggtree) [![develVersion](https://img.shields.io/badge/devel%20version-1.11.4-green.svg?style=flat)](https://github.com/guangchuangyu/ggtree) [![Bioc](http://www.bioconductor.org/shields/years-in-bioc/ggtree.svg)](https://www.bioconductor.org/packages/devel/bioc/html/ggtree.html#since) [![total](https://img.shields.io/badge/downloads-22863/total-blue.svg?style=flat)](https://bioconductor.org/packages/stats/bioc/ggtree) [![month](https://img.shields.io/badge/downloads-906/month-blue.svg?style=flat)](https://bioconductor.org/packages/stats/bioc/ggtree)
8 8
 
9
-[![Project Status: Active - The project has reached a stable, usable state and is being actively developed.](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active) [![codecov](https://codecov.io/gh/GuangchuangYu/ggtree/branch/master/graph/badge.svg)](https://codecov.io/gh/GuangchuangYu/ggtree) [![Last-changedate](https://img.shields.io/badge/last%20change-2017--12--22-green.svg)](https://github.com/GuangchuangYu/ggtree/commits/master) [![GitHub forks](https://img.shields.io/github/forks/GuangchuangYu/ggtree.svg)](https://github.com/GuangchuangYu/ggtree/network) [![GitHub stars](https://img.shields.io/github/stars/GuangchuangYu/ggtree.svg)](https://github.com/GuangchuangYu/ggtree/stargazers) [![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://awesome-r.com/#awesome-r-graphic-displays)
9
+[![Project Status: Active - The project has reached a stable, usable state and is being actively developed.](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active) [![codecov](https://codecov.io/gh/GuangchuangYu/ggtree/branch/master/graph/badge.svg)](https://codecov.io/gh/GuangchuangYu/ggtree) [![Last-changedate](https://img.shields.io/badge/last%20change-2018--01--03-green.svg)](https://github.com/GuangchuangYu/ggtree/commits/master) [![GitHub forks](https://img.shields.io/github/forks/GuangchuangYu/ggtree.svg)](https://github.com/GuangchuangYu/ggtree/network) [![GitHub stars](https://img.shields.io/github/stars/GuangchuangYu/ggtree.svg)](https://github.com/GuangchuangYu/ggtree/stargazers) [![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://awesome-r.com/#awesome-r-graphic-displays)
10 10
 
11 11
 [![platform](http://www.bioconductor.org/shields/availability/devel/ggtree.svg)](https://www.bioconductor.org/packages/devel/bioc/html/ggtree.html#archives) [![Build Status](http://www.bioconductor.org/shields/build/devel/bioc/ggtree.svg)](https://bioconductor.org/checkResults/devel/bioc-LATEST/ggtree/) [![Linux/Mac Travis Build Status](https://img.shields.io/travis/GuangchuangYu/ggtree/master.svg?label=Mac%20OSX%20%26%20Linux)](https://travis-ci.org/GuangchuangYu/ggtree) [![AppVeyor Build Status](https://img.shields.io/appveyor/ci/Guangchuangyu/ggtree/master.svg?label=Windows)](https://ci.appveyor.com/project/GuangchuangYu/ggtree) [![Backers on Open Collective](https://opencollective.com/ggtree/backers/badge.svg)](#backers) [![Sponsors on Open Collective](https://opencollective.com/ggtree/sponsors/badge.svg)](#sponsors)
12 12
 
... ...
@@ -27,7 +27,7 @@ Please cite the following article when using `ggtree`:
27 27
 
28 28
 **G Yu**, DK Smith, H Zhu, Y Guan, TTY Lam<sup>\*</sup>. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. ***Methods in Ecology and Evolution***. 2017, 8(1):28-36.
29 29
 
30
-[![doi](https://img.shields.io/badge/doi-10.1111/2041--210X.12628-green.svg?style=flat)](http://dx.doi.org/10.1111/2041-210X.12628) [![Altmetric](https://img.shields.io/badge/Altmetric-325-green.svg?style=flat)](https://www.altmetric.com/details/10533079) [![citation](https://img.shields.io/badge/cited%20by-59-green.svg?style=flat)](https://scholar.google.com.hk/scholar?oi=bibs&hl=en&cites=7268358477862164627)
30
+[![doi](https://img.shields.io/badge/doi-10.1111/2041--210X.12628-green.svg?style=flat)](http://dx.doi.org/10.1111/2041-210X.12628) [![Altmetric](https://img.shields.io/badge/Altmetric-325-green.svg?style=flat)](https://www.altmetric.com/details/10533079) [![citation](https://img.shields.io/badge/cited%20by-64-green.svg?style=flat)](https://scholar.google.com.hk/scholar?oi=bibs&hl=en&cites=7268358477862164627)
31 31
 
32 32
 ------------------------------------------------------------------------
33 33
 
... ...
@@ -37,7 +37,7 @@ Please cite the following article when using `ggtree`:
37 37
 
38 38
 ### Download stats
39 39
 
40
-[![download](http://www.bioconductor.org/shields/downloads/ggtree.svg)](https://bioconductor.org/packages/stats/bioc/ggtree) [![total](https://img.shields.io/badge/downloads-22621/total-blue.svg?style=flat)](https://bioconductor.org/packages/stats/bioc/ggtree) [![month](https://img.shields.io/badge/downloads-1218/month-blue.svg?style=flat)](https://bioconductor.org/packages/stats/bioc/ggtree)
40
+[![download](http://www.bioconductor.org/shields/downloads/ggtree.svg)](https://bioconductor.org/packages/stats/bioc/ggtree) [![total](https://img.shields.io/badge/downloads-22863/total-blue.svg?style=flat)](https://bioconductor.org/packages/stats/bioc/ggtree) [![month](https://img.shields.io/badge/downloads-906/month-blue.svg?style=flat)](https://bioconductor.org/packages/stats/bioc/ggtree)
41 41
 
42 42
 <img src="docs/images/dlstats.png" width="890"/>
43 43
 
... ...
@@ -466,7 +466,7 @@
466 466
 
467 467
 			<aside class="copyright" role="note">
468 468
 				
469
-				&copy; 2017 Released under the Artistic-2.0 license &ndash;
469
+				&copy; 2018 Released under the Artistic-2.0 license &ndash;
470 470
 				
471 471
 				Documentation built with
472 472
 				<a href="https://www.gohugo.io" target="_blank">Hugo</a>
... ...
@@ -476,7 +476,7 @@ q + geom_text(data=d, aes(label=label))</code></pre>
476 476
 
477 477
 			<aside class="copyright" role="note">
478 478
 				
479
-				&copy; 2017 Released under the Artistic-2.0 license &ndash;
479
+				&copy; 2018 Released under the Artistic-2.0 license &ndash;
480 480
 				
481 481
 				Documentation built with
482 482
 				<a href="https://www.gohugo.io" target="_blank">Hugo</a>
... ...
@@ -361,7 +361,7 @@
361 361
 
362 362
 			<aside class="copyright" role="note">
363 363
 				
364
-				&copy; 2017 Released under the Artistic-2.0 license &ndash;
364
+				&copy; 2018 Released under the Artistic-2.0 license &ndash;
365 365
 				
366 366
 				Documentation built with
367 367
 				<a href="https://www.gohugo.io" target="_blank">Hugo</a>
... ...
@@ -409,7 +409,7 @@
409 409
 
410 410
 			<aside class="copyright" role="note">
411 411
 				
412
-				&copy; 2017 Released under the Artistic-2.0 license &ndash;
412
+				&copy; 2018 Released under the Artistic-2.0 license &ndash;
413 413
 				
414 414
 				Documentation built with
415 415
 				<a href="https://www.gohugo.io" target="_blank">Hugo</a>
416 416
Binary files a/docs/images/citation.png and b/docs/images/citation.png differ
417 417
Binary files a/docs/images/dlstats.png and b/docs/images/dlstats.png differ
... ...
@@ -346,7 +346,7 @@
346 346
 
347 347
 				<p><link rel="stylesheet" href="https://guangchuangyu.github.io/css/font-awesome.min.css"> <link rel="stylesheet" href="https://guangchuangyu.github.io/css/academicons.min.css"></p>
348 348
 <p><img src="https://raw.githubusercontent.com/Bioconductor/BiocStickers/master/ggtree/ggtree.png" height="200" align="right" /></p>
349
-<p><a href="https://bioconductor.org/packages/ggtree"><img src="https://img.shields.io/badge/release%20version-1.10.0-blue.svg?style=flat" alt="releaseVersion" /></a> <a href="https://github.com/guangchuangyu/ggtree"><img src="https://img.shields.io/badge/devel%20version-1.11.4-blue.svg?style=flat" alt="develVersion" /></a> <a href="https://bioconductor.org/packages/stats/bioc/ggtree"><img src="https://img.shields.io/badge/downloads-22808/total-blue.svg?style=flat" alt="total" /></a> <a href="https://bioconductor.org/packages/stats/bioc/ggtree"><img src="https://img.shields.io/badge/downloads-1218/month-blue.svg?style=flat" alt="month" /></a></p>
349
+<p><a href="https://bioconductor.org/packages/ggtree"><img src="https://img.shields.io/badge/release%20version-1.10.0-blue.svg?style=flat" alt="releaseVersion" /></a> <a href="https://github.com/guangchuangyu/ggtree"><img src="https://img.shields.io/badge/devel%20version-1.11.4-blue.svg?style=flat" alt="develVersion" /></a> <a href="https://bioconductor.org/packages/stats/bioc/ggtree"><img src="https://img.shields.io/badge/downloads-22863/total-blue.svg?style=flat" alt="total" /></a> <a href="https://bioconductor.org/packages/stats/bioc/ggtree"><img src="https://img.shields.io/badge/downloads-906/month-blue.svg?style=flat" alt="month" /></a></p>
350 350
 <p>The <code>ggtree</code> package extending the <em>ggplot2</em> package. It based on grammar of graphics and takes all the good parts of <em>ggplot2</em>. <em>ggtree</em> is designed for not only viewing phylogenetic tree but also displaying annotation data on the tree. <em>ggtree</em> is released within the <a href="https://bioconductor.org/packages/ggtree/">Bioconductor</a> project and the source code is hosted on <a href="https://github.com/GuangchuangYu/ggtree"><i class="fa fa-github fa-lg"></i> GitHub</a>.</p>
351 351
 <div id="authors" class="section level2">
352 352
 <h2><i class="fa fa-user"></i> Authors</h2>
... ...
@@ -355,7 +355,7 @@
355 355
 <div id="citation" class="section level2">
356 356
 <h2><i class="fa fa-book"></i> Citation</h2>
357 357
 <p>Please cite the following article when using <code>ggtree</code>:</p>
358
-<p><a href="http://dx.doi.org/10.1111/2041-210X.12628"><img src="https://img.shields.io/badge/doi-10.1111/2041--210X.12628-blue.svg?style=flat" alt="doi" /></a> <a href="https://www.altmetric.com/details/10533079"><img src="https://img.shields.io/badge/Altmetric-325-blue.svg?style=flat" alt="Altmetric" /></a> <a href="https://scholar.google.com.hk/scholar?oi=bibs&amp;hl=en&amp;cites=7268358477862164627"><img src="https://img.shields.io/badge/cited%20by-60-blue.svg?style=flat" alt="citation" /></a></p>
358
+<p><a href="http://dx.doi.org/10.1111/2041-210X.12628"><img src="https://img.shields.io/badge/doi-10.1111/2041--210X.12628-blue.svg?style=flat" alt="doi" /></a> <a href="https://www.altmetric.com/details/10533079"><img src="https://img.shields.io/badge/Altmetric-325-blue.svg?style=flat" alt="Altmetric" /></a> <a href="https://scholar.google.com.hk/scholar?oi=bibs&amp;hl=en&amp;cites=7268358477862164627"><img src="https://img.shields.io/badge/cited%20by-64-blue.svg?style=flat" alt="citation" /></a></p>
359 359
 <p><strong>G Yu</strong>, DK Smith, H Zhu, Y Guan, TTY Lam<sup>*</sup>. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. <strong><em>Methods in Ecology and Evolution</em></strong>. 2017, 8(1):28-36.</p>
360 360
 </div>
361 361
 <div id="featured-articles" class="section level2">
... ...
@@ -452,7 +452,7 @@ biocLite(&quot;ggtree&quot;)</code></pre>
452 452
 
453 453
 			<aside class="copyright" role="note">
454 454
 				
455
-				&copy; 2017 Released under the Artistic-2.0 license &ndash;
455
+				&copy; 2018 Released under the Artistic-2.0 license &ndash;
456 456
 				
457 457
 				Documentation built with
458 458
 				<a href="https://www.gohugo.io" target="_blank">Hugo</a>
... ...
@@ -81,13 +81,11 @@ http://dx.doi.org/10.1111/2041-210X.12628
81 81
       
82 82
       <guid>https://guangchuangyu.github.io/ggtree/tweets/</guid>
83 83
       <description>Leave me a message on 
84
-Subtrees as triangles with ggtree https://t.co/NNdur8PS2Y #rstats https://t.co/7PZbN9daHy
84
+Was just about to shout out at #ggtree and saw your tweet on the top of my newsfeed. #ggtree - where have you been all my life?
85
+&amp;mdash; Erin Becker (@ErinSBecker) November 20, 2017  Subtrees as triangles with ggtree https://t.co/NNdur8PS2Y #rstats https://t.co/7PZbN9daHy
85 86
 &amp;mdash; Jean 👨‍💻 (@JeanManguy) December 15, 2017  Drawing a tree with colored tips in R (ggtree)
86 87
 https://t.co/s9FYUbynCd @guangchuangyu
87
-&amp;mdash; Guanyang Zhang 张冠阳 (@GYZhang2) December 13, 2017  ggtree使ってみた。”注目する枝組み合わせの分布”みたいなものを可視化したいんだけどまだちょっと見にくい。 pic.twitter.com/w5xs7cd0jQ
88
-&amp;mdash; Kenji Fukushima (@kfuku0502) December 13, 2017  ggtreeにはhttps://t.co/8T3WU8h9pWからシルエット画像を取ってくる用の関数まで用意されているのか…。HGTの描画も楽そうだし、これはもう系統樹描画に関してはETEを投げ捨ててggtreeに鞍替えするべきか。https://t.co/gynekuwjCe
89
-&amp;mdash; Kenji Fukushima (@kfuku0502) December 11, 2017  I&amp;#39;ve had good experiences with ggtree https://t.co/eRLhDoc4Hm
90
-&amp;mdash; Philipp Bayer (@PhilippBayer) December 7, 2017  Thank you so much @guangchuangyu!</description>
88
+&amp;mdash; Guanyang Zhang 张冠阳 (@GYZhang2) December 13, 2017  ggtree使ってみた。”注目する枝組み合わせの分布”みたいなものを可視化したいんだけどまだちょっと見にくい。 pic.</description>
91 89
     </item>
92 90
     
93 91
   </channel>
... ...
@@ -345,7 +345,9 @@
345 345
 
346 346
 			<p><link rel="stylesheet" href="https://guangchuangyu.github.io/css/font-awesome.min.css"></p>
347 347
 <p><font size="4"><strong>Leave me a message on <a href="https://twitter.com/hashtag/ggtree"><i class="fa fa-twitter fa-lg"></i></a></strong></font></p>
348
-<p><blockquote class="twitter-tweet"><p lang="en" dir="ltr">Subtrees as triangles with ggtree <a href="https://t.co/NNdur8PS2Y">https://t.co/NNdur8PS2Y</a>  <a href="https://twitter.com/hashtag/rstats?src=hash&amp;ref_src=twsrc%5Etfw">#rstats</a> <a href="https://t.co/7PZbN9daHy">https://t.co/7PZbN9daHy</a></p>&mdash; Jean 👨‍💻 (@JeanManguy) <a href="https://twitter.com/JeanManguy/status/941463119490150405?ref_src=twsrc%5Etfw">December 15, 2017</a></blockquote>
348
+<p><blockquote class="twitter-tweet"><p lang="en" dir="ltr">Was just about to shout out at <a href="https://twitter.com/hashtag/ggtree?src=hash&amp;ref_src=twsrc%5Etfw">#ggtree</a> and saw your tweet on the top of my newsfeed. <a href="https://twitter.com/hashtag/ggtree?src=hash&amp;ref_src=twsrc%5Etfw">#ggtree</a> - where have you been all my life?</p>&mdash; Erin Becker (@ErinSBecker) <a href="https://twitter.com/ErinSBecker/status/932751454938415105?ref_src=twsrc%5Etfw">November 20, 2017</a></blockquote>
349
+<script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>
350
+<blockquote class="twitter-tweet"><p lang="en" dir="ltr">Subtrees as triangles with ggtree <a href="https://t.co/NNdur8PS2Y">https://t.co/NNdur8PS2Y</a>  <a href="https://twitter.com/hashtag/rstats?src=hash&amp;ref_src=twsrc%5Etfw">#rstats</a> <a href="https://t.co/7PZbN9daHy">https://t.co/7PZbN9daHy</a></p>&mdash; Jean 👨‍💻 (@JeanManguy) <a href="https://twitter.com/JeanManguy/status/941463119490150405?ref_src=twsrc%5Etfw">December 15, 2017</a></blockquote>
349 351
 <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>
350 352
 <blockquote class="twitter-tweet"><p lang="en" dir="ltr">Drawing a tree with colored tips in R (ggtree)<br> <a href="https://t.co/s9FYUbynCd">https://t.co/s9FYUbynCd</a>  <a href="https://twitter.com/guangchuangyu?ref_src=twsrc%5Etfw">@guangchuangyu</a></p>&mdash; Guanyang Zhang 张冠阳 (@GYZhang2) <a href="https://twitter.com/GYZhang2/status/941040327816892416?ref_src=twsrc%5Etfw">December 13, 2017</a></blockquote>
351 353
 <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>
... ...
@@ -468,7 +470,7 @@
468 470
 
469 471
 			<aside class="copyright" role="note">
470 472
 				
471
-				&copy; 2017 Released under the Artistic-2.0 license &ndash;
473
+				&copy; 2018 Released under the Artistic-2.0 license &ndash;
472 474
 				
473 475
 				Documentation built with
474 476
 				<a href="https://www.gohugo.io" target="_blank">Hugo</a>
... ...
@@ -19,13 +19,11 @@
19 19
       
20 20
       <guid>https://guangchuangyu.github.io/ggtree/tweets/</guid>
21 21
       <description>Leave me a message on 
22
-Subtrees as triangles with ggtree https://t.co/NNdur8PS2Y #rstats https://t.co/7PZbN9daHy
22
+Was just about to shout out at #ggtree and saw your tweet on the top of my newsfeed. #ggtree - where have you been all my life?
23
+&amp;mdash; Erin Becker (@ErinSBecker) November 20, 2017  Subtrees as triangles with ggtree https://t.co/NNdur8PS2Y #rstats https://t.co/7PZbN9daHy
23 24
 &amp;mdash; Jean 👨‍💻 (@JeanManguy) December 15, 2017  Drawing a tree with colored tips in R (ggtree)
24 25
 https://t.co/s9FYUbynCd @guangchuangyu
25
-&amp;mdash; Guanyang Zhang 张冠阳 (@GYZhang2) December 13, 2017  ggtree使ってみた。”注目する枝組み合わせの分布”みたいなものを可視化したいんだけどまだちょっと見にくい。 pic.twitter.com/w5xs7cd0jQ
26
-&amp;mdash; Kenji Fukushima (@kfuku0502) December 13, 2017  ggtreeにはhttps://t.co/8T3WU8h9pWからシルエット画像を取ってくる用の関数まで用意されているのか…。HGTの描画も楽そうだし、これはもう系統樹描画に関してはETEを投げ捨ててggtreeに鞍替えするべきか。https://t.co/gynekuwjCe
27
-&amp;mdash; Kenji Fukushima (@kfuku0502) December 11, 2017  I&amp;#39;ve had good experiences with ggtree https://t.co/eRLhDoc4Hm
28
-&amp;mdash; Philipp Bayer (@PhilippBayer) December 7, 2017  Thank you so much @guangchuangyu!</description>
26
+&amp;mdash; Guanyang Zhang 张冠阳 (@GYZhang2) December 13, 2017  ggtree使ってみた。”注目する枝組み合わせの分布”みたいなものを可視化したいんだけどまだちょっと見にくい。 pic.</description>
29 27
     </item>
30 28
     
31 29
   </channel>
... ...
@@ -12,7 +12,7 @@
12 12
 
13 13
 <meta name="author" content="Guangchuang Yu School of Public Health, The University of Hong Kong" />
14 14
 
15
-<meta name="date" content="2017-12-27" />
15
+<meta name="date" content="2018-01-03" />
16 16
 
17 17
 <title>Annotating phylogenetic tree with images using ggtree and ggimage</title>
18 18
 
... ...
@@ -72,7 +72,7 @@ code > span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Inf
72 72
 <h1 class="title toc-ignore project-name">Annotating phylogenetic tree with images using ggtree and ggimage</h1>
73 73
 <h4 class="author project-author">Guangchuang Yu<br />
74 74
 School of Public Health, The University of Hong Kong</h4>
75
-<h4 class="date project-date">2017-12-27</h4>
75
+<h4 class="date project-date">2018-01-03</h4>
76 76
 </section>
77 77
 
78 78
 
79 79
new file mode 100644
... ...
@@ -0,0 +1,160 @@
1
+<!DOCTYPE html>
2
+
3
+<html xmlns="http://www.w3.org/1999/xhtml">
4
+
5
+<head>
6
+
7
+<meta charset="utf-8">
8
+<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
9
+<meta name="generator" content="pandoc" />
10
+
11
+<meta name="viewport" content="width=device-width, initial-scale=1">
12
+
13
+<meta name="author" content="Guangchuang Yu School of Public Health, The University of Hong Kong" />
14
+
15
+<meta name="date" content="2018-01-03" />
16
+
17
+<title>Annotate a phylogenetic tree with insets</title>
18
+
19
+
20
+
21
+<style type="text/css">code{white-space: pre;}</style>
22
+<style type="text/css">
23
+div.sourceCode { overflow-x: auto; }
24
+table.sourceCode, tr.sourceCode, td.lineNumbers, td.sourceCode {
25
+  margin: 0; padding: 0; vertical-align: baseline; border: none; }
26
+table.sourceCode { width: 100%; line-height: 100%; }
27
+td.lineNumbers { text-align: right; padding-right: 4px; padding-left: 4px; color: #aaaaaa; border-right: 1px solid #aaaaaa; }
28
+td.sourceCode { padding-left: 5px; }
29
+code > span.kw { color: #007020; font-weight: bold; } /* Keyword */
30
+code > span.dt { color: #902000; } /* DataType */
31
+code > span.dv { color: #40a070; } /* DecVal */
32
+code > span.bn { color: #40a070; } /* BaseN */
33
+code > span.fl { color: #40a070; } /* Float */
34
+code > span.ch { color: #4070a0; } /* Char */
35
+code > span.st { color: #4070a0; } /* String */
36
+code > span.co { color: #60a0b0; font-style: italic; } /* Comment */
37
+code > span.ot { color: #007020; } /* Other */
38
+code > span.al { color: #ff0000; font-weight: bold; } /* Alert */
39
+code > span.fu { color: #06287e; } /* Function */
40
+code > span.er { color: #ff0000; font-weight: bold; } /* Error */
41
+code > span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
42
+code > span.cn { color: #880000; } /* Constant */
43
+code > span.sc { color: #4070a0; } /* SpecialChar */
44
+code > span.vs { color: #4070a0; } /* VerbatimString */
45
+code > span.ss { color: #bb6688; } /* SpecialString */
46
+code > span.im { } /* Import */
47
+code > span.va { color: #19177c; } /* Variable */
48
+code > span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
49
+code > span.op { color: #666666; } /* Operator */
50
+code > span.bu { } /* BuiltIn */
51
+code > span.ex { } /* Extension */
52
+code > span.pp { color: #bc7a00; } /* Preprocessor */
53
+code > span.at { color: #7d9029; } /* Attribute */
54
+code > span.do { color: #ba2121; font-style: italic; } /* Documentation */
55
+code > span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
56
+code > span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
57
+code > span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
58
+</style>
59
+
60
+
61
+
62
+<link href="data:text/css;charset=utf-8,%40font%2Dface%7Bfont%2Dfamily%3A%27Open%20Sans%27%3Bfont%2Dstyle%3Anormal%3Bfont%2Dweight%3A400%3Bsrc%3Alocal%28%27Open%20Sans%27%29%2Clocal%28OpenSans%29%2Curl%28data%3Aapplication%2Ffont%2Dwoff%3Bbase64%2Cd09GRgABAAAAAE8YABIAAAAAhWwAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABHREVGAAABlAAAABYAAAAWABAA3UdQT1MAAAGsAAAADAAAAAwAFQAKR1NVQgAAAbgAAABZAAAAdN3O3ptPUy8yAAACFAAAAF8AAABgoT6eyWNtYXAAAAJ0AAAAmAAAAMyvDbOdY3Z0IAAAAwwAAABZAAAAog9NGKRmcGdtAAADaAAABJsAAAe0fmG2EWdhc3AAAAgEAAAAEAAAABAAFQAjZ2x5ZgAACBQAADWFAABReBn1yj5oZWFkAAA9nAAAADYAAAA293bipmhoZWEAAD3UAAAAHwAAACQNzAapaG10eAAAPfQAAAIIAAADbLTLWYhrZXJuAAA%2F%2FAAAChcAAB6Qo%2Buk42xvY2EAAEoUAAABuQAAAbz3ewp%2FbWF4cAAAS9AAAAAgAAAAIAJ2AgpuYW1lAABL8AAAAKwAAAEyFNwvSnBvc3QAAEycAAABhgAAAiiYDmoRcHJlcAAATiQAAADyAAABCUO3lqQAAQAAAAwAAAAAAAAAAgABAAAA3AABAAAAAQAAAAoACgAKAAB4AR3HNcJBAQDA8d%2BrLzDatEXOrqDd4S2ayUX1beTyDwEyyrqCbXrY%2BxPD8ylAsF0tUn%2F4nlj89Z9A7%2BtETl5RXdNNZGDm%2BvXYXWjgLDRzEhoLBAYv0%2F0NHAAAAHgBY2Bm2cY4gYGVgYN1FqsxAwOjPIRmvsiQxviRg4mJm42NmZWFiYnlAQPTewcGhWgGBgYNBiAwdAx2ZgAK%2FP%2FLJv9PhKGFo5cpQoGBcT5IjsWDdRuQUmBgBgD40BA5AHgBY2BgYGRgBmIGBh4GFoYDQFqHQYGBBcjzYPBkqGM4zXCe4T%2BjIWMw0zGmW0x3FEQUpBTkFJQU1BSsFFwUShTWKAn9%2Fw%2FUpQBU7cWwgOEMwwWg6iCoamEFCQUZsGpLhOr%2Fjxn6%2Fz%2F6f5CB9%2F%2Fe%2Fz3%2Fc%2F7%2B%2Bvv877MHGx6sfbDmwcoHyx5MedD9IOGByr39QHeRAABARzfieAFjE2EQZ%2FBj3QYkS1m3sZ5lQAEsHgwiDBMZGP6%2FAfEQ5D8REAnUJfxnyv%2B3%2F1r%2Fv%2Fq3Eigi8W8PA1mAA0J1MzQy3GWYwdDP0Mcwk6GDoZGRn6ELAE09H%2F8AAAB4AXVUR3fbxhPfhRqr%2F6Cr3h8pi4wpN9K9V4QEYCrq7b2F0gC1R%2BXkS3rjKWXlfJeBfaF88jH1M6TfoqNzdWaXxZ0NM7%2FftJ2ZpXfzzeVILi0uzM%2FNzkxPTU68Md64GQZ%2Bvfa6d%2BP6tatXLl%2B6eOH8uVMnTxyvVg4fGisfhNfcV0f3luz%2F7Srmc9nMyPDQ4IDFWUUgjwMcKItSmEAASaNaEcFo069WAghjFIlAegyOQaNhIEhQxALHEqIeg2P0yHLjKUuvY%2Bn1LbktrrKrOgUI%2FMUH0ebLc5Lk73yIBO4YeUrL5GGUIimuSx6mKl2tCDD8oKmCmGrkaT5Xh%2Fp6rlphaS5PYp4kPAy3Un74OjeCdTi4nFosU6Qg%2BqRBsoazczLwHdeNqpVx3AW%2BoVjdhMThOo6YkGJTl862RFq5r263bbYSHyuswVrylsSBhHzVQKDU11g6hkfAxyOf%2FDVKJ1%2FHCvgBHtNRJ%2Bb7eSYepeQ4VLZBqAeMjgM7%2FzyJJF1kuGw%2FYFpEq458Xrr65YTUa6VCEKGKVdJ%2B2FoBYYNKCwV1K6B2s1mJnPB7Ww6GtyO04ya%2FHHWPHs5P4J65NyVa5VA0E0LocwPci45b6tvMvohm1BYc1h12Xd2GrbbHVkjB1pzs6IKtOHeYd%2BJYhFasmfs9Zt%2BSZlo9pu8eg0utWZAKB8vjaxBQx7cSbK3Qdr2nBwM27vrXcUHtLolLJyJjK3CAbDcFDo3hsPZ63IH2RrsoWyskdB47jiKitFtcAgqj4wQQxN3PB81RCiCo0Y1jnUVYlOj5JHhJd2JBevIEeSQxDWzTN8PEE3AL90KtP11dVrC5II1L1w331pHFq10vPBGYeyUCFRvB7PAEzMltdubhb%2BlZ4dw9w86yyNfG%2B%2Bu0ZWOBkmsb%2BGrsrKGIN4R0XPQimnAEcj3CI6ZDR35zzHJEZlcW5cQCTMwty4umkB5B4ajHwVNhQDqdMLSAmClnhLScgYgMbQJESALUrtIvjpQz9LVxuIPSiYgQkjusZ01l4BERrPtdO9KfDErKQLne6EUbJlXHqTccNzL163tuES26ickjo5va6FIkCyIyaFEYA%2BlejuqlFxLWIYKmQG9W0tlMe0yXu80wPe%2FOavEJrd8srSFziSal30wMj5H2mH7T6H218RQ93qOFysDEgtLBoRuQUeXjyPQKexdLjoa4vtAQJiBsEXYutEo9T1%2Fm5mUdBMbXFCzIq8Z6Yl5%2B7nyic%2B1mE3xisVatpBarpcC%2FmUs9%2Fs3Csty2GRPfLMo7FrfqcS1KDxIntwVjnkEtjRJoFKEVHWmelIyxd7Y9xlqGHTSA0VfbnBks08M4W21bHczuJBrTiYixiBnsMF7PepCwTAdrGcy8UqZb5uWGvIyX9QpW0XJSrqE7hNzjjGU5u1vgRe6k5DVv4DZvpVnP6Vi0yMKLOhUvPUq9tCzvFhi5mV9KVNMvWpfRJg1bggjEml6Uz6KmiiN92dh%2BGg19OHK4TmOC61TIcAFzsF7DPNQ0fkPjNzr4sMZHaEX5fk7uLZr9LHK9AW9KF2wU%2F%2F%2FBUfaOnlREfyrK%2Frv6Hyn3ISkAAAEAAwAIAAoADQAH%2F%2F8AD3gBhXwHfFRV1vg5974yvZdMQspkSIYkQkgmhdAyIIQQWsSADCLSpajUiMgiAkuJNGmhKyJGDCyybCiyiGBHRGQtyLIuf2UX19UPy7oWyFz%2B972ZBxOE72N%2BL2%2BYd%2Bbe0%2B5p99wBAscBBIN4ACjI4D4oUJEIVAbIL8wPYX4oP1TQ3um3%2B0v5dZz2bj44nsyKLhYPXKkaL1wCAhuuXcQ69dsWyAu7qF5PBMFqQzQRkzQgYvIQCuXleXYHlCXl2x1YZg%2BF7HxMDNAQLQoVetwuKZCZjRUTQqc%2Ff7RjebisqAeuEQJXmpZUdA%2F3KgcgsJA2kL1xDNPDZqCyQAWdXiIy5YOHThUq4%2FKB1XFpgPr5heVtJuSQvJzxOeKB6HfEplzKWCEA4Sc%2BVgqkw8bwIF16K7fg0ttNJr3DajEKBqfT5UlNkwXJKyD4hCRRlFySwU%2BTvTTJkJTh1wkms6l%2FpBWa08Fmt%2FWP%2BNz2AWYcYEez3WwXvU5qECE%2FVB5ylJXl5993Hyc3zw6hkHaPoerldxVjh7eMX%2FF3hYWxu0KF382pcKpXsV%2B9QlS93Mj%2FSz%2FujinsVE1dDTszcEk1u4LpPdjXmDdw6UAsqFlUg7rmf2J%2Bd3aGLmC757GBuEe55mHNXGxifZVrLtuNNUBhwbU6wSQ5IAOyoS2MCxcH7VmpXkHIdZlFP4BPtOvFdvlZZsncL0Kl1pZcS99Iam5eK1erfhFvrkviL9HDKc5X6OV%2FChUq7aGEvw5U6QuFVCbEhOSSZHegODM7WOzxhOzZ2cVFJaXFIbfHK2cH7WlELuK3EnR5vHZJEkzvHZw35S933n0ucur5ky%2FMO7SraN2mrVuqGiNPnIt%2BNnTy6HF4fMkfvf%2B6EEjfkpWPh7rtXrJgp%2BNAk9hzQScj6194%2F%2ByxlZE72Ow0KvcdloMLbPcBiDD%2B2jdSW%2FEk6MENfk55AfQMtwabaPC0aZWZ2a6Nob1NKgxRc3qemb%2FaF0jtk3xZPtkpc4Xjr3KVXE7WDfpi%2BsfVJ1RotwUyJVFVbE4ZV3JUPi0pLsq%2B%2BXMM4A9Vd%2B%2FYcXcVvrtx7bLN61av2oINVTU11dU1NVV4cuPaFRvXrV7xDGPNH6%2BheQJpbMQaHLiz8R9fXb5w8dLl5vO7XnzhD7uef37Xxa8u%2F%2F3ipa9pxpUqrt5AYeq1b8QPxVNg5BQWw13h9k4PpEqB3Lx2eW0DlmxfqkdfUhoy9Y6EnNZgW0t7MZ%2F6smlubka%2BI0NfFckQoDwPkjih%2Bd4yrpTleTdRqoinJE6Ts7AULcTt8mRxQbYjMeLcXMpYwucgMgaCkrrMn668Z97YBwZHJm%2F%2B%2FhnWZ%2FKwOzazl5c2DerS%2Bo2Xth9eshXXd7jTu7NHHeb98%2BVHfqw%2F%2Bz%2FCmp5zhvSZe3e%2FkSOubt2EO3tExnWrrbsy%2F51x94%2BaWFa%2F84V1k%2Fbfx2Z1fWE0%2B2It%2B2zfxGEfAaBiMbBctRiug0CpIBLFUpyK2R%2BOumYgYrZB%2BcZAdoT4%2BTfM0CpsksEggGCxGoNUsV4J5sVpc5SGJE6pwxvIJgM3r97%2B1Kq1S7et2UQKUI%2Fv7znOCn%2F8jpW80ohvKaN24aOatFEFAx8XLFYDFYItR0UbkQMljuIiEgx5HMS0efW2pWtXPbVdGZb9yjruPIInv%2FsR3z%2F%2BEisAhMFkrmCRXGCB9uEUKgoomw16o95qEwxoJiaT2cDtl84CUP5G4XWJOTBmWLK8olOmNOjMKhUpWZWHK5LZgl9279229we2OBUX50kuVjv5QDo7PBwnsvrhWJF%2BYDIuVagZDxeFHOF1MEKbsBMEQS%2BKJjOVdXJ1BKw61EH%2BfeqSTzTz3I7ZA3Zuv%2Bwhshy3sDFL2TjctJR6n2SDsfFJ3A0I5ewXfAgugw7s%2B0XQG0SAfFVWHOEsr6TyphSHW5NHFc9J6Wa%2B7B3Dfp42HguHAUINniPlZCpQ%2Fl0CogDIrW%2F8u85iv7sGv8ZzGzYAxjwV%2FMCxTwobJQCTWU8HRPQeruaaXpRqestVdUOXso7dupeF7px4Z8%2Bed3arKFc44AIg51W9ch4kIIiUEocmSk4sBpCcj15oUDRJXYYExl37RmirrkIv55rLASYJJF%2BS3t0nopeptU%2BE%2BmLrLK%2BlPgQyid3mCBU6UP1rVz8R2n770zc%2FXf7x8s%2FNn9fvaFi3rmFHPfmMLWRP4lycho%2FjNPY4W82Os88wiJ34K4tdAIQjAOQkx8YArcM2PaAOjSZBL8uolzAJFFvGDXd8ej67P2AvKpUkOYghcnK7zl300RBcsExwzJ%2Fhbrd7GuYBwhgAIYtbTx%2F3%2Bd4klJ3gtKCQnGIz9InYZEzqG8EkjSzNavCB%2FcXYlcQshhyMsZrI6PYLWc3lOG%2FvlA4rHr%2F3uTFD3r38%2Fr%2B3fMKOke9W4oJ9G566u7au84CpOz%2Fct5R99wF7W6dIYjjnawrHIAh3hlungFOWgXoyzVKbHOr1eD19Il6vISsrrU8kSzbY%2B0QMGpdjgYh60zDTHJKHoyP4404pw27zB4o1o62gq%2BBLL299am8j%2Bzv774zj995%2FdgTOZsOfWr3rnTWPj2h8qGbo1%2FM%2F%2FkYYvmxfms7TtPrM54E7ns4vwBw0rFy%2FaNJjRRVTet31OgCBPABhongUDOCAzuE0h6gnxChToCJ1ulB0iH0jeqvscFBZotflk%2BhMQ5oJDqhrC%2Fl%2F%2FFxmAUlGYeK5Z6Jl5MDec2yJQdc%2Bl5ViNduL1avoZ805eGll04jy6COKheT8S%2BU6kQwdw%2BlW6nPpXF4qtEoBziwAye3mMnRLkqlPRLqZdQlsKxTcLghkqhzjrLL5M%2BWgUwldSkjbL1HPLrCf51d8MHbv66zu%2FmcGl5Kz0YNZ0%2Bmcf759kbEB29qGGrZiYWop2b2R9fYqnKnlWOVzqXqgNfQIB5LtRr8fQLLT7CyT0ZLaL2K0WFzU5e0TcfmojkckcgvcyhJ4pNlr8Bd63VyEhIbiGhfIBFGTq8R9lqcWB2Dl1G79Rn%2F9i8n08OU3L%2F760UX2E369YuvqVUPrI9VryFR8CXc5V%2FrYefbW7svv%2FYNdxUHv%2FOnFVQ1V8yse2Dde0UcAIY%2FzU4L0sA1FEQg3jJT0jVAJFBlqbOOrALk1dCOmkuHNF%2BmpaKOYunHhldNAlZhEyFGpz4R20C%2Bc47Vmu%2B6gqXo9lewuq5TfXrLnZORk9Ink5JjAlNwvYvJBoF8E5N8qd9nN3jrmj7mOx8OPLDXqolpgwv0zZkpuzaeTynf%2BvWjNvnr22b%2BbsfDJR7%2Be%2BcL6dQ1bXlu3CDvOWfHIMytnrhJPHt7x4L7eg%2F48%2B8C5U0euLuu%2Ff8ozr1xteHTRssdGru8V3kwfeHTMsN937%2FzksLEzFdlO5NQpNsMLWdAtnJlizzQYAAQu26AljUvWZbEQlyuJi1Ymcr8Iaal2jjKNg5qJ9Ctqx02jMyDFKHJw8TpUIvjHKhXZQlZ0%2FIwe1eO%2B%2B6%2FRVHpg2mv%2FuPbBuguPMtfKLU%2BtuXfjkIFraEVzg2tlMuZg6O57%2FvXBP1C3kZ3H9od2PPV81RMVE%2FaNAy3HEcaokRS34Ta%2BLAA8XotzQMRiizkRDVfN87X0JXae6NzkVR6Znehb6J8XL%2BY3IKovXMjn0oEDMrkmmc2iXu9yGm0DIkab6hgTZklwj%2FT6FDccpXsmn6Rjlxv%2BknyrTFMR8%2BU%2FcF9%2BDiRwh%2FUCiChwdeXD58cDhSwsRjeikNNcTo83%2F0AtP2DDKLywji1nhxSezMTjgo9eVHOy3LBbJgIQ0OsEsToiIFRHrIjI4wHOlfxEz6a4ZOTXTLq9eTjdTofW1bEH6up%2Bg5GIBDhGEr2BkRNVlMZTa%2FP3HKVyrMMKrF3H%2FKPYUAWjlGsXaRnXrxTIhrJwqp%2FbMtnphFYWIdgGoLWtddqASGuPzdA7YhNaqFZLvVJSEa48LZwUd4YSN4mJ%2Baq%2FctSSXgtmD6gf2emV91%2F9KNj38bHd9l3PX0tq19dMnzFw3OSsgsWjj%2BzqPXn0w4On3e9nZ%2BNJLYFZ1yqkQ2ITFEM5zzwyA%2B1KLJ1kVwpAjsvSTgx3S%2BrQQeiisxv5Ky%2B9kGbnqUmllmSFEhOP6%2FG4ug6C2nJQUPdSt0td36R1IFMgbsUalrqlQAbw4KK1v1BwIH%2FudKqm8NCQbeMHP2LUtVk3rv7Fb4712N3Tt%2FDeaWvZt3%2B8wA7swe6Y%2F5cvjv3I1rHJn%2BAyhLM44ODVn14%2F7bBUDpq%2Fhpxb8c388XfdM%2BrU3veu%2BTws17Pv7O79aFvzMnvxc3aaHRq8sAZX4jgUsP7CfvYntoNhGYquJiAAAKJNPAIyWLjk0ojFqENR0SwqyILNaiG9I0bRYhFECoKD518xh6iplZYz%2B5W8H0OIlBsz%2FtURB6IHmnaT7itJORvb6A94cnbjGZYvHrnSg0zENwfPGTGddQIKJwCEo9xyW8ALGdA7nO0UUg1Wn89iEGQLjwd01iRrUlXEarWAxVcVsTjAWxUBevt4QnM9%2FgxBMbluwe4SAjxpj%2FmcgN0ef3cCt2IAhVVLsR%2F7%2BTIjjZjU9PTeY1ew4I9%2FOvhn8cCeI%2FNf9BnK2Pk3%2FkZ7TF00%2B6HoquhndauXPAGAMIdb09Oqr8gOu6jFpbdQb5IDekccglHi%2FHK2DL%2B4emRymUNIE3%2BRo3WokKfbtNP37Cs0%2F7rxjQ0X2Cvs2Rex%2FNNLuysbxBB7lX3FPmdvl64rwyU44QusOVSzuj8AUTgmDuEc04FdsYcWQQ8COJyiuSoiUsFSFREct4ppwc9rSBlA%2BZuAPZTBx2Az2Uo2CY%2FhIHysic%2F1z59PI%2FdU5CtWz%2BaJB9gi9gKmYebVKZgHgMq89Bc%2Br1GJWSSDAQXQoWAyS%2FreEUlCQsTeEUKRr3B03DZmUZBwxy%2F6S%2FMZmh%2BdTYZHt5OF4oH1LKc%2BeilhJj0UhpMlAKQ6pAbjTRPxSW45Q0CbAac3asPzwaNfrY9LTuyi2ilOhUvnI8SSohNapUJK7wiAaDLZe0dMgujtHRGdt4%2B8%2FHaphRyV9%2Brq5lT1xe9nfPc0a2IrDuKQL%2F%2F9bve3DrL%2Fso%2FQj0kbVrGXCYuWZWXjUhzzD7xn%2F%2BD6GvYau8Q%2BZe8H8LUY7WK6yuVQ2KdHBJ0giCCaTTraO6LTiQaJoshJV81RgnG%2FQbydi5f%2FDYnpjc2ssZGSRrI3Ws1z7dXkYQC8NoLNxfFqVpwaNht1OotVT4GzFDJj9GrpGI15%2BJJiPpxLMg0v6dVv9AONx9jclFWuR6fyFGvI0TNxvRC%2BUjHmnkjBViRGg4Ix0Yn6RGzLWkgJZRVRDKHw1TvRrzc2NpL1J6JN5M0l0dc5snnk4%2BjCBF0QIT1soQCCJCMFzgtw3EBXxTekkO0%2B0aio0pV%2FbIp9V%2BKIgpPrUZJOFCUev%2FJSmsuNBjuVjDK1gKQgp2DnLbuZlRjwuJUAn2MY4nce4COtZjadZSsCntbhh6zRomMm0bbpo%2Bbh4oGrVQLPOume7Uev%2FBCXo1IDsUG7sFsvcaytVpDB7jBS2aqjKCdypaUI4xPzabNJKZdj%2BWvNn%2BtsW4%2FRVB2xkGeEk582NR%2FnE3ZMwaxy2guAqFp99FZ5bu%2BIXqDW3hHqvLVNiOltBiTmueJRtpW9oZgjHIE9sBOOujo9%2Bv1%2Ffvn5h%2F9Eeb77LHuYa%2B94HIt1bArbxs6yU1iIuRjEAnYqZp%2BE8erqdUBRONnA%2Bc75DE6XQaiKGAySLDuqIjKVEtavhpXmSgW%2FmlplYChutYXx7Ay7tLsRZ5PWUePGL949euKoYPr7t1HOh2jK6mdXrVC5wHaoXLBCCp%2BZp8MeAIEa%2BOqmZtns6x0xC7KTL2yZM%2BMtlRs3J6I2pViG8q258sX7OOxndrH0tpz5ki3rzuqxivyf%2FDnN%2BWMCN1SGs8yIxKS3y0aDQdYTwePVm8EMVRGzmVDK5UepkSi6cntnp2Ku8ktw20SOf5bGNm4BcRXyGdhfcfkJ9jQ7%2FVXTzl2vfEZGRLeJB94%2Fzf4%2BLjqZjFi9cuWqJwDVHIFw29ha4V6a0wSQ5BSFrGxTGvV4uH30CFSfoEoJiY4mt0CGlozy8D%2Bo5jgx%2B6jmBbwy4BEI%2B9d3rHnZ0I%2FGN%2B7usnL1ey%2BxM389WLx%2F1%2BINHRbWXfoDLjz%2B6Z07su%2BYN73vyIFFvd959sV3qtf2nfFA35F3FQw8AoDgABCGcv7JvJ7iABSRUp1epgK3CYLmFeJ5qGYSi7k3IEsbWYFQyQrE9PWqJzjM14yPj2OHrLDdhgYZZafDrqOCmQ8UpzGUuFzsLkUnVHMYs4uij%2F2F%2FcJfFxrfee3ld8QDzf2vsC8wo5nuaa44%2BMabh%2BghQAAA4XW1%2FpMcNqJgMuooCJQqiPLlrxWvQhjgF8%2F%2FSgXTwej3O6M%2FNmF1x8zWHdVaFh%2F5uU3bnwXkmg1yXz6aT6km%2BQwpyW6LRdQn2Q0U9TGTotqUGOKqNclWAjJldKcyenwSZ0h8cyc75y5CT3v2xU42u%2BnL9p6UYpSa0Nne7yy%2B1EQ%2F7PaW6%2Fdbm0N88llHNx18ic5qnrv59RXv0YUK93QAQr1q9QNhhyCJ3ORLiskXFJMvtDT5KhocAz63Yu7rj%2FPIY0oTXmKdjuAkfHg%2F60QWROeQZnI4%2Bgq5M9oX4lybrUY5GWGrIBJRpnoDiChTUeOcJmE%2BqKL%2BGCJdcNEhlrSb%2BQ6T8%2BR887zoCZJPFyv1ZQBBscZ6pWKmQyqDLKBgMIoCNwcUdUrMcuuKmVot8AvlzU6qi9roq82%2F0LSFwoaNC69OAIQGdoRMVnSRY2mRUFAYoxcJlTDIOdBSfeJRD5nMSvEEu4B%2BdkS6svyKX6HWC0A%2Bi1c2Kd5c2XRy3h0mgYbo%2F4spg%2FKNEDuCzdrMFFACSacHOUgFevPMXj5rMb9CfMoLfOrSA%2BKF5b9KyigFJCgExOMgQVJYD1TWiQQEwrO%2BG5rpVFUTC3DfaPxsA1vG9pEg3dQ8jnwV9QJea2Zv0k3XKtUKsJLHIlEqwBgjmU%2FLQUfRp9mbCwCxTjhHHZIf9OA8AILRID2BkJ%2Bs1ZoxwDW1OMStBHU83G1fm5MZ0%2B4QzhUdK3f33F8MRKk50lPCUEXzoVc4K1NnTEvz%2BRw6yqMpYkzrFSFGI7jd1ooIt4LJFRHRA24o%2F98LVH4tX7NllapJZ7zS6LZn8QVeLKsVKjrQrxv43GPPvUychyc%2FVveH0F3HR77xCrNs%2FmPDWy89tOWB3js3Y1%2Bb1GPe7Jq5dxTuORZ11TZuHC3LD00fOhwI7OVWtVZygRPSeVUt0%2BD1Wq2mVGqiGX4zmNwOu8HOhccRljzgqoiArYV5DSXF1SDB1sddEk825YBijeRQiVcrvHAqyJ5Pv%2F3%2Bk0l%2F7GwKzGzQ6Wa811i%2FqXFjfb0wlJ1jP%2FDXxwMGLpdcbNHcsTuWvv7ll29fOPPJXwAQpnMOLxWGxbIaK6VuPU3ySmaOmQ0cHDPPzVmNGM9qlJ1DHgNzu6hmOGTcZXYV9f8d8HTbUOn8QrbvuW11Tz3swiw0oRPvyPQu96Sywe9%2B2mlNGRBlVqGU88fB%2BdM97E%2BVvGCx2CV7ht%2FhtgIgmqhez9mjt1FnRYR6bscerSYTkLTqvTcUDPLPA6osi%2BJOiG7ST%2F%2Fn2W%2B%2F%2B%2BTCTLMsNCxmTzdu3Ny4evOmNS9gNlr5647tA%2Frh0V%2B%2Fmfny%2B4Gv3r54%2Bi%2BfxLF0cN44IRk6hdOTDF4jpdzqtkrxGit4uRskyaUyyqIw6paZQyiRZQ632%2B%2BJsUuivNbh53Kb%2Bx%2F2JYp%2Fe%2F%2B7qFl8eecf%2FzBk65bfb7WQLstc2AZl1GMH9v3fJxx%2Fp2pttp%2F%2Bc%2FeGrS8oUksFoBYpHVxK3cVlMjkJ4UaSuj0GvhQMgKIsVkScspUqq0GtY98IAxWmOZS1p2QNgeJSXkPW3DX3mE%2BzrxreeANH3lObN6LH8KHopW83l9G3%2B3TugmsDC9PnPNkLgEKQuYQCzplcKIVu8HC4a56vQ5YpvYtY4ESnSHIzW6Vn%2BQzd72xlLbYWV0R0nXpFDJm6XKvOqvPk5pJekVxrm%2FJekTY2T7teEU9KnHUa%2Bzj%2F8pXd%2BrzbxD1uragaVBdAqDC%2BjaAUkrJv%2FOXKcGMXmJOnbhQXF%2FF3QsHJVnf87VhB3sSqoa%2Fte5X9jf3r7FdPzMgtC%2FccNOnTtwb3ZPb6ZWdOPLzh7amPD50%2F4z8%2F1T4uVE5ICkzt9ewxXYdBbfPqVx54ddvqMauTndXFnYfmBnY%2B2PS66ypEhs2ZFOn5IO08%2FZFvfn4cEPYCCD24nnuUzM5i0nFz7dF7vEkWvcMhVEQcNgOA3q0Y7xjlCatesVT2mALbtRUfM1P06cfm%2F%2BGZhgadoWD%2FjBMnyJuLfn%2Fkk%2BjrfHXnDOow4N5XP4gWAxDYDoDjxAtAwcr9tZ3PJCDa7Ga5MmImVlQ04%2F3EwqZSIqAJJVQc3NDQ1CG3TceObXI7CJWYU1Zc0qFDaSkAubaKudSxTZAEd4Q9TqPRrNP5kj22yognrLcC1z6ISzW5xSTOhATTljhb3v2det7Zv%2FeNGZnLt9g16B6h%2BaqNHZHv0yaP8TSV89QGJTzetxgMRqNOEkSdYHeYAGw2nY7KRje1xiKGfD5zeUyFyuJsRTUiQi0bdclYkzcER73JeuD5E2zOnB07dKSgy2icydpGlxLpQTZOcjW%2FXTo9NjcO5nNT4GQCoiASQHfca2tMVBjHYVRo6SRfJQGoCAfcdruDiz%2BgdwRo66xWHrfb4RPMPm5p0302p1UPDkUPuCLEt534Igi1bHVIVIgEzfAqepHh1bRDypryyOa1DVNmblnVsDhFl79rIuIAXcHhmYdfJicWLNj3cnSLcv%2Fzx9HjQmV99dDDg8e8%2BheuMZq2cnxdUBBOApeiri69x23S22xcWW02g%2FV2ytpSV72Jmrp7m4JG6NDUt95RNPXwJ%2Bq8d0XUSWM2dhSfU9EknsU6wSyDnOwzeLgds1GbYvxvmcVylSHFilGFxE4PYRT74fKaf%2FwOTZcvobX5lZ3PPffii88%2F10Cy2I%2FswyeR%2FAFNmMfeZ1f%2F8rfzH545p1j5vdyW1apU%2B6E8nOEzCrKsS3foHJkBwQhWq7siYrXprboUaHXDzMdZ0GLBqpaeO2hPAhMUr62Y%2BgRHrThpU8Niry7c%2BPBf%2F%2Bf7yzvryabGFc8%2B6xowcMRg1kUqqh9azT5h%2F1GcNr14%2BGTWl29fevfUeYVXHNNSlVexqMKW6qHJyT6bL8OfnOK1pqalecxOp8wtv80MFRHz%2F%2BY2VT5yJ1l63Ul6r3vQ0njtQyL9GzaIW15cvXnjnI8uf%2FfJ57P0SQsajObpM%2Fd9mHXp3YunT59birloRDO2a6z%2F9T38eEzFCzE9okGOpw1ywy6zXm8wEF4DsZrB4FYtg03rc2nRkaE5IY15ZEfvjt4eRQtfaahz6rrsFoaZNlk%2FfTbaJFSenDQjlrnS6XyW1twOtIplrqLzeuZaEfHYJKq%2Frj%2F5t8pdueG5kbsG25Hfpq50%2Bj%2Fe%2F%2BtjA%2FbXzF82%2BdmN88r%2FevSPL3Z6ftEjj7Yds%2BJ13jSzsaHnpjbt7h4Uvrdr2aAH%2ByzaXLm4R1W3O7p2KO71FCCkX%2FuG7BQrwKPWJlwu3jPioEKS1%2BC0OXtFLGGbVeaCkj1xU3kqIVjV5ONWqo52xVGXhtxKNuHyEMcdA5NSJuSy17ZurRiBXdlrw2vN8lyzHQeQZdU9%2F83mRWePngiAsIOvrjKhElx8fh86ZZPJ4DS4PSaz2aZzWdVV7TFqEbMS%2F4daVmW0rJcrhBY127EvX9TPNNQl6UP7Z7zztlAZLeMO6GMSvnpozV2Dj54hp7RcjgiVau%2BHAQ0ms6hHK6jhiJZl%2BNX0NFTicIYQt7ER%2B76ptuiMte%2FtYyP4oI%2F8o0cx9iPtrx6K5UpSgI%2FWinsblz4lNc3rsZipYBZ0yQ7ubnTuxCyYK7c2A1U2Z2Rlk8LhUHSq1BmbsoRPKeSfcBbp2qSdPsY%2B3jNxsk5nLHCcaHqjg0snBF7dzc6QBZ3OvHR%2FdK5QyUaz6j5l%2B4tJbXTp7trW9eRvHClACAIIOpXGzLBdFiVAUWlxQZ3RLaD1pnQ4ngmjmhUfYgteQT9m%2FJktwFVH2Cn27hFSQLxsGO6IfhU9jUdYD0AgfL1LfHw3z%2FsVMqnHK5jB7OBLO0UHfIJCVam1GRJo46KKOdrSUrLvuwFOnfnuS%2FtYTsWfl%2FStKu2xq3cXzuCVn9wf%2Bpn87mrGy5vtC03HtkAsZ6YPCZW3yJl7RUQr6npF0P2%2F5cz0oeZ%2FksHR0%2BTL6D5y31Q6eN685sPxrixetlPl5%2FYlJxu9AFbZRbmnpqlpTq09K3F7TdV%2FbpXcPJZTfEtxCddDvj7d3EK4ZLfHjedrpx794PFH58%2F49MClCxdM44aRZaRxE%2BaPjywnw0Zg4ebdS6Xj7NzZoCl4FhAvMxuZrfluorSo0RSABN%2BtlHzx8nKeJv3cDAiV7Ijaw5Oq4OwWDQ4H8UFqqsXiE2laujso0QScEzYFFXSDxYr7U7DPVNCV5Dj2pcRw4eKhDx%2BZ%2F9jjp45OnvHwVFIePIvB49LSPRvZ%2ByPvJcsjvOq5cRenZNg4zJn2qEvdpyXVQg6tAS%2FXAzu1JvkcpuoIdVglCaojEuTngS3pjfw38rSkOlOZT8nQVNOmbD9lKoU5HFg8t2TMUz2mRrqPyi95omTcisrHK%2FsMJSfuLFn%2FUKvsVinhsvqH%2FRkZSeoOPFuKdcJwrcuYCALV8343AGpSu4xtNPOWXcZcCQNO1%2FXt0PNKk%2FGszp3Ly0IVZPfVC2Lfxb3C5ZVhQDjK7fd5dVemazjNozNTahCARxo62irVJxKnwUz4SzDKgg%2B07k9ljt9sw2apra1KOJCldLR6NAOuqD89OWHNwpPHcdniPisKChY%2BtHv7My8sX%2FFdifTO%2Bxlov4LNXXfvoH7vstCH5z462QkQypUYSDzBpV4Zzk5y6s3mZI%2BdGD1OMS3dlORL6h%2FR%2B3xOcNr6RpxJIPa5uRWkRdPQzZ6Nm29lf5Lfinl2ypuduEqQxqONXTatnD0HG9jQblU05erVU2%2B99f%2FEEzUL%2B%2F1uGTs397MxS%2B7YtDz%2FxwtzsfO%2BU4psZqMkeIVtnHNByAibW0GmBSxtctLd7iwZeNSYn1gJchaVBku9il8r9co82Ja9clCxDnKwNLs0IXQ6VLV4%2BOLx8%2BeOq7t%2FUVXVgmF14%2BYuGrN42MKqeVtnzHh627QZW8mHj01aNmxh794Lhz059ZEFD%2FCHvfj7JZN%2BN2XbM1Onbd8BiscDEJT9Fw8MDrdzWGSj0WYS9URPTS6LW%2FYmGSwW2So5HBScbqsz3UmsTqvThG7JlATlWg%2B33RHrzL7lpjuGUOGj1uaovjBEKnH2HjYCJfY6dmGv72BvYGd%2BARu7j1wgZ5vZ3Ma57Ec08RslQBKsgaxUVYkkUR726QUqUDlmFjgmiYqtbgjFLYRiI5p%2FYebmnxVpXPuF1kupUABdeGdcdiE4pdy0Dj5fmkmCgNS13E07lbRqK%2Fn1%2FmCviN%2Btt%2FWK6OGGznh%2Fs4t9I39VVFmLztSUlwuwZdCiRC2l%2FKk33lG0dHD%2FqprTbw5%2FZmTxqMV9Z8yYvelw%2FcCqjf%2F%2B6K9P9H9t4KLl7R%2BcvmJR99W%2Ff6Ggbs3LPQbRnMF1WW0mD5q1NDW4IJjSKdy5prTH%2BklDl%2BfctXrZxm5rs9r27dWuY8e8oqHTRvWb0MVZPfnuKWXOMUCwWLTQ8eKH6u5TWpiTanKAI8lnpW495N90QCAhzctKeI%2FFxVnZpaXZWcU4pzgrq7Q0K6tYnFrUrl1RYUFBYfwOQGEM7xzvEdt5hxKeSwWDXmrNT0936a1esbSDZAKH1ZRuIuCwOYjJYXKk5AWcoRQByhNPBdhblgFRMxHuG90bnN2obu8KDjc3eYHM1py5DiFU2NqhNXTQOXMWz10weE77sRWvffDZq0880vHB5vXv4PB3les1tv2D02z76xP2YNvdezD3pT3s7N497JOXhMCeTTu3t%2F2dq9X3n575qfMjIXZI%2FQ7b%2Fu6brOGD0zj0rT%2BwD%2F%2BwB3P2xr8GQKCCushU8W1OdzqUhlt5pRQDokeJazP8rQwGh88D1EYJNTvSOakf3feGku9qVGpqG4xTV8ojfbXWGSt18iYUtdZJXEnDlt0%2FedPztWvHjM%2BbtnB%2BHauecmLUlAeov2bk6HHjJkhCcGFoRIcJs1jnI2OaCgRBqd8NhFraSI%2BCBGbICTupxI21YNTrBbMkWKwmUYegHGS5WbPRiyhjVuw2EAfPVEriM1kjLsUhtexzTK9lO0kQ1%2Fdk29mzvXB9yo23qh9EHfeDXhAhJWwiKKAki0J1RCSQr20nattixUJOXfM71Bv9Hhc%2BCdeuaV3LRAIbAAjXdUoX16r7wqGgF3iOLui5Zpn1JodXKu1gsnFoi9Pi0DmtjnQHAR63E4fT4bythikCCP22ZKVVoUS%2Bhp0Bqm51Fnr%2BL2UjHz5YPXLwfRNx36B%2Bl3eeXrwWxYbNVy%2F8n%2BpGrtwd7tNtSfXsNFaLo9jTdPZ89ub%2FpXB47YrkEiRpzW3r%2BoJ09UfBJLnmAoG5dBi5LJ5U83Z%2F2GIGp7L7nGwzHPNQhS3J7yWaAKe27LkytvA6c%2FfPn39g4Oqa%2Bfun195VPX3qwLunC2vmH9i%2FoGZlTdOCgdOm3l0zdZoiv%2FGASic8yQYLAMhwBiA6Q93NqCLLub9OUmpcstOLaHGCwAsItnQvZqjyadHEUVx6cz%2B0JMt%2Bsjy645vIQH91edGont0XbPj9msiaPXiIVI2%2FNHhk35IePbMLh0yeP6V6%2FZPPA4KflKlzBqAsnGkVRaCONIPUOstxn%2FMhJ%2BnrRKMzxUmcTl2yP92s88eVhKvIfTe2KDHRmKtlyd%2F2PpPpA3vsPbRzw4w1sz%2F8snbmA6Or7%2Bw%2BpUPP8mXDl2wVvqx%2BwJu%2F%2FYmVHWb32L5q0oAeXXrkBYa2LZl5056LnkfvwhP6xD0X5YAIN3pyAOvaT85494494cnCD133dnN3O1oEqNZDegiV4IHicLJoMOhs4HS6dC6%2BLeC2ulLMRKks6LWkMWHX6XqfaELKyMnTOhsGs13PNCxJNkz%2BZ%2F0Qg6GhAeewK698pKaNLwyr2caOScrsU1mzMEJygRWCYYcgIoBopDa7TidSq4jaQa%2F8RJkG7MortqVTEvILI6Z9PL1rzacn%2F%2Fov0pY1S3t%2FraYhx5WrKDBA2ED6Yh0dqvitsEECMJuofkCEQsyAJOqq2jzatUOseZR82L1nz%2B7xMwlZzIVNAOBQIge7xQhgUfrILXa7jtog%2F71CzQq3qDNoZYbSkOzBpo31obZtOw24a8BDQx4ubWIXRk7UT9S1Kckrtu%2BbHgSEvqQKP1d3kPleHwFKDSZuX2mGBGlK3sc5EGO7FpnEzw8MXLlQ8pQsvpNv4K4ld9471NP2%2FhFAoDt1kaPi26q3zgo7lONnEnBvHfMfbr3iP964r4XTTjgzJSYsWHJ0V%2F3qF3eu3%2FB8lN07fsKwYRMeGCZM3nHw8LPP7T%2Bw%2FTH%2Bb%2FYjjwCBau4hdsY9BF%2BZRr1AgMrEoJdu5R%2F4fBhELEUxdqM72c5aTGef1%2BIQVnvjPTGxCb3wfhzek01IufGW24c%2BAOIZzq8gnCYLACAbHrsGKMNHNDV6EPR%2FosTBA8ziYuCw7Tjs%2BThseQz2CwV2Ou3PYeV9xMZBVchkAMkvnuAQM34FFf4CxEZ9KD5qXmxUIBBiM2mNMBxSoY3Sba1zpQWwlbVVwCXk5EIqmmhqKj93lzEgkm2zG3tH7IEWecP9w%2B9rGZ4ohslCYnXDUm9MGF2J0ihbnJBfkf59Rs7q4vv9Y9X1ozq9%2BdbRTwPhSMnYbk2zOnXtXqqkXKHH1tZM7NOvw5ip2e0XjzjcWDEhMjB%2FyIz70jFvcU%2FeGRvmVKrdoPJ0bltbq9R1v%2FYaDgTdn4hNzIa84ltA1MLCGETS7SCOQSAGkdoSIv86xGsg3HKMrOsQE6CUQxiaKGmtgtyAkWIwIMNxKIN5QK4xAIk3MIIVnNA%2FfAdPM%2BwIOhPaRNEtuvROycm7kHm7iMHM7wabASUqOtByowkglmHm5an5G8bOiYau9y%2FSAF7vYVQ2zqR5UUeUXdxLDtMT0SMkNXqR9Lhag0cfURpetbZG%2FAvZr2jRHOZSOkc5ztkqzrMIAf55rM9N5VmbON8PqhxBs8aRmyFqoTwG4b4dxLFrV2MQyS0hsq5DTACHylWC%2FhhXgUA%2BgFip9id54Z5wod3t1glmAKcgCUk%2BrogS11erXC6%2FJJ%2BWL8jcIsuyoNfbqiJ6Kri17tNEXW55EDWhHZV7uVhLarxnM5QhVqpNqbM3bcJ9eBf%2Bbn%2F07S9xNlt4lIyKtaWSunqyntWxHSQcba5nhhhNYrmqS%2B3jurSmJdWx7jiVLwUx3sKsmLb5bgdRi4YYhP92EMegKQaR3RIiX4PgeGy65RhZ1yEmwMdxnW4b5z7CQrQJJmEDGMEX1st6ino0mXXgy0%2B0x2rMHLeOu0ewbTh8BHua7RiLw9m2MThS2DCa%2F3fbaLyfPTsaR%2BCIsWwrAOXzv877434CJ6RAQFkZnnRvmsAPExtcAA6rqFMCF0%2Ba32f2945YHTpRoDazQHnjnES1lrm3%2BFq4%2BYgL%2Fygm0lglwc7fxSoM1BZEj3qKzovZ1zsLv1479tEH9ykddGe2jnx04rGmh6Mjpu%2F9zy%2FNwbFk68SdWpPhmOUDNr2FDyl9dMMXV699l61D26bmvgOVZjp2ZRN9qTc7xVdOrI9LlUxpXLoVMfk7Nb7fDFELp2MQKbeDOAZzYhAZLSGyrkNMgA3xlRNMtEfCbHWUTvF5CmKjOFSQeO%2FfrHjvH9%2BpMOtFUbKDBB6vWeALiC8fs96sl2LdkZoVarkRrHVH8v9lCDcaJGexM%2BzzQ42NZ9GHnuYrO3mL5LvvUdvFy4zXWq%2FB6ei%2FV%2B5Y9yQAqv0oW6R0aK94ppxcMTUAXpMJUu25YkGhw5Hbrl12RaQd5LrV3S5tj%2Bvm0xpaZCBL2vZIQjWCo6Q2%2F2lnOTKUqE%2F1UYJv5ZAOKb36Lxv32p%2BOTCrfUnn27ofnjujZq094yVz2TcPf%2Fv7%2B58IPi6dX3OnPyC0L3b917LZdPTcF8w%2F0mVQxcHZN%2BcTisqHF1YMuXO0r7Nv3562c52pXkOTnPL8TACXovgLUVWlXOH6L57V56vN2t3t%2B7FP1eajFc%2FGz689fe%2BUW3xc%2FvP58whegruiOKsCNGRZehzj%2BcwyiTQwCqAIhKbtXOVDENWdkOJQLre3tedlIaF%2BWlJTe3ghi5y4pbYNtKyK%2BAqGgV6RD66BdECyZQU%2BxzqKriLgsNtBaO9R97viBxZsNL1corarUot3Jy%2F%2BqHSkOv7bLFExMz5TiAMaaVIb%2Fwg7NmPnUc0VVb4%2Ba%2F3xO8a6Hj%2F0reqcOO967tWbwurHswpy73lz03Mt7Jg1ZtfPpwzvoK7OWGon8BOY%2F%2ByddrEUqp%2Fie%2B4eMYP%2F9%2ByRWGwjyVpav5k5sXH9%2F5MVNo2XdQ6Sw4ektO5V1zXc4lW4kzreeMU%2BJFaqnVDtxVIn1ikl8vyqRVppEbn5e21993vp2z4%2F9rD7PafGcS1R7PsEQk1d7TaLX%2FgqAo9URXolZHHYXKGOgqI3xIgApTICovZYRgzDHIa79iUMMSoA4xl6IQTg0iG84RDrHQ4OYwA4CqBbHZ9d89VRlx1zyq6euqsJ5fsnUqhXwYN5jsTttkj7YRp9eETFSj91nsfLIR0%2B9LqSttY3QmLJw6%2F3b430QyITiIlAqxdlBMcj%2FlHpUk%2B6gRVqnV4kwil39%2Be%2FsK5T%2F9sUYXdkp9n3vr4YN77ll3OW%2Bpzc8v7NpC3vppe0vPUtC7Ev2FzR%2FcQmlWcInr25%2BcGHXgtrefZ6cNHMlm8b%2BtaaRbXjh4Aku21jXgbraqmOrzaLyJC1RNqNUrt0Vk%2F1HquySb%2Fe8drD6PPN2z4%2Bp45Ngi%2Bd8fu35a9%2Ff4vtcJtrzCSkx3Wh3fS2Ph2YhR9gJVO1CD4WTPAaDTSACKjsZTifKZjMqJ%2FQQ8tX1yhOfG8nPjUN6iccXE96Pp8ejezqVFHXsFCrqot3J8iefZP%2Fq3KW8Y1m4nPwYfwOUY3tEGCUsjvv7PvxEa3orl8vQ6iZn76u47uxt1M%2Bb2Kjnf3P2ZWVxBdGcfXw7QXSpTl4Si1SnX6L2X2yaUjNt%2BDw0Xd40o6Z25NzmV4rxTJ9pvAljfYjl95r63Iuxboyetf0XbEBQGjL6zuy7cMOvu8aRRcWffLRjTHRO6DzXjNjutSq5e2KSf0PVDI8mmZuf107VNOfWz4851OeBFs%2B5ZLXnE%2FyxtZarrfrYDqw6wr2xGWIjpKsAWu%2BI2t%2BVyXex0jOkFJfNZpfsrQMOsKeYPHqqT%2BNdjB7q5euvRZPnb3oYUWsXUUomXo%2FW9JUVbx7J4HugOKR748Sz333%2Fyd8fMwk63mSElTs38OYRzF9LmyID2Efsvwpjn83sV86KdcDaFQ1NOXQi58u3ce%2FZMxo1nF6Nmgn7Y%2FTmxejV%2BpuEyuv9TaJArLfsb%2BIw6gkU6UvxFLggHe4Ot0uSrE5nKpjtqZKY4bc6eDxpBaOR51hGGj%2BVwg8UUAc4b5zk4det2ia1fWVJO2TlvZF9aafq7NnSl1EYN4y9zJ7BYRgeN5RaonxdR8%2BRfs09fmXXEH%2Becs89LqzDiTgeF3ljSZmwlZ1m55QTGn6hNi32qy1yujAU0iAXCmBQuG26zkI8nqx8t7tVlk4oDOW1Mbbh0RHvSCKixdiunWg32pIyxcyKCIieFj7YoVjVRAeseV9R9a0q5rdyvYktTFkxnyvWs%2FNzup6pu8B%2BROnrBae6djz2%2BInL0aAOq4Y%2Fe8%2BQDVf9G154buPm5xvWCb3mrjKRjN%2B7vp4xEwtQh3q8Y%2Ba0KbPYz19MYDO5tw1mkLIPz3985rOPP%2F10x9NP7wBEE68Q7pH8YFF6wGWwWXmN0KJs3CSfKkwsE%2FIgzx1QzhIE0DR3nLfB89CcmUMWLuFF2u%2BWPJGTu3C%2Bt3TBoiIAgpP5iG2lhdp%2BkEMyxSpMejflw753u9KSrHUfcfpp29njxj46a8zY3z3YPRTq3rmsqJu4b9TM2lGjps8c3qFLlw78AkQdn%2Bk78TN1N5wPn%2BSzg2gC%2FnKrZc73En4mKLYb3o4vKU6BwvQ0olRTQpJEXXkDB%2FTOLAxZRpmn39tucP%2FKjIL21tHmqcL5rLZZnbvMquO3Tl1n1aldEci5Ff%2FFEyCCePMvngykw%2BK%2FeMIh5f8VUtYgffQ49lB7%2BR0HUNTpQenhP6WBBkscHEs5y%2BQZ1WF29yx63DMUTVyicNM3RdTpRZly061Rq55Od5RisXIk%2FbGKDPGARzmLjqmfcouq%2Fe4LkcAKAEQZizSpY1khOWwS0KwXbHbQUZP2M1%2Bx3pUgbyrhA%2FvjeGG9tcNjs9M6maNnb2B4FnXTeR1Tw7TF6DZldL0ZRcHuMIs2WRn9LW10DWe%2Fei9JQJ4ELUkjOsxJ7m6%2BQYbnXvbTY2Ow6D6FHh%2F7lTTBZZSVLOtqB8g4iCCHzeZK%2BdC1Y38ymWJ3vb5SBnteXszG7cAfyXB6EYzgPBD%2FURrIP3Wr6u%2BOqQ9OmDF94qRp5JtZj%2F9u9sx5C%2Ficym8TiHvgB8gGOwAEwU4c%2FM4nELJA1RaoJelK5ZPTbBAIlYikk0WuCInpvPM3e2CJ%2B16ASv2UpGqjUBAIkMRRWhRNSeqtK6QAyGYBkJXxUyYgEkE7ZYLxAQJIVjbPWkkXx4%2BZIJRzr1gnnuT0TQ2Xp3rTPZ5kI5Hl5NZ2wZDslYJtjN4kb%2F%2BILklMTUvtHyFp1rT0tPw0qqdJaUlpzsxM6BvJlJ0W3iDhg5ZN3bwwdMsfKruRW2ZQbuRlt9evdcorVpPyolGwuJT%2FdUDsCHUKOz4AWfRHQvA065Z1snHLxtW7%2FoddaNewgZANO4LY%2Bn9OPN%2BrQSxmD80rC7ed1%2FRm9%2FpuaEacl3tH9TwUsfXIpYPVzprl6o4iBXdYT0AUtDAtYc3y%2BEuJtrjkUwGEVlI650ylKvE%2B5ABA%2FHNTwuf9lc%2BBgItUcf0%2FAgZwQedwuks0ypTyaYjSqY%2BiqLe60l3E5aIWOZ1mxPuV70toergeGwR4g0v8V2eKi0otVJZJ05xV7GHcsHQO%2B0ESk9LSjDup6913x%2FKzVKdeX9THFGzb1v5TDDfpQ45bECoJ9%2B43cBcf0nCXXr%2FF8%2F43notvxJ6rVEnqc1TWG05X9cp%2BAAQRKWiHl2Knck80KgqljCAC4Aq1QvJpPHP6XaxCImp1FiUv6pwAUXstt2Ud9NrbHGJCAsQx9ufEKktsFtJBzroOMYF9EK%2FV%2BGK1mv8PflNJUQAAAAABAAAAARmahXJJOF8PPPUACQgAAAAAAMk1MYsAAAAAyehMTPua%2FdUJoghiAAAACQACAAAAAAAAeAFjYGRg4Oj9u4KBgXPN71n%2FqjkXAUVQwU0Ap6sHhAB4AW2SA6wYQRRF786%2B2d3atm3b9ldQ27atsG6D2mFt2zaC2ra2d%2FYbSU7u6C3OG7mIowAgGQFlKIBldiXM1CVQQRZiurMEffRtDLVOYqbqhBBSS%2Fohgnt9rG%2BooxYiTOXDMvUBGbnWixwgPUgnUoLMJCOj5n1IP3Oe1ImajzZpD0YOtxzG6rSALoOzOiUm6ps4K8NJPs6vc%2F4cZ1UBv4u85FoRnHWr4azjkRqYKFej8hP3eqCfDER61uyT44DbBzlkBTwZD8h8%2FsMabOD3ZmFWkAiUs5f4f2SFNZfv6iTPscW%2BjOHynEzEcLULuaQbivCdW5SDNcrx50uFYLzFHYotZl1umvNM1tgNWX%2BV%2F3gdebi3ThTgVEMWKYci4kHZhxBie3TYx3rHbGr%2BPdo7x4dIHTKe5DFn%2BO%2Fj%2BW2VnE3ooW6isf0LIUENvZs1gf%2FLHojJwdpplCP5gn%2F5gi26FoYa19ZVFOJ6Sxuoz%2Fq2Ti20IKVJdnqvYJwnhfPH%2F2f6YHoQF30aZaK9J8T026RxH5fA%2FWPW%2F8IW4zkpnIfoFLifGB86v0ffm5nbyRs5iaHR3hNBD0HSfTzoPugRM%2BhdN0x052KoHLBS0tdgpidAiEesDsgWYO73RWQz2LWIwjqnMe%2FuYISQtlbyf2NlT9Q9PoBcBnrO6I5ELoMeyHkNnIXGdv809H%2FDXNOTeAEc0jWMJFcQxvFnto%2F5LjEvHrdbmh2Kji9aPL4839TcKPNAa6mlZUyOmZk6lzbPJ3bo56%2F%2FCz%2BVaqqrat5rY8x7xnzxl3nvo%2B27jFnz8c%2FmI9Nmh2XBdMsilrBitsnD9rI8aiN5DI%2FjSftC9mIf9pMfIB4kHiI%2BhWfQY5aPAYYYYYwpcyfpMMX0aZzBWZzDeVygchGXcBlX8ApexWt4HW%2FgLbzNbnfwLt7DJ%2Fp0TX4%2BUucji1hCnY%2FU%2BcijVB7D46jzkb3Yh%2F3kB4gHiYeIT%2BEZ9JjlY4AhRhhjytxJOkwxfRpncBbncB4XqFzEJVzGFbyCV%2FEaXscbeAtvs9sdvIv3cjmftWavuWs2mg6byt3ooIsFOyx77Kos2kiWsIK%2FUVPDOjawiQmO4CgdxnAcJzClz2PVbNKsy2ZzvoncjQ66qE2kNpHaRJawgr9RU8M6NrCJCY6gNpFjOI4TmNIn36TNfGSH5RrssKtyN%2B59b410iF0sUFO0l2UJtY%2F8jU9rWMcGNjHBEUypf0z8mm7vZLvZaC%2FLzdhmV2XBvpBF25IlLJOvEFfRI%2BNjgCFGGGNK5Rs6Z7Ij%2F45yNzro4m9Ywzo2sIkJjuBj2ZnvLDdjGxntLLWzLGGZfIW4ih4ZHwMMMcIYUyq1s8xkl97bH0y3JkZyM36j%2F%2B58rvTQxwBDjDDGNzyVyX35Ccjd6KCLv2EN69jAJiY4go%2Flfr05F%2BUa7CCzGx10sYA9tiWLxCWs2BfyN%2BIa1rGBTUxwBEfpMIbjOIEpfdjHvGaTd9LJb0duRp2S1O1I3Y4sYZl8hbiKHhkfAwwxwhhTKt%2FQOZPfmY3%2F%2FSs3Y5tNpTpL9ZQeGR8DDDHCGN%2FwbCbdfHO5GbW51OZSm8sSlslXiKvokfExwBAjjDGlUpvLTBY0K5KbiDcT672SbXZY6k7lbnTQxQI1h%2B1FeZTKY3gcT2KvTWUf9pMZIB4kHiI%2BxcQzxGfpfA7P4wW8yG4eT%2FkYYIgRxvgb9TWsYwObmOAITlI%2Fxf7TOIOzOIfzuEDlIi7hMq7gFbyK1%2FA63sBbeJtvdwfv4j28zyaP8QmVL%2FimL%2FENJ5PJHt3RqtyMbbYlPfQxwBAjjPEN9ZksqkMqN6PuV7bZy7LDtuRudNDFwzx1FI%2FhcTzJp73Yh%2F3kB4gHiYeIT%2BEZ9JjlY4AhRhjjb1TWsI4NbGKCIzjJlCmcxhmcxTmcxwVcxCVcxhW8glfxGl7HG3gLbzPxDt7Fe%2FgY%2F%2Begvq0YCAEoCNa1n%2BKVyTUl3Q0uIhoe%2B3DnRfV7nXGOc5zjHOc4xznOcY5znOMc5zjHOc5xjnOc4xznOMc5znGOc5zjHOc4xznOcY5znOMc5zjHOc5xjnOc4xznOMc5znGOc5zjHOc4xznOcY5znOM8XZouTZemS1OAKcAUYAowBZgCTAHm3x31O7p3vNf5c1iXeBkEAQDFcbsJX0IqFBwK7tyEgkPC3R0K7hrXzsIhePPK%2F7c77jPM1yxSPua0WmuDzNcuNmuLtmq7sbyfsUu7De%2Fxu9fvvvDNfN3ioN9j5pq0ximd1hmd1TmlX7iky7qiq7qmG3pgXYd6pMd6oqd6pud6oZd6pdd6p%2Ff6oI%2F6pC%2FKSxvf9F0%2F1LFl1naRcwwzrAu7AHNarbW6oEu6rCu6qmu6ob9Y7xu%2BkbfHH1ZopCk25RVrhXKn4LCO6KiOGfvpd%2BR3is15xXmVWKGRptgaysQKpUwc1hEdVcpEysTI7xTbKHMcKzTSFDtCmVihkab4z0FdI0QQBAEUbRz6XLh3Lc7VcI%2FWN54IuxXFS97oH58%2BMBoclE1usbHHW77wlW985wcHHHLEMSecsUuPXMNRqfzib3pcllj5xd%2B0lSVW5nNIL3nF6389h%2BY5NG3Thja0oQ1taEMb2tCGNrQn%2BQwjrcwxM93gJre4Y89mvsdb3vGeD3zkE5%2F5wle%2B8Z0fHHDIEceccMaOX67wNz3747gObCQAQhCKdjlRzBVD5be7rwAmfOMQsUvPLj279OzSYBks49Ibl97In%2FHCuNDGO%2BNOW6qlWqqlWqqlWqqlWqqYUkwpphTzifnEfII92IM92IM92IM92IM92IM92I%2FD4%2FA4PA6Pw%2BPwODwOj8M%2Ff7kaaDXQyt7K3mqglcCVwNVAq4FWA60GWglZCVkJWQlZCVkJWQlZDbQyqhpoNdAPh3NAwCAAwwDM%2B7b2sg8kCjIO4zAO4zAO4zAO4zAO4zAO4zAO4zAO4zAO4zAO4zAO47AO67AO67AO67AO67AO67AO67AO67AO67AO67AO67AO63AO53AO53AO53AO53AO53AO53AO53AO53AO53AO53AO5xCHOMQhDnGIQxziEIc4xCEOcYhDHOIQhzjEIQ5xiEMd6lCHOtShDnWoQx3qUIc61KEOdahDHepQhzrUoQ6%2Fh%2BP6RpIjiKEoyOPvCARUoK9LctP5ZqXTop7q%2F6H%2F0H%2B4P9yfPz82bdm2Y9ee%2FT355bS3%2FdivDW9reFtDb4beDL0ZejP0ZujN0JuhN0Nvht4MvRl6M%2FRm6M3w1of3PVnJSlaykpWsZCUrWclKVrKSlaxkJStZySpWsYpVrGIVq1jFKlaxilWsYhWrWMUqVrGa1axmNatZzWpWs5rVrGY1q1nNalazmtWsYQ1rWMMa1rCGNaxhDWtYwxrWsIY1rGENa1nLWtaylrWsZS1rWcta1rKWtaxlLWtZyzrWsY51rGMd61jHOtaxjnWsYx3rWMc61rEeTf1o6kdTP%2F84rpMqCKAYhmH8Cfy2JjuLCPiYPDH1Y%2BrH1I%2BpH1M%2Fpn5M%2FZh6FEZhFEZhFEZhFEZhFEZhFFZhFVZhFVZhFVZhFVZhFVbhFE7hFE7hFE7hFE7hFE7hFCKgCChPHQFlc7I52ZxsTgQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQti5bl63L1mXrsnXZuggoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCyt5GQBFQBPTlwD7OEIaBKAxSOrmJVZa2TsJcwJ6r0%2F%2B9sBOGnTDshOF%2BDndyXG7k7vfh9%2Bn35fft978Thp2wKuqqqKtarmq58cYbb7zzzjvvfPDBBx988sknn3zxxRdfPHnyVPip8FPhp8JPhZ8KP78czLdxBDAMAMFc%2FbdAk4AERoMS5CpQOW82uWyPHexkJzvZyU52spOd7GQnu9jFLnaxi13sYhe72MVudrOb3exmN7vZzW52s8EGG2ywwQYbbLDBBnvZy172spe97GUve9nLJptssskmm2yyySabbLHFFltsscUWW2yxxX6%2B7P%2BrH%2Fqtf6%2B2Z3u2Z3u2Z3u2Z3u2Z3s%2BO66jKoYBGASA%2FiUFeLO2tqfgvhIgVkOshvj%2F8f%2FjF8VqiL8dqyG%2Bd4klllhiiSWWWGKJJY444ogjjjjiiCOO%2BPua0gPv7paRAHgBLcEDFOsGAADAurFtJw%2Fbt23btm3btm3btm3btq27UCik%2F1sq1CH0I9wl%2FDTSONInsjxyKcpGc0VrRNtGx0dXRF%2FFpFiV2KbYl3j%2B%2BJz4vkTaxKjEgcSXpJzMm6yb3ALkAnoCV0ARLAcOBjdCAJQJqgWNhJZDT2EbbgTPhz8h%2BZFJyDbkFSqgVdGh6Br0BhbFFCwHVhNrj43DXuH58V74WcIkahHvyDRkLXIGeY18SxWl%2BlMHaIVuSc%2Bh3zHpmNbMJOYuy7DF2E7sFvYMJ3Clf%2B3DHecNvjm%2Fm38g1BYmioxYS5wqbhZ3S0Wl2tJkab50U04pl5CHy9vlmwqlZFJaK4uVnco55YlaUK2kNla7qEPV6epi9aMW01jN0zJohbRZ2mptj3ZWu6e91wE9vT5LX63v0c%2Fq9%2FUPRiZjprHS2GmcNG4ar8yIOcycZC4yN5mHzMvmE%2FOrhVq6NcCaYC2wNlgHrAvWQ%2Ft%2Fe6w9115r77XP2fecrE4xp65zwM3lNnZnuBfdZ17E071sXj6vrTfP2%2BHd8F74lJ%2FeL%2BHv86%2F6D%2F23Qfogf1A%2BqB10CAYGk4LFwdaf2C%2BJfQAAAAABAAAA3QCKABYAVgAFAAIAEAAvAFwAAAEOAPgAAwABeAFljgNuBEAUhr%2FajBr3AHVY27btds0L7MH3Wysz897PZIAO7mihqbWLJoahiJvpl%2BWxc4HRIm6tyrQxwkMRtzNIooj7uSDDMRE%2BCdk859Ud50z%2BTZKAPMaqyjsm%2BHDGzI37GlqiNTu%2Ftj7E00x5rrBBXDWMWdUJdMrtUveHhCfCHJOeNB4m9CK%2Bd91PWZgY37oBfov%2FiTvjKgfsss4mR5w7x5kxPZUFNtEoQ3gBbMEDjJYBAADQ9%2F3nu2zbtm3b5p9t17JdQ7Zt21zmvGXXvJrZe0LA37Cw%2F3lDEBISIVKUaDFixYmXIJHEkkgqmeRSSCmV1NJIK530Msgok8yyyCqb7HLIKZfc8sgrn%2FwKKKiwIooqprgSSiqltDLKKqe8CiqqpLIqqqqmuhpqqqW2Ouqqp74GGmqksSaaaqa5FlpqpbU22mqnvQ466qSzLrrqprs9NpthprNWeWeWReZba6ctQYR5QaTplvvhp4VWm%2BOyt75bZ5fffvljk71uum6fHnpaopfbervhlvfCHnngof36%2BGappx57oq%2BPPpurv34GGGSgwTYYYpihhhthlJFGG%2BODscYbZ4JJJjphoykmm2qaT7445ZkDDnrujRcOOeyY46444qirZtvtnPPOBFG%2BBtFBTBAbxAXxQYJC7rvjrnv%2FxpJXmpPDXpqXaWDg6MKZX5ZaVJycX5TK4lpalA8SdnMyMITSRjxp%2BaVFxaUFqUWZ%2BUVQQWMobcKUlgYAHQ14sAAAeAFNSzVaxFAQfhP9tprgntWkeR2PGvd1GRwqaiyhxd1bTpGXbm%2FBPdAbrFaMzy%2BT75H4YoxiYFN0UaWoDWhP2IGtZtNuNJMW0fS8E3XHLHJEiga66lFTq0cNtR5dXhLRpSbXJTpJB5U00XSrgOqEGqjqwvxA9GsekiJBw2KIekUPdQCSJZAQ86hE8QMVxDoqhgKMQDDaZ6csYH9Msxic9YIOVXgLK2XO01WzXkrLSGFTwp10yq05WdyQxp1ktLG5FgK8rF8%2FP7PpkbQcLa%2FJ2Mh6Wu42D2sk7GXT657H%2BY7nH%2FNW%2BNzz%2Bf9ov%2F07DXE7QQYAAA%3D%3D%29%20format%28%22woff%22%29%7D%40font%2Dface%7Bfont%2Dfamily%3A%27Open%20Sans%27%3Bfont%2Dstyle%3Anormal%3Bfont%2Dweight%3A700%3Bsrc%3Alocal%28%27Open%20Sans%20Bold%27%29%2Clocal%28OpenSans%2DBold%29%2Curl%28data%3Aapplication%2Ffont%2Dwoff%3Bbase64%2Cd09GRgABAAAAAFIkABIAAAAAjFQAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABHREVGAAABlAAAABYAAAAWABAA3UdQT1MAAAGsAAAADAAAAAwAFQAKR1NVQgAAAbgAAABZAAAAdN3O3ptPUy8yAAACFAAAAGAAAABgonWhGGNtYXAAAAJ0AAAAmAAAAMyvDbOdY3Z0IAAAAwwAAABdAAAAqhMtGpRmcGdtAAADbAAABKQAAAfgu3OkdWdhc3AAAAgQAAAADAAAAAwACAAbZ2x5ZgAACBwAADiOAABYHAyUF61oZWFkAABArAAAADYAAAA29%2BHHDmhoZWEAAEDkAAAAHwAAACQOKQeIaG10eAAAQQQAAAICAAADbOuUTaVrZXJuAABDCAAAChcAAB6Qo%2Buk42xvY2EAAE0gAAABugAAAbyyH8b%2FbWF4cAAATtwAAAAgAAAAIAJoAh9uYW1lAABO%2FAAAALcAAAFcGJAzWHBvc3QAAE%2B0AAABhgAAAiiYDmoRcHJlcAAAUTwAAADnAAAA%2BMgJ%2FGsAAQAAAAwAAAAAAAAAAgABAAAA3AABAAAAAQAAAAoACgAKAAB4AR3HNcJBAQDA8d%2BrLzDatEXOrqDd4S2ayUX1beTyDwEyyrqCbXrY%2BxPD8ylAsF0tUn%2F4nlj89Z9A7%2BtETl5RXdNNZGDm%2BvXYXWjgLDRzEhoLBAYv0%2F0NHAAAAAADBQ8CvAAFAAgFmgUzAAABHwWaBTMAAAPRAGYB%2FAgCAgsIBgMFBAICBOAAAu9AACBbAAAAKAAAAAAxQVNDACAAIP%2F9Bh%2F%2BFACECI0CWCAAAZ8AAAAABF4FtgAAACAAA3gBY2BgYGRgBmIGBh4GFoYDQFqHQYGBBcjzYPBkqGM4zXCe4T%2BjIWMw0zGmW0x3FEQUpBTkFJQU1BSsFFwUShTWKAn9%2Fw%2FUpQBU7cWwgOEMwwWg6iCoamEFCQUZsGpLhOr%2Fjxn6%2Fz%2F6f5CB9%2F%2Fe%2Fz3%2Fc%2F7%2B%2Bvv877MHGx6sfbDmwcoHyx5MedD9IOGByr39QHeRAABARzfieAFjE2EQZ2Bg3QYkS1m3sZ5lQAEscUDxagaG%2F29APAT5TwRIgnSJ%2Fpny%2F%2FW%2F%2Fv8P%2Fu0Bigj9C2MgC3BAqKcM3xgZGLUZLjNsYmQCsoGY4S3DfYZNDAyMIQAKyCHTAAAAeAGNVEd320YQ3oUaqwO66gUpi6wpN9K9V4QEYCquKnxvoTRA7VE5%2BZLemEvKyvkvA%2BtC%2BeRj6m9Iv0VH5%2BrMLEiml1XhzPdNn3n0rj6%2FEKn2%2FNzszO1bN29cv%2FbcdOtqGPjNxrPelcuXLl44f%2B7smdOnjh09crhe279vqrpXPuM%2BPbmzYj%2B2rVws5HMT42OjIxZnNQE8DmCkKiphIgOZtOo1EUx2%2FHotkGEMIhGAH6NTstUykExAxAKmEqSGMFl6aLn6J0svs%2FSGltwWF9lFSiEFfO1L0eMLMwrlT30ZCdgy8g2S0cMoZVRcFz1MVVStCCB8raOD2Md4abHQlM2VQr3G0kIRxSJKsF%2FeSfn%2By9wI1v7gfGqxXBmDUKdBsgy3Z1TgO64b1WvTsE36hmJNExLGmzBhQoo1Kp2ti7T2QN%2Ft2WwxPlRalsvJCwpGEvTVI4HWH0HlEByQPhx468dJ7HwFatIP4BBFvTY7zHPtt5Qcxqq2FPohw3bk1s9%2FRJI%2BMl61HzISwWoCn1UuPSfEWWsdShHqWCe9R91FKWyp01JJ3wlw3Oy2Ao74%2FXUHwrsR2HGHn4%2F6rYez12DHzPMKrGooOgki%2BHtFumcdtzK0uf1PNMOxwDhN2HVpDOs9jy2iAt0ZlemCLTr3mHfkUARWTMyDAbOrTUx3wAzdY%2BniaOaUhtHq9LIMcOLrCXQXQSSv0GKkDdt%2BcVypt1fEuSORsRUwgrZrAsamYJy8fu%2BAd0Mu2iYFhexjy9FIVLaLcxLDUJxABnH%2F97XOJAYQOOjWoewQ5hV4Pgpe0t9YkB49gh5JjAtb880y4Yi8AztlY7hdKitYm1PGpe8GO5vA4qW%2BFxwJfMosAk2X9n9X2cVVfnA36pzHNHJGbbITj75NTwpn4wQ7ySKfAu9u4kVOBVotr8LTsbMMIl4VynHBizBEJNVKBAfMNA9867j0InNX8%2BranLw2s6DOmqIHBIbDfQR%2FCiOVk4XBY4VcNSeU5YxEaGgjIEIUZOMi%2FoeJag4mEB3PUOweCaG4wwbWWAYcEMGKn9mR%2FsegY3R6zdYg2jipGKfZctzINQ%2FvxkJa9BOjR44W0OpTKAskcnjLTcKyuU%2FSVIWSKzKSHQHebYW9mfGYjfSHYfbT3%2Bv877XhsIwGzEUaleEwITyE2u%2F0q0Yfqq0%2F0dMDWuicvDanKbjsB2RY%2BTQwOnfvbMUhiNPFyDCRwhZhdjE69Ty6FjoOoeX0spZz6qKxxu%2Bed523KNd2do1fm2%2FUa6nFGqnkH8%2BkHv94bkFt2oyJj%2BfVPYtbzbgRpXuRU5uCMc%2BgFqEIGkWQQpFmUckZe2fTY6xr2FEDGH2px5nBcgOMs6WelWF2lmiKEiFjITOaMd7AehSxXIZ1DWZeymhkXmHMy3l5r2SVLSflBN1D5D5nLM%2FZRomXuZOi16yBe7yb5j0ns%2BiihRdlFbd%2FS91eUBslhm7mPyZq0MNzmezgspUUgVimQ3kn6ug48mntu3E1%2BMuBy8u4JnkZCxkvQUGuNKAoG4RfIfxKho8TPoEnyndzdO%2Fi7m8Dpwt4XrnSBvH45462t2hTEX4Bafun%2Bq8jIzK%2FAAEAAgAIAAr%2F%2FwAPeAF8egd8lFXW9zn3PmX6PNMnPZNJMRRDMkzmDYgZMRRDCEmMMUPJIgZEepHlRYyIiNhRUdYuS4ksy9reLDYsdOmLLC%2FLy7L2CgKrrCJkLt%2B9T2YyYPl%2BD8804J5zT%2Fn%2FzznPBQKbACSTvAEoqJAdtUhUJpQYjBJVAUrKSkIOJ1ZUOEKOUGkfV8ARiPB7E72m87WJZF58ibzhXPVE6QsAAnMufI4H9XXsUBh1UpOJSJLmQNWqNsasLkKhsrKnA%2FT1HCF9PQzSAPYtD5V5PW4lmFeIK86EcCRbObLp2lGjGxpH4%2Bf0wLkjjU3NDSNGxYSMxbSdDkzomhE1SypQalCISvniob1lDuTL7injC1O%2BMr%2FxmeJtxeRt%2FiJviJ8mmrjFOr0BJCZ3QAbkQFu0ypCZ45HcRqNJQkiT%2FLKsOO02s2Ryudze7CxVUnw%2Bv9%2BtmKTcgEEymzPRlgN2e5rHaeOXyeeiisnJFagMOSsqSkr45kL8Tr450SfM5%2Fy1V66pGvBwTV1BcYcDEX67QjQkbo8cigTplyVI2OHh%2F6zdXHO4%2BiR6SjoxMPzo8O21h2tPx7O2lmylNV%2FtY5Nwubj3fXUA%2F8BuFveBr74CoNB84V6pSnFCLhRCL7g7OijfR7Oy3FalR49AcXYRFBnsQUcgkAYO6H15j6wiAGu%2BI%2BAo6pleFDAWKJZMX%2BaImNunWOpiskIVH796ewAqEzvV9gqX9nQ4Qd8S%2F1V%2FScSM%2FrmsTP9FfNUNIvzuVlRPMFxY5PB6fY6iwsJw3%2FJIOOTx%2BlT%2BWzaR%2BxYWecrR7fWFFanqi%2F33nnn9%2Bv%2BMvXr7mk933%2Fv5Gy3PrN6yZjg7WFV1D5s2oGoh7nx%2Bk2vvTrkeDT0HKlieXvvakkfecj%2F5uKnhm6iNHRk27a6bevTL%2BclH3ulVkX3cBTJUXjip%2FCDvBiO4wQ95PB6qo%2Flen0%2BWTRpofo8nLa04mB3UgpeX5PbMLEzzKz4%2FtapOlXt5a1llpXhN7FF7r8zJ37o%2FiN15Q2XhvsE8RdajOqwFyrwFGETXr%2F0F9u9dNnZsWW9869X1azow9qe%2Fkpc7D52mPRf%2F%2FHcJFrR1npvf9sWX336EO7%2F9x7lqeUMn6frt8y%2B%2F%2FZD%2FJjzecOGEAnxvWdzjpTAzWtHbGjRhlhdMXqvLVZSWnl5kpSoChLJVtcwXSPea8vNLSrT0dEnTegyPaZIUqIlJLnSKhAV%2FpfBuhb9EbE53bYVIM%2F3S45hfiZ%2B7th8IFPHN5QuXcscms1vF8kiAZ2qBsEEEFQX7FnJDeNy%2B8nIF2JLZ7%2F77DPtk3rJhVV9vefPD%2B57CzCF98cr82%2Bs631s4%2FvbxrKPf1XjT0Iqrh%2F%2BuafTMxR%2B9e%2B%2BmxqZnxzzx5l8embstxo7PeX0Ju3DjoqYJA7C611hyd3hAtH%2FzpD5jAAVm4DM6Zjj5C5WIAIu9DuxCIB0kuvEBAKGBbSTz%2BL%2B3Qm7UZjaZqCSBqtrN%2BVQgmAMTua3joeaMhBTicTt9wULS8PSj5x58eNk9Z5c9RUrRiPte3MTKzvyHRd5Yh9vFygP4yq3JlfmyfHG%2Bso1LyP%2F5yqgRNVjuDPclRSGvk7Q%2B%2FejZJY89%2FOA5sTT7ifVb%2Bzru%2FOEM7tv0EisFhErSJGUpbrBBOOo3ms0ypVZUVc0umUyqilarYrDxpN1aJrKQuykJwvwz%2FyPMUOCTXSqlRa6CiEzJy8U4J8DWf%2FjpM%2FeeOMZeLMKpxYqbPTyx088Oz8MKtnMuFqefm4gzAKEZPpUqpG1g5qivGRSjkSKAxWo2giJRKOFCysqS4vjNhQXCAa4Bxz1HEI%2ByNlx0FBextqOk9SjezW49yhaIHbGzuBtOggKe1wgFWVapDCXbdSNt5ghfoNCgMxLA3X1v%2B%2BdV%2Beg%2FvIsdR9MJYWVcS5rISqDg%2BCuVQQLkSiTc7QoHPANIGq49dw6wi7GwgmvujZoUrrSRNsaMLqjsmfjnkYu4aU6SlJZ28xECNyqt0mMrM2pBricBidueiNS5iDcRA0ir4h%2By4yQgGJP%2FDwLVF05IQ%2BW9XLoPLou6LYoTFPCnGT0jYkaV2kfEaBok8y%2B1kkYCeeDQnIEyQI2nUrlDE3kkDT3PzsfZhXMoxZHGw2OmTRl7w%2BSpLeQoW8gexttwNi7C6ewO9hD7%2FusTaELr8eOAMA%2BA1nJtTNAj6jJKAAZEs8WgqihJRgX9wJHOkYoXkf8iwR2RiKKqRRiitWw3lYdnr30cDzNae%2F8Tw%2F1L3sS5gFALINXpKDQgmp1pQxW86M3O8aoqMTlNtTGnSjATM2tjXEgCYfS3hKyuCkFHkzBeScI6WKhFVxLuD%2BEQLt4TkOo6CU5f1drrhvrrVly%2FdspDayfe%2B8EtQx7fuJG0HcbZLyyc1r%2B5qXbojtE1xa0dt4x%2F5c31r9hA6MYtP5DrVgijoiV5Po6KKs3MBOCVStFlgez8bG57v8%2Fvq4tZ%2FGilfr8pX7VqJm1EzJQGeg3j5%2FxX8ruWMbrG4oduFyXxMEFyQlkpkMeJTvhKbCMY1j%2Fo2ykPlEmSr335KxvYPvbZydev29P65KNrX58%2Bc92zfxv6%2BKil76PnU1Sl6fe%2Bl694%2F%2FzIweMjUO1ZPnH2TU3fxqa09%2Bl%2F6OHXAQgEAaSZuhddMDiaZ1epkRAzpTKAxyVzrnGh7JLreGi7qF1VqO5WvoGQ0DwF584uo3cpz4sCBzc9T9SAQPKgoqI082X2QfxhshCzXmZ5Jmoo6MvOYAk7gCWH6cudN5%2B98oSroZZNBoRWbuEw1ygDmqI9OZ36aJrbbTPYqIFmZrldRpdFA27ONADF4%2FHXxjyKYhkRU9LgYsIJ6e%2BpgHAkGUjkgUhLSBg2N9w3IMwpylMaKScT%2Fn6efcC%2BPLN8xActmMGOhu%2B4bH6EpsV%2FyAgOoO0n9%2F%2BHnR2B5h7hr455LAPJ1%2Bwc%2B1i1AYGhXOs6eQf4IR%2BuigYUp8WSlweZTnAWFNpz6mJ2u4d60kbEPGnUwENEvUTbVJbqTCjIAQJlPo8IXEUNdQEJcCAhMvd%2Fgvy8Q3E6TmsbErv%2B%2BZ2tRuuN%2F7f1X%2BzsNyv%2FvYhoN066sbVlcRuZiq%2FiWvuP7rEb%2F7LuhyPfsFPLMffdxfMnz7%2B1fu5qEc0RPdM6QIHLo14FgCDKRFYNMiWU1MaoAsLfupYpQwobhpDby4OfkoJ4iZQWPyy9jNLm8wLSdEtUyzvBB3lwOVwbLXYqnl6U%2Bo3%2BQo%2FHnp1ttBtL%2BihOZyBQXGwBS0Z9zJIGwfoYXGwTYYlLnVeWdKFwoCSqAj0%2FLqoW8qk7kShFiku3kK9cfCPVHyDedt%2FqpeyLL06zk4uXtU1DyfXfE2fPmrng0Ccjbhg%2Bflxtq7zz3ZUzXhrU%2FO6sjqN73mrbXD2iY%2FKzm89vbBp7Y%2F3VcwaOI3vqq674XdnlYysH1Ym8GajvcgekQQFURnOzZJfFEgyCCwqLtNy6mKZRrzd9RMyrUkMdR%2BNfdbfu7DIBzCIaw0J5kS16edcXuNOdBXwbyU1J1ewxtvTOqxtHP%2F3%2BJIOl3xOz3v0nmr9Y%2Bf2d8VNjp4xrbbm7jQ5mdazJdtYzasufW2r%2B83%2FH0fEE%2B3DTXbdNum1%2BHfd4stOSZuvMURh1OXnyAPjtnsaYXeumMPAnaOwXTOb4NVYT72PqU%2BxG7xcf6mPNQAQX6%2FIUcHKmcllV1UUlBRXFZdIaYyZNUjgzJ6Rpm8u6mKrApzM0vUgYbrTrbF2SFHbS18Xa5GhSmF5P7JYqZODSiqKajIK%2FVYNEqQIEZRigFxShVFwJURhGD6JU0ZlDP443kvW7ccNSPH2abWFfCns140peoYDeNeZHHSqlRgkMcp00ViJSV30QKhkjagSue7JMQH4304%2FFkrTgKC9Tjh69VLueUScBrhFPNVAUJJTKEur6Ce0u1dCFuorNZH28UayJb2IaDjjNtKWsWmioXPicrpB365FYFc3LTU9PA%2BB2dlqdhUV2QCMFCAazGmNBl900ImaXkg7mVCR4KJVkyfpRJFR5F86oRckaXOFoe0m%2F7W6YevPVY5uWvzf1w3P7vm99YGyIHU4139VjH6ob1tLvqqpxR9u2r5m2onVI9RVXsHUX9eMTLkxQdnCc6AuVEIv2VCsq3G5XOGzt77rMZaWBtEDvNOgN0au8hkhEMg3QTPzqkVUq5feAklS7rOucMleiPU7ivc6kQtuiYCqrfNTdlVF8fxLxCKgtj3iUQC44%2BjrzOa06UfyDSESH3x2j106vnpWmTXnhlT1o%2BUfT%2Fqt9NdGau79%2FZhf73%2BexCP2T2Pz%2FZefZXez6I%2FgIyv%2FEkRs7Yf3IFpM1FG27n5x%2B%2BNQ9Q%2FotPPTGQSQBH%2FPd%2F9Yf%2Fvjjne1sx152gh0p6f3eKHwYW3%2FEZZ93sA627uCCpcfMzwj7AIC8WN4IKljh6miAWKkBQZHNZgqip6CSZLOSmpjVSs0yBZocIpTouZRiZWGortKL8gsDiITjI5Uik%2BLHJ7FXiYTziRJnywoMgWdwNFstbzxXRcbikdvy72CqiPvXAaQznI%2Ft4Idczsm9VLdbktKzzeY83vfZ7QGDlqalDY9ZNLRSTbODPb0mZneCvyYG9BLcSxY9KQVDSTe5ArmSp7voCQYwWfE4HPqnwOu4AyOYNn%2FC%2FfPZh2fjx7C84%2FaZ8xev2nXHraxT3vDKpkVrHaacdQ%2B%2B%2FxGdXTuy8Zr4NrZo3PgNgDCXI%2FUBnh9eKI36VZeLN%2BNWnxscUBNzSKpskmtiJleyNBOvSfVEKuQRD2%2B0Iw4l2BUdoTI%2BZiikBS%2B9h9OfOtrxL7aJvdiOkQOHDrc2tEs72U%2FHmW846xyGi3DSZ3j9azd1FvUDImwoz%2BE2NIBd1OtGAIdVkjTZUhOTqWTlLbMzaamUcEELnGVzAbVA0BHKleew8ew2Ng534wR8gL3Dxq5ZjO%2FxGuQP7A55A7ubrcHDnUMBdY8RLs0Mg6L5BgnAqphMiBbFWBOzKNxLAnII3zehaKqJofOXXkp5iCsitPAkbol0bqDV8RN4ijmIm4tl7zK2BLqkUsalGqFvNN1AqVkBQDQJoSl5QlZS0MVSLhaCX7P9dHD8OHKMEwKWxLu8KBdxL6ZDTbQo3e8nNquVEFemy2DIsGlmjQdbOr9BNkt%2Br%2BzlsmTu1FB3wd0z5VlnstgW8BBwKLpv9YJL5RlPdMKNOALkU1L14E93sr%2ByVfg43vTxgZtW%2FGXnd1vevKGVHafhuOnyAlyMU3AcPjDybB377rOT591Y2mUHeYJu%2FUg004jIzW%2BQJFm2GGhNrMaABoNsUijK3QmbMnfKFN2XPIHtjr%2FNdmE5uRrDZG78Xj5t2EIGAOCFiawBT%2BozgRw%2BbSAGXiPLwM0MRsr79e4NCw4Rxa5IJL6kRnJurq0bOKEZy79hDV4k7gVL5JHn1l4AdgYS%2BtfxVS0wMJpjIcRkNiOAzUBl2cq%2FUrNZoXwP3VtwpgBXF1eWAOXEQAdVfSMRDKBcx1awhYvEZm7FB7CZETKxJf4D39CN6%2FHf8XkJ6VIlly6LPUkqBVCQArccJKJUl6GXoPq6r3PD1MsbzldfSPxvRcyR3dAvmukGo9nI1bbxUPHKisdJjEQxq9QGilBcN36X0mUp6hA6Y9DpEYujXuXykscVRBpkK4wudhzbcaSC07GdfUgtRrZEms9Wzok3cw1WSi3nqklH6R3oPr8kYcedOm6WR9NMYETFagVwUFlRVM1MVW5RVLtHv11adI%2FEnAKwL1KEcM%2FJO9nv43fpSiwh81U7%2BqQGdrQtXseFv4FZvycdQPQ8%2BVKfDHgE0jgAfBZF8RpdNTGjRO01Mer6daQROSBexQQy16Hxpkj%2Bkj3BXubXE3gz1vNr%2FPlDb76Bs9nSNzaSY%2BxxdivejVP5tZCj0mP%2FOYvf4smfoAvtpHU62rkEFkhGowdsNrvdbQXBV3ZNM9TENGr%2FTSzoRn%2FZLXHoEyAo4ckJSx%2Bau%2BBBspEdYacX8yA6iCb0UGXmlKkTd504Fz8rb%2FgchAXYat0CdkjjEZynUFmSCDVIJg9AhmYypVOVEwBXRFK5UWSV22N7Ev4uHU92T9OQe%2BLX7PPaKziWzWZnfL9pJMZW1bO5OPS3LSUP1S3lg9poocvnk0ySppm8njQw8cTzu4wWMA6PAZgtFm40C%2FWaRcikzJbSWfPzuXKqQ0sxKLdfgl3BF0A82brsgaXLW7gB12EPzH7oTqxuZWvZKtp73M0Tm%2BPz4vvlDUeOLdxZwVwPk1KRVS2cQX0ce4s4n%2BRlpKcHICC7LeCGy4rdAbAELNlGX3ZNzCdRYyq%2BuhvwVHHWrRpn%2BIvGGoVFl%2FMhDadWMcJP9LZen9cr%2Bdin7JuOx%2FZeN2FqnzFL7767DtWvZu2f2TrnyermlsJrn977BC7f%2Flkz5g4srx3e8%2Borqypveeqmzf8qL%2F13n8KGgcUDKqrHbRP6FwNIYiqrimdLCgBFNBhVKlHOuxSdv3y2lARgcoLtYrOlOn53IGEMEF7k%2BdXC13JCQdThQHSbDQaX08hRhsdSYuuXVBAOtyLx4BHI6%2B6CYLnlEXbyLfYFex%2FD9zz7BAf0ztqVZ%2B7EwHn6YufCPz33%2FDraBqjXfyHBI2K%2BRonRKAOiVZYkC3BDJ%2Bq9VNpUJOaj%2BsXtVx6h57CC2dmLTMMKdPlKFXO0a4DY%2BdTwvZeN%2FqJLhrqRy8gSsx%2BT0e52yQh%2Bv2ynlszMrKwci9mcnemSzdRvt6NJiOSi%2BEtCbgo1UyM3WkiKOMKJUtMlGvCIi78nPihD2fPbzWFJ6WPdxqngfix9q9Sr9HQdwoJDth5mUy%2Fnm1hKoRixV%2FmpUJxwVT85trLi1EAa6twb%2BaS%2B9uuhNBsStmnSbVMVzTXLnPpUo6oYTYpJ0C2VLGYDkWXJqFCUkhDL9evG%2BooUZ3VpjZj8Izex59h6fnXg56wfNmF%2FDGMtC5Pi%2BGHyHdka%2F47Y4j27dJCYyF2B7wZVlZEQEERvNFFF4QqiSgVDdslOjEH5Z65AarLLowIDZAGWchEZbA%2FLwDo6mozsXBTfQUqoXleVJiZ0RugfzTJISFUVEExmlYuSRP1I0IAGUcZdOgxNpl1qFqqPbALSzPPvkbfjTVJ6vIrs30m%2FRXi%2F0ykkLWUbyWw9T7KjVgXRIIFRJlTBfN2EuvH0BNZX4iUpmc0y8bOPPmIblXMHz60Xa1gA6MDkVFt%2FZIKYnGpfnBa6sUmAHY9%2FmJhqI4S4fJ%2BQL55xoKIY%2BVYNoOZTiaaCvQtCfCFHMMy1CH34IX7GMmfKjQd%2FUoR8AzFIA%2BR3QIHeUTdBWVYkSTznFd6SVJko0DW%2BxLKLeyTRZYcwiGjADQ%2FjqVO8uP6KGOiGzmqyKN4maq1OtpHWXhja9SRIRonoRhEaJZ5K0NrOFyl%2F%2FvMAAGKNdIQ%2BqATAwK1gBjVKRVTIdwCUpB%2FrioP0XWLww7EvHPD6PGRL5ZkqbKpcLx3ptW2gZ%2Fz7GYIdmjju9pfm6E8Zq6OFTovBQvLy%2FP78LIMhaEkbFrNYZLfbPjjm5jWdnDM4JnvBk0Az%2Fy%2BZVYSeXlcUJWdMvMcN9%2B1u8h0omny9N6YT%2BhuGr1r0xzd%2BOr%2F5xbv%2FOn7T8Y9PswO%2FX3znY5MWPHHDsNfXvfono1K6rn7f%2BK3vx32E27h55MJbxwOBFVznDsUNTsjh7BvIojRg1Mw2n89szrWA2WPUFFDSh8QUL7iGxEC7mCz83SHi7H5mUeZ0aISzRVANCgTlw1AfH9d2D8WobftHX%2B7YNsMT%2BhpLLZbJM2ZOJJNvaZk%2BQ5rNdrPv2XH2t6XzFTdbPuiJ9jP3rwh0PPOXNWvWAMLoCyfoMWk2eDi6esRYymclxCubh8RkDexcM%2B%2BlZZJuOTk32SdwmnJoYkjgUBQyIf4DZqJx81Mjh9525cmTzcuHVf%2FBTQZgFvauOZFVwBH49ZIydr4kH4iQK81M2CcaDRi9Gi%2BobTZhqFy7xwIOIyi6fTTdPt5ft4%2BoT4Q%2BecShOXlPGioU%2FBLkji3iOnVPiAnZ9vHnOw9ON%2Fmw7Jv%2B1omT5kyVp7dNmDnLjWVoRx7zq9vG4YSfTjyy5vt7ViWNk9BynD61y%2BDMEKROSUpzOLKcJlOm3%2BOkzuoYFVUUVMesmuoZHFNTel5aloiry3bI3RbgrbNeR4XKwOMJ6AVAxMMtOP2GaQZcT2aVs%2B%2FY3zDt7LdoiJfID985vmNc3Qb61PyZM%2Bd3NmAPdGAahth3Jx%2B789Eel5%2B4rCjB7nSOkgMeuCKa7SZElSn1%2BqwAPhndyHVz283akJgZqJ4bgp8v7QVDiRwWFgxH9KfOeieocBWpiZ1l%2B9eu3bj%2Fufm1o2uv6ocGOq9zCZ23rKHh3ZdLPsoafsVgoKAwtzSV26sYyiEKd0SrzFlZAwZIfRwOUqzmSkGUpIHpPXr4fJFg8Kp0K1jRqlj7qv2GxYy5Eke5wr7FpDpWXFxYWDksVqi5e1fH3BkXz%2Bn4pxIOWz79gRHv0LneqJs2FQ76ewKfPao%2BpSsqEvmsj%2BykQFfCF6ZeRcGFyUQK8v26El%2F4WGzqS33OfxjpXbL2ndc3sTfYvm9%2BvP3WksHVg5tvOnmsZKGTFc2buvrNabOfa5w5%2Fdrrmura10otT%2FceNqZjJ5Xzew187smt%2F1i1bPw9We5Roeh1xYVrZ732vkM6L1UOHVlb2WcEHT5q0qRRuwBhBYC0lmeDB8LRdATw2Y0Wg8Fo9Nolp1MaEnNqJkCjR6D%2FJfU5336yUOPaKqJJEuCQeFQirWX7O%2B6YxfZjqapqE%2F61bQ958LsXt8S%2F40CwpeDekav%2Fvh0ILAPAD7lsA1jEZFcyGsFksprtJg9Rr4kR6DJ%2FZWoO7uobKtNnnyJUlrW3X3ttO14phMgLHn98yIjzPqkFgFxoY259XSt4oSTqd%2FL0JgaDT%2FNcE9PAaBctOk%2FsjOTEKYEwCRGJxwB6tajQpMDBcxoHXzN8CJbum6GLZe60066mRmnd%2BeJXN6mThXRIWPMH%2FUn%2BNdGgxLmTUKrIsmYzWa0Gg8lkN4P41WCzUcXkofbu2oTf3cjSZdpuokXRuGOyi1dx22KswGZWhYd5AffOIrF9jYxdh40sI74Et93MVivueDXr0gYPcG0ouF4DRIkAevQioLvExgPivyvuhO7qQJ5BQRgeLXS7XPrsKDMzI6PAajSaTPkuq9WRKzu46XwOzWzPRJNH7%2BG7krl7%2BOC8ePqbjJDCRIiEfKFykdziVfBd8q%2Bke9n%2B%2BuvnTGL7vy529F437Xwso%2FdL097ZwvbVXz9jOnlw3rz12%2BLfSS1Lh1%2B%2FurZpy%2BF4kfhtxYuQjGCut1tMFxHAq6vrscoOoatQFU0Xx29SyV%2FXLRG8TS0ierkyof%2BZtWWXEPbn7boC9dce3JHE5yf0pzhpostXLJYMcLnSvcYhMa9mp0Nidu8vu%2FxUrvPeVQMOCCQs6MzrxGVT5986ecr8W6dQmX3ELvzxh7swGyl%2FI6Xt6%2F70Qnv7mhfYKbbnQTS8jE7s8wA7B4LrOep1cC1ckMMn1Hl%2BRVFNlKpZmqrlcuQEq9U9hBOEwa5mQEaKzBKmSBWoSQVlTvPepDFCnPndRKFJtuemosq2GZrG9p%2FtaZv8wfaPbt58TGf7vePdSx%2Fwsv5K9SPtbB87%2FT%2Fs7H10mU722JDgM67pTN1euaIq8dIsyh%2BTpOUZ%2Bfg6PcNnz%2FZanE5V4I0FhsQsv8m6iSfIBUmS5S2dL8HBXl8ook%2BLIkFBaLdMkafPPzxZ2v7R5zsmPXeFIQMJ22e1lq48uri9oOMZ9uLa9lNYiho3Z9%2B6xqU%2FbcBDAybXN3ZFFJ3LddVEh0mcejw5BCxZZVnUS7wGFxqlMrTMRy%2BJIqpdWewrCD%2B6iu3%2Fsre97yvSbCP7xLR8SXyH1LKxZTYkqp%2F1XIZ4dpmjpLktAEU5bnchWNw5lhxTli9rcMynUdPgGPX%2BvJ2%2F2BgiqPTHK2HB5clePsGgXCkPt082oetPnbx1%2FbDrDtW395oycuG8yJd%2F3%2FXu6MZHa5Zcv2zRrf2wZn1HILfzsvKx%2Bb0rCstHz73%2B8VXN%2F8y%2F%2FJriK%2FqHR%2F%2B30LeE6xuRa8AjToRYDHa7y2UyEIfB4fWZnHbn4JjVYrfL3HVyQt3QpktOVnRhgnBcxKOXvoLpIyFPwCO6cjK3bsas9tdeeHRt8xasYDuu%2BTD4aeiNN0jGwgknTn4e%2F%2FyqK4UOT%2FGc4zM%2BcENZ1E8cDrfby3t%2Fj9NoJ7JNtumyPcmJ1sVDgItr7tQYgH%2BgrxdrpR2zt72PpSLjsXRp7XUHt5Mj8dki4Ynt%2FEpI9JkPcrlm6BV1m0GWiYgIK0G0GNEuC5llKWndDU1X%2Fx0SbTfiOtaElf%2FINyryZYexkjVJLfFF86aMXUzaumS4AZRtXEaWOMsoSyaOIVng81ETVTMyMjNzVEXJ9plMVLbbMxQ7yDqidR3RdPz2LIDSIO1WQ8wBsin%2FpGskRZpuUfew19lm7LMwJ1eRcrT7sG6R5NCsqBgvN92NPdk7uARPdt4vtTDH4m9q1lxH%2FPGvvE03jMkcer4XnuKKI5gApOW6bWqi%2BYoMaKSUSAQlGWWzQVWtfIZmMSoUAA1mj4T2S2cBqaROkYZeq3KlhdkClOu%2FmD2BI48cxZHsMWxja46fYO2kPwmyZ7A1fiy%2BDRewhcJLzK17ycs1KTC73ZrXK0koahm%2FJgob%2FpNT8no0p9XJMTHDAFyVskQJkKKvhBlTUzxHyokifvTqgNsSaw9mmBRz7n4cwoqu%2BvcfR9RErqqfl%2Bfkfr2%2FYcZNo8ic866XXnR8Z72xNZI450HXce2MIn%2BoKqkIYDYgmvQhAm8c7YR%2FMwyOoefSIULSSMJGySlCWEwR6LrOB4nC0uhAZiCmDrLp6%2B3xekDI4T38Id7D54ipCHUbcnIcfn%2BuNTMzIFGXy8qjKd9qSbTzYosp2hbbF7bnuBrm%2BREWRw08Coc18VTQ4xFQ6%2BEJhDmL2m6%2Fc%2FOZG4cpn31T3XpmM9quH32qucGAVz7Z9jEdXMUObcyzBF8xskNVg%2BknbU8BIO5gJWSlYgMK7tcIpZJMAaCyhONDYlbqCOKOo0cV29lA1ylOauB7yBN7yOHlOmgGQ75bkoI52TabW3Z7qCzl%2F3%2F2IIuHzuFynuSi2BZnlftyiBSnzxyCyzwcrImh4e0Xbhz2%2B9mfKtWtL7xTP39x26LeM2aFPyFVQ7CnuWmyw5K3EXsOrqIfh2dPY5tNjY2nGm7QTxGQIqmCtoEHIlG%2FAg4zmKnd7qNeu82mSJSaHQ5QoCRU1lYi9ElBdqqp5pwa1sv%2FRAMmELwQB0baym968pqFwxaOC99ePv7pgf89chFZcXX5l1NzcyPRii%2Bnphf8lzhBwpbiQanl0rP6Dg26zurbad4v56mukCugE0Wi7Vh7JsTasSV5lIO0dJbKBcljHAhLOdJqfN6cwad7QYchPV3OyCA%2Bn4mYMrPSXCNiBtuIGMiGNH4pGWmKygXqpwH4S8%2BePzvOII575nOCTh4R15lS69q26gmSEBt94OCr7YtF6z7vlm8b7mpdcN%2BrL%2FfHcyhjZk77c8arjmflv%2FBn9kZObzbAuFFEB4A0ST%2Bd2BztZXeaidFqTfd6iV%2FzO51ado7Fn%2BavjxnT0sDFqcleG3P6QR7xs%2BNNXUfUIJTSVqjbjT%2BpBpRfbpXXFSKawsFwiBuQbNyyZcyzs2sbcS679w9k3%2Fmvbhr%2B6qufy7sbvojGrt10dOm6WtZ5ttes1keObtl5BAjMBCYFpHXcnkW8R87TLC6j7EsnBrDZ8jIhM%2FOyYp9LSycWo2xQPZ4ctYBHz%2FYyHc11H2qb9S%2BiA4oURXyC3SM%2B0WGqPrVIoJJaFCmMXFRdbixfuGzBqEk3j1qwfGE43Pbogt%2BNn93Y9siC8v1T6%2BqnzxxRO50cnPC7BcsWhCMLly6MTZs8uu2RtlBo%2FiNtYyYOnz6ttm7aDBHpCoDEp%2BPghZnR%2F7I53U6Plce2UaYyMYkJqxeRED%2FHBp%2FidDkbYkCRuuwmm93WEFPtdgt6FMsl5xX9mtiW3kNfypcpEhAfkgPKkCfoEXdAGF7cGCBD0YAVbOGWH374gX38448%2FvsOW4BViZBv3vHrfq8eO8RdyHMhFiKNCMGoniiKGmUaJSlTVsUcEbCpFdAhyJGBIAFHnAbag8wAAgUm89lnw%2F0o5D7g2jvTvPzOzu9KCJNSFaAKEBMYHAokSuQpiY04OODjYsWxCcjbkNaluuPdyiXuaS0jHpPfeE0N68fVO%2FObSe%2B8uy39mVlqEzr76oeyi%2BbG7U3bK83yfkUZBGZwCMyKlaRaXRRTLC6E4JyfkAld4DKmpsbkrK0ttpSafxzc15nHqTVNjepQycUvmivi5NiuyMYtA0qyNo3NOVr9OFfZJmt75WUW7VMhOWtE4fsubj9zRP33SzuaW6LxFB3rWTJj4xSuvXdHyYsOAb%2Fbpj257c%2BOS5s4tvmrim7appHXPputbn8kPlVdURssit194%2FxklXdGr7p3261Hh7uKKUGH0uu2nzi8Pxya1V5qmAUYu4UfygiRwVi0%2FYrQaWIvIdGcQ4pBB7dzU9snCdpLZJF%2FSOXJNjdRPPa0uMhVd2TKurqk5Mq5FXFPXEB0%2F7ucNExvqGieOb6wDIIw7lSbR99oBPqhmvm9ikm0mm7%2Fc7yzPc%2BbV1IrpYEmnX1mlhbZglpActKMVbEo36zBrHWyifBGnSASrw44ZvIhr6bwgFCxiuH4R45HIul%2Bc91p4c3j55tf%2FfvilPddGFx5b8zJqf5X9DCi9v%2Fm10vvcrj6U09uHsg%2F0Ke%2F29invHSBfX7VJ%2BTAv99nwkcNvfNd82xjlI%2F4%2FSu%2BrLyi3%2FObXaPaLTJb0b6xlBfCX%2BDHKMLqgAOoieZk65HLlmXXU56PLK%2FRmGI2e9HQbys4GEGweShSEA0F1mAtak3BQbR1SPGxVVo3K6irbp3YM1ToJV3pGr452r7n58XnrWi6tr79h3tY9yqTy%2FKbYvMvxsYvGRLrPu%2FBCWegef0l%2BcNcmpeGP%2FqIz6oqkNPas06Fd6BEEkMAIbZHRaUaDTKd2RMKCgERqGDdkGNkrBpBGCE4XBIMoIpOMsR4lWko4kLBqJI%2BK5j8Faab66Q897w8yR4ALIR3yqYfpaPGg8hFyDSo70RG06A12%2FoayC49HL1E%2Fs9K3DL2QNXzKGb8fhTCZCCJkRZgzSkcQkogAAdYJoQTf6LXQWZQQHjx2hLz1I7pgEIaGErEHWAIzAAhaezTEW%2BS5kUqBYFHUgcViJEbamxB9uT%2FROLFE8QLBIegdsp5%2BnaSN8spKbara53ErgY4FlFnoIwadmhP5X7VaYcvuz5QHAu8h%2FcO3K%2Bs89eFTJuceP%2Bdft9utd0xUFqDpyj3kqh3K1%2BH6uhrlzX%2FZctHQEckuSNLhJG8MjPTGCNLRbwWDZH%2BFr%2F6Jm7D5hAmyIDMiQ0ZGTrbVkMkqRQ3FUq17vL06HSowmDyctbXd2N5201ln3XjW5a88G6uvnz2nLjJHWMg%2B7W0766bZL10emd02YWJ7G%2BNFAYSwiCGdcx%2BZGTqdRB35BoSomd9sMRrSZYQkAYOKeoYC8S5MM5WnxriwyfZwnAs9I2%2Fh3kG0RVlFY12UNylYiiCAo%2FgZTriVRKwOA5LAgiyuTNnkwQ4Hyucer4lJXb96j39EPHUF%2BJnjK%2F5%2BbriipGXeqiuf3np9%2B4YudA6O3jbYEQv6S2bt37Cle8be7rMBwVgcxo%2BIr4APJkRy7enY7QbIl%2FLTzVK65C8mdrvDIed4PSa5IIE5pbQ8dlABTRX6S6xu1DgHrezj3QjuuaN9%2Fn1P7N541ards5oXtJ3REgwFWsOdE%2Fb9v3W9wlu7a432i6at2N7wzOzzq6tvrAr76ePuDExYn%2BqLI0JEDyCnCdwXdyjui3uFjR%2FVNMjMIUk6ao6YiGZWHZ0i%2FDX75U5H1aEgAOK2LmrkhkxmMUmXJFnOsjrBQR%2FdrXNlOGl7yiCq4Y2Z%2BzTTkbYwT8qwtv73xo0CxS6XhZtDZ7WvpVaAD0ZnlC6fNWF%2Bvigy%2Byj67YoVdz%2FPrAF7Z8wo%2F9mM65SDUhQQLFSOCbslO2RAIOJINwsiAoTMFr0emUykKWYSWc8XiHtk4gMlbe5qgAb7UsMIa0IFwu6bbumd0PqX1%2F72IW5Tjkmn%2F3QfCVmPHEWCwiKd8Cj0e7KGEUURmUU6Ebk1RiCQCHSypSLhfEr%2F%2B2Eqe2hQsaNeALBCVcRlNjI7Fh1Y7Gaz0W60ySYW9pXNXt9QQI0EXB1%2F3PjAIiZPQYprQ3RWgnr3Xd88KXuOu%2FGW5v7s6Kwj6xc5btOZJpzh7hmf2cktXDiKGxPRSYI8MjopD%2BWfMDoJeePRSb4QbvyciNkVzReismdxFD2z4Oyi0vHr6MwOwnTUfEt8ic9KPBFjIvYqgzhkDw%2FxTGK3kxc9YlKPgt969IarH3%2FwwP4nFG9dY%2BPEiY2NdULbnf0v3Hr7wAu3dHR2dnTMm5cy6s2OlKZTy49OL2AW1Ib01FNiGh70BD7YIdHEB79%2FOej1B9UBL%2B6NL0aoFonqQehRdg4ip%2FLxIFqsSMPn2KuMXYbaUNsyJZw1fMrGrnIA6Qpa2n5Y%2BTuAYvg1fgUA6eAP5Nrjj4L8IMFW%2BuJUVye0D51Au5h8T7W6B7CZSZlyNlXeJ75ClUs8XEnM8as%2BEb9qmXpVwDBeWUH%2BLLTzNU5DpKiQug4YJk0jh0pMoyDbnI1lQp0JPk9rzJdhoRy8xZvKwaN4g9Cm5HHsnddbrUub3bCVWHLF4ldiF1wYPjM27aFzzp37w3lvHP3F7rOrUcnw6jY6d1dT86yJ4eiY0sOnTO6%2F%2FYLru%2Bj0cyyamXhHhoZU2lu3GPuhiOexHiQ0HfQPYqfoh9HVJ1B0w2%2F%2FheIgzFQV2SMV52iKgYTCOlIxU1N0cUXaQwR7uWRYkxbXSNDfPYvXhpfEa4MpdD7OPtrg4sg4yUbMNmIRLCjNZEJsvgbgEETRbiYUvqb4syENGQkj%2FJFkkzkxTAQrMmlscsKiQLvUAAeUNb8G7yQ062PCs0QKkEYsI9rR6nzH9imOvcoLeLew9%2FghbKIUT%2BhoLlq5jiPvcYqZDnXNrC6WKXZGjNP8%2BVlGYAXOBfY556p5%2BZaodTT0KC89ZE%2BUXqqiG9pSFPdShT1JcXDoO1XhHnmNmZqia%2BgnXgMYFag1wGbucZ7cAJnQGCmivUCW3ep0GlBamtthAIqVWwGovcRJi9eKLYy8TgmP0%2BBgddahWmkscQqUlpiPo4MhBwPPA1tV5FzFz7cKwm9%2Bd%2BCzzzahATIdd1Du%2FG5GoOPWnR9%2BofQoyl1qHsRXeDuriLez36eUA%2BdUeTlUxtt7N1fgvJMpulHDv1AchOdUhXek4hxNMZBQZI1UzNQUXVzB2vvoeGkj2IAMglnogXTIjaRLBGTZYORGZXcgqMUn8260FqnLBlSM7lL%2BuB%2BVocqr6Rhetkf5tfL7vfj3qKxH%2BSMavZf%2B%2BVuaSiUAhD7DLeIHkgA2yIZCCEdyXJ4cuz0tB9LAW%2BTMK3Ab3QxXJQWpdOWImbyK8arGGFaJqpEG2V2IO%2FyqihEFV1Wm94Xts3tnv8iA1RevaL1x1sDRP56CjrR2UWL1%2FZBiOG0%2BWqzyvXWXXHDpANrEwNWGNfM3DSi%2FfHYJ%2Frbsp%2B8e6j5uKR4aUmlIXgO18Vocrdaz1uOkKrqR6V8oDkKPqsgfqZipKbq4gr0RJcl9kqDwq4yNv3kb1KtYuCSJSmbrqZpIDiOjjbIoSpJTMDbFZEdTTJAFWdIRyZowKGrdjOZBjePIDroW0tZGwh2UUz1yNcPaH1CQ4fikjst3rbt0NcHv%2FagMUij5c2Vc18rz5%2FNZJM3JfMkD1dAaGU3tegXFxQDlWSZTbXkgUGPKKtBBcbEui2SWhkqnxEIQcFgyozFLwnGq7ZUx0g03TH%2FaTYLqcnOkuuX8iaFL8zhXsVAn4a3SSDRSWl1%2FRVfoo3fmXTau%2BubIbfnTo2vnNjQ0TVjXsWQjbb4%2BhL9FfuGvkV%2BcNqai1JldVTJn7srmu%2B7JLfy6KLhqVGhcaeOylsh5lbWnl49r6TrnKPVMv%2FLO%2FazH5ASbVEBr5VQ%2BUtQfAPb2jbbEazY1vfvCE6Xna%2BkHfxhi6RUj001a%2BkAasPTikemClt4lAX%2B3T%2BGCYcUDmqJ%2FlKrwqwogTCEpQjeUQBBOgS2RydU1JDM%2FP2g3GoNBuabG7%2FGMKZPlsC%2FfW50fjVVXsyDp7OxQNJZtNo6aSoF3p%2BS0NFDHPHgbYiBJgQZGv%2FERLZmZ0t5q6wkJKnqMhzBz8MufZG0ZXsZRzHYYrWJk1TDShwoZfiVWbn2rce4L19%2F03NdfPRtr2nHzvKc%2Femdx%2Fd3LDyM4XkaJq%2Bcfm%2FbY8bqFq1fv6FyOvX%2B1oHvwefbOru7Y0zcz5q91cn3Tq52bInXKZx9RCGvWp8UlOEsQzpxD6T%2F05acLVrNap952xtZhP0xWx0%2B0iY%2BfnCrjtT1FbQ2389oqStRWanr34n%2BeflDP00eNTBe09C6rWpeVidoeugYAvcGv8LTaXynTgF0DGRLXuBwA%2Fy5J0T00eaRi6JdU8UmS4qDyuqqwJBTvUMXlkqApuriC9Vdu9UkSBIfk5fPVpZGx4MYuV46oJ%2BkEY0tOTnr6qEKLpcQNmZh%2BSJ2ImdjppB56CnnSKS02%2BRpiJifBU2MEnYC8izsQ2clwI9I%2B1YYLf3Gtkw8SVgdtm4XAwyNdtX46hDAvXCL2GCmnN3ZetuitjjuuvUr5%2F0PfKX9DwuFDDfpT17zfga0rz19x8fIFq84TXdXF99Wdtr1n%2Fm5lz4fKh8pLyPrJR8gyV%2Bhdtuva4%2FMv2Lj1ih27%2Blg74MwMf2tPV9%2FaEPAZUHI97ucl3KK2k5t4PReeOJ319ZfAyRW8pRiS%2BgUt3aSlD6jpeSPTBS29y6C2pIDWK8yCw0JYeIl7wbKhNGJ1pqWZBQEIyYUcNwVKAXHz0vPBYdBQiw8WTxJRTWOGj2%2BK1tf%2FPFpXNzVaf2ojO%2BKOwcEvTpva%2FPOG6c1EmNrUMqWhpRkIfcaHKAN0OZ81eEfOGnzxWQOjb0jBFAZx%2FC%2BzhmCNsJ9hQWsvOLVn0n5GBm1eUrt%2FzK5jR21o%2FOiJKy9AhwzKa%2F6alefjSoYJlXV2dVyL7IwUqpp%2BQes1ytH2RjTouvnWlnFKMOP2oSGVpeD1c2ZST4ByefGmpvMavgVOruA1XMnTC0emC1p6V0B9A0u1np977PkV5qi9zXh%2BBQ8XJOgmziYWsLhqD%2B1vHQZzli2Dxi8VWsCcbXDIRM6dEpOdxEnL%2BCQocxLLTDtnDWdWTT4Wyh0nAU7ot8Herhf%2F%2FuZLf5xv0ulUfvGjOONEDrXMYEgzK%2BCtE9qVsXpQVixvbB7mnLQ8CVqeut5Qc%2F0zNdcJKk9oH6byMk5M5VGJGk2mO108BE7wQmekxuJwGFF%2Bvs6WAeDL0umKLHa6drMgI7HQX0YznaWSNBddcwhCLotpRQ5tBcd%2BThplmiAy%2BBMMx2M6XcOLuERnVGvx%2B3WnH9vn31Wm9Cv3oTPQhPGbvaRDW9Q9dstdd%2FXVrfR7t8jpaBvqQuejTSZZXeCR145%2B8%2B1PDivZbnPyN%2BhT3SphMXhgNARhQWRMoMKEHQ6%2FX19RkWu3V%2BXr9aEchzvgiMYCATCbfxaNmc3YJNDOmfLEZnDT4VwQvFNiQupwHj45Cp00iOdT56kG4bniI7dDo6KTeT2fSk%2BLtyhf7dl5pPfHLSgb4QUvT7nsi2%2BR%2BbhTt2fL%2BU90tDx99FwN5Pu4fbWMBnC3%2FZprdiD9%2FciByqY1XcvYaf26naXlbOCeHGf7BhavuJhFHD0h%2FFXwSAVgZP0Zi5ozAMh6jE0ZWF4vsh39sg5pyx2NKqQzEZ2XGU%2BdFNAgrdc1Ne977elTUafn6kbhr2ed0XJ29tMLqh5sYBENqFX4M4lKD8Q9ehmS1eqmkUWyR8ay7CDxvRTYHVKNZ7qk8YhEdy1YcOklCy%2B67Pqa0tKaiorSGvGlCzavv%2BiCDZu7ykKhsrKqKkDwa%2BHPgkEygQuqIm4KNEUEQjLdBhvobPTrYvM6MzavFyCQ9fpZmoNENQebXw6qkISXvbF5mNVHiE23yjF6xRM27knfvXTUtKZoET%2B%2FfAk7F%2Buray7vKyjOr%2BKHAr4bGHqI3IN7%2BG5S%2BAS7SU0nbeih999Xlbp%2FqtQllG7Sj%2Fp4jIw7kiaIOqTTySBou5KZB5gLq7jGWhvCumKTs7N6sN5L%2Bp1zkG2h8t3HkHQFCVwRmQhIknSCRC8wvD8WUrffQHtNwbWDkz3iI84XlPdRySFI3luLeVIwEfnuWhIEtNuffHstwOzeZBl%2F%2BgzwRczUIGsiggSSZNFlkHRtI0Z%2BoT8E%2BbOoWSnwxY%2FoUzVPdILhSZyRP8ezp2Vz%2BE4SGJn%2FndpNDXwrMFMaMYjsRi%2BqN9Luoz60qB5QH885cqO31JNM8Ua1DBJFgVlJkOt5SRihMGIaeQcIpN7Ap91gROGgt0eWkkvbi2wunXrfKIyCdLA9wszuRplAgHssUq3uc6%2FavnXvvku37cGf9hzou3r%2FLbcAELbTizQXhfm75mXsYF6m6kEvys4gbKuXAofMQuS5LUhtbJnmP9AJy8gdX3yp56m7v%2BAps89kZzPacGPqPmctKUf%2BVkA7vpHbtCsijrgDV9RLQAg9pa0JI9VZmsxW0W%2FVN5vqlE12xKZeO24nRzp2bfoHPRPEf7z2SBs4vvHEBm8ApCxj83oe25YVSSeAEcaCFtqW8B8j5EX48mN%2F%2FIKMjge2AeK7BW0S%2B6EYdkQaJaL3%2BXI8RW5ntmywWIrSafaLika5cnP12dklBpdLzpRy83Knx0heRt66PJxOMvMy82yFPiiEabFCndlkMzXHbNp2YiNNoxZenyxzKUghO%2FCtQOhvro%2FH5DgKdA420DrVfS4oWELdb%2F7qWvq7BuL7XXhXXu9CVyrtGKN5yj0hZNq9ecn93ynPj9q6VMBLtvjQpG%2Be6ps7ebnwys5f3ucNFDzwTXgIxqK0Tx5wFVff9zVyT%2F%2FQ4%2BXsWgfzjp%2B0n6MTYDbdHRriMbs%2FSh7wQyNfQ04lboD45x8nfd7MPgcMBhzF34tPQRpYGbthFXUmWnBEBixim90k62TJikTRaiW6PJLPDTwBLSYu4RpNwn%2B8DhpfWI1CfA%2BzWrZnHP5%2BzefKBrTh0zXKHkmuzliH39q3rwfXHT%2FUN3Nu1gWuZ9Wn05u0pyuGRuJWn14KAMTT4QTpzcPp0q6k3PF0dS8BvtMDAcsjIIiIQGKXQLYPAt8FgTU2uvZ8EQDruB3sL%2FEV7krVDmZIWNNupYoPkxTdQ3NGKoYYgS4mKQ4q76sKS0JxHADfqZupKbq4gq9wuaT6%2FwCVeR0IAAAAAQAAAAEZmiehT9dfDzz1AAkIAAAAAADJQhegAAAAAMnoSqH7DP2oCo0IjQABAAkAAgAAAAAAAHgBY2BkYODo%2FbuCgYGr9zfPv0quXqAIKrgJAJZXBsIAeAFtkQOsGEEQhv%2Fbnd272rZtG0Ft27ZtW1G9dYMiamrbZlgrqN17M89K8uVfTna%2FoRs4AwCUGVBCU0zQl7DAlEIZWoPOfhXUs0BbVQAL1CG0ZepQd9STPdUW9dQ61FGN%2BU5LpOW1pswUpmU0hZj%2BTGOmWnQ2lPNyV2rEoO%2FA%2BmUw0CwATG8cNjkwyXzEYZrG9Of5NUyy%2BXBY7Q4Hm9a8tgCH%2FWU4bOcwPfmsjc7GvDcYPWk7StjU2G8qAf5xwHQE6D%2BzHRXUbqzi96bmrEQNEeim4V965jWnB%2Bho0sNRHnTn7E5H0V3nQAlaAGsawqkxWKfGhDPoO2Ts%2FGdwsk5fIecd011vh9O%2FOaegHO9toBWAfYLM5JBSxvoNquliyEeDvUucbeXvMd55vIqRtTGMJTnzAkP5bdnsXvTX6VGOPkbfYe%2ByRgh%2F6xHoLms6QDmmlvyFPThTB2PEtbczfMbr3XUu1JD7fmqUjaYre68jzpPD3wJIH6QH0RyQ5L6Ui%2FGeGFqDOZLiPj7iXnpkDsKJ5%2BTwO3LmEe8JYecb2fcazoXMC%2FEd4z0J7EFS3MdH3EuPJJX07gom%2Bff4%2FDMcpS1ee85bBLQNGO84cgiqPerpVcghUBEeK%2FS1jzBBfUZbwUv5X%2F7bkOlslqCEwJ5TBw4lBFsBJdRuHA4vYk%2Fown8RLYvLrQAAeAEc0jWMJFcQxvFnto%2F5LjEvHrdbmh2Kji9aPL4839TcKPNAa6mlZUyOmZk6lzbPJ3bo56%2F%2FCz%2BVaqqrat5rY8x7xnzxl3nvo%2B27jFnz8c%2FmI9Nmh2XBdMsilrBitsnD9rI8aiN5DI%2FjSftC9mIf9pMfIB4kHiI%2BhWfQY5aPAYYYYYwpcyfpMMX0aZzBWZzDeVygchGXcBlX8ApexWt4HW%2FgLbzNbnfwLt7DJ%2Fp0TX4%2BUucji1hCnY%2FU%2BcijVB7D46jzkb3Yh%2F3kB4gHiYeIT%2BEZ9JjlY4AhRhhjytxJOkwxfRpncBbncB4XqFzEJVzGFbyCV%2FEaXscbeAtvs9sdvIv3cjmftWavuWs2mg6byt3ooIsFOyx77Kos2kiWsIK%2FUVPDOjawiQmO4CgdxnAcJzClz2PVbNKsy2ZzvoncjQ66qE2kNpHaRJawgr9RU8M6NrCJCY6gNpFjOI4TmNIn36TNfGSH5RrssKtyN%2B59b410iF0sUFO0l2UJtY%2F8jU9rWMcGNjHBEUypf0z8mm7vZLvZaC%2FLzdhmV2XBvpBF25IlLJOvEFfRI%2BNjgCFGGGNK5Rs6Z7Ij%2F45yNzro4m9Ywzo2sIkJjuBj2ZnvLDdjGxntLLWzLGGZfIW4ih4ZHwMMMcIYUyq1s8xkl97bH0y3JkZyM36j%2F%2B58rvTQxwBDjDDGNzyVyX35Ccjd6KCLv2EN69jAJiY4go%2Flfr05F%2BUa7CCzGx10sYA9tiWLxCWs2BfyN%2BIa1rGBTUxwBEfpMIbjOIEpfdjHvGaTd9LJb0duRp2S1O1I3Y4sYZl8hbiKHhkfAwwxwhhTKt%2FQOZPfmY3%2F%2FSs3Y5tNpTpL9ZQeGR8DDDHCGN%2FwbCbdfHO5GbW51OZSm8sSlslXiKvokfExwBAjjDGlUpvLTBY0K5KbiDcT672SbXZY6k7lbnTQxQI1h%2B1FeZTKY3gcT2KvTWUf9pMZIB4kHiI%2BxcQzxGfpfA7P4wW8yG4eT%2FkYYIgRxvgb9TWsYwObmOAITlI%2Fxf7TOIOzOIfzuEDlIi7hMq7gFbyK1%2FA63sBbeJtvdwfv4j28zyaP8QmVL%2FimL%2FENJ5PJHt3RqtyMbbYlPfQxwBAjjPEN9ZksqkMqN6PuV7bZy7LDtuRudNDFwzx1FI%2FhcTzJp73Yh%2F3kB4gHiYeIT%2BEZ9JjlY4AhRhjjb1TWsI4NbGKCIzjJlCmcxhmcxTmcxwVcxCVcxhW8glfxGl7HG3gLbzPxDt7Fe%2FgY%2F%2Begvq0YCAEoCNa1n%2BKVyTUl3Q0uIhoe%2B3DnRfV7nXGOc5zjHOc4xznOcY5znOMc5zjHOc5xjnOc4xznOMc5znGOc5zjHOc4xznOcY5znOMc5zjHOc5xjnOc4xznOMc5znGOc5zjHOc4xznOcY5znOM8XZouTZemS1OAKcAUYAowBZgCTAHm3x31O7p3vNf5c1iXeBkEAQDFcbsJX0IqFBwK7tyEgkPC3R0K7hrXzsIhePPK%2F7c77jPM1yxSPua0WmuDzNcuNmuLtmq7sbyfsUu7De%2Fxu9fvvvDNfN3ioN9j5pq0ximd1hmd1TmlX7iky7qiq7qmG3pgXYd6pMd6oqd6pud6oZd6pdd6p%2Ff6oI%2F6pC%2FKSxvf9F0%2F1LFl1naRcwwzrAu7AHNarbW6oEu6rCu6qmu6ob9Y7xu%2BkbfHH1ZopCk25RVrhXKn4LCO6KiOGfvpd%2BR3is15xXmVWKGRptgaysQKpUwc1hEdVcpEysTI7xTbKHMcKzTSFDtCmVihkab4z0FdI0QQBAEUbRz6XLh3Lc7VcI%2FWN54IuxXFS97oH58%2BMBoclE1usbHHW77wlW985wcHHHLEMSecsUuPXMNRqfzib3pcllj5xd%2B0lSVW5nNIL3nF6389h%2BY5NG3Thja0oQ1taEMb2tCGNrQn%2BQwjrcwxM93gJre4Y89mvsdb3vGeD3zkE5%2F5wle%2B8Z0fHHDIEceccMaOX67wNz3747gObCQAQhCKdjlRzBVD5be7rwAmfOMQsUvPLj279OzSYBks49Ibl97In%2FHCuNDGO%2BNOW6qlWqqlWqqlWqqlWqqYUkwpphTzifnEfII92IM92IM92IM92IM92IM92I%2FD4%2FA4PA6Pw%2BPwODwOj8M%2Ff7kaaDXQyt7K3mqglcCVwNVAq4FWA60GWglZCVkJWQlZCVkJWQlZDbQyqhpoNdAPh3NAwCAAwwDM%2B7b2sg8kCjIO4zAO4zAO4zAO4zAO4zAO4zAO4zAO4zAO4zAO4zAO47AO67AO67AO67AO67AO67AO67AO67AO67AO67AO67AO63AO53AO53AO53AO53AO53AO53AO53AO53AO53AO53AO5xCHOMQhDnGIQxziEIc4xCEOcYhDHOIQhzjEIQ5xiEMd6lCHOtShDnWoQx3qUIc61KEOdahDHepQhzrUoQ6%2Fh%2BP6RpIjiKEoyOPvCARUoK9LctP5ZqXTop7q%2F6H%2F0H%2B4P9yfPz82bdm2Y9ee%2FT355bS3%2FdivDW9reFtDb4beDL0ZejP0ZujN0JuhN0Nvht4MvRl6M%2FRm6M3w1of3PVnJSlaykpWsZCUrWclKVrKSlaxkJStZySpWsYpVrGIVq1jFKlaxilWsYhWrWMUqVrGa1axmNatZzWpWs5rVrGY1q1nNalazmtWsYQ1rWMMa1rCGNaxhDWtYwxrWsIY1rGENa1nLWtaylrWsZS1rWcta1rKWtaxlLWtZyzrWsY51rGMd61jHOtaxjnWsYx3rWMc61rEeTf1o6kdTP%2F84rpMqCKAYhmH8Cfy2JjuLCPiYPDH1Y%2BrH1I%2BpH1M%2Fpn5M%2FZh6FEZhFEZhFEZhFEZhFEZhFFZhFVZhFVZhFVZhFVZhFVbhFE7hFE7hFE7hFE7hFE7hFCKgCChPHQFlc7I52ZxsTgQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQti5bl63L1mXrsnXZuggoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCyt5GQBFQBPTlwD7OEIaBKAxSOrmJVZa2TsJcwJ6r0%2F%2B9sBOGnTDshOF%2BDndyXG7k7vfh9%2Bn35fft978Thp2wKuqqqKtarmq58cYbb7zzzjvvfPDBBx988sknn3zxxRdfPHnyVPip8FPhp8JPhZ8KP78czLdxBDAMAMFc%2FbdAk4AERoMS5CpQOW82uWyPHexkJzvZyU52spOd7GQnu9jFLnaxi13sYhe72MVudrOb3exmN7vZzW52s8EGG2ywwQYbbLDBBnvZy172spe97GUve9nLJptssskmm2yyySabbLHFFltsscUWW2yxxX6%2B7P%2BrH%2Fqtf6%2B2Z3u2Z3u2Z3u2Z3u2Z3s%2BO66jKoYBGASA%2FiUFeLO2tqfgvhIgVkOshvj%2F8f%2FjF8VqiL8dqyG%2Bd4klllhiiSWWWGKJJY444ogjjjjiiCOO%2BPua0gPv7paRAHgBLcEDlNxQAADArI3Ydv7Vtm3btm3btm3btm3bD7VvBoIgLXVVqCf0ztXT9dzd3j3cvcX90CN5Snmae%2Fp45np2e356gbeH94HP8Q3x3feH%2FX38NwJwoHigQ2Ba4GBQCK4NfgxVDE0OnQr7w1nCI8P7wi8jdqR4ZGzkRDQSLRmdH%2F0UqxTrEVsbux%2FPHe8b3xh%2FlgglzESJRJfE6MS6ZChZJzkj%2BRouCA9GJKQuMhI5hsZRHR2A7kZ%2FYZWxldhtPDPeFd%2BIPybyE0OIy2SIrEy2IneSX8mvFKB6UpfodPQYeiOTjmnK3GOzsCPYpexaLjdXiRvBHeJ%2B8BX5Lvxe%2FqOACmWEnsJ60SsyYjqxiLhE3CoeE6%2BLL8RvUlRqJXWThkszpJXSbjkq83JaOZ9cXm4gd5IXKZACK4qSSSmiVFWmq0lVUtOr%2BdXyagO1oxbRSM3UsmnFtOpaC62nNkqbo7M60HPppfXaemu9j77X4IwUI49RxqhrtDWOGzeM92Y985lFWWWtcdZia4d10%2FpiU3YZu6%2B91j7rME5xp5szGVAgDcgBioDhYDpYDjaDE%2BAmeAW%2Bp8R%2FA5ajfCcAAAABAAAA3QCKABYAWAAFAAIAEAAvAFwAAAEAAQsAAwABeAF9jgNuRAEYhL%2FaDGoc4DluVNtug5pr8xh7jj3jTpK18pszwBDP9NHTP0IPs1DOexlmtpz3sc9iOe9nmddyPsA8%2BXI%2BqI1COZ%2FkliIXhPkiyDo3vCnG2CaEn0%2B2lH%2BgmfIvotowZa3769ULZST4K%2BcujqTb%2Fj36S4w%2FQmgDF0tWvalemNWLX%2BKSMBvYkhQSLG2FZR%2BafmERIsqPpn7%2ByvxjfMlsTjlihz3OuZE38bTtlAAa%2FTAFAHgBbMEDjJYBAADQ9%2F3nu2zbtm3b5p9t17JdQ7Zt21zmvGXXvJrZe0LA37Cw%2F3lDEBISIVKUaDFixYmXIJHEkkgqmeRSSCmV1NJIK530Msgok8yyyCqb7HLIKZfc8sgrn%2FwKKKiwIooqprgSSiqltDLKKqe8CiqqpLIqqqqmuhpqqqW2Ouqqp74GGmqksSaaaqa5FlpqpbU22mqnvQ466qSzLrrqprs9NpthprNWeWeWReZba6ctQYR5QaTplvvhp4VWm%2BOyt75bZ5fffvljk71uum6fHnpaopfbervhlvfCHnngof36%2BGappx57oq%2BPPpurv34GGGSgwTYYYpihhhthlJFGG%2BODscYbZ4JJJjphoykmm2qaT7445ZkDDnrujRcOOeyY46444qirZtvtnPPOBFG%2BBtFBTBAbxAXxQYJC7rvjrnv%2FxpJXmpPDXpqXaWDg6MKZX5ZaVJycX5TK4lpalA8SdnMyMITSRjxp%2BaVFxaUFqUWZ%2BUVQQWMobcKUlgYAHQ14sAAAeAFFSzVCLEEQ7fpjH113V1ybGPd1KRyiibEhxt1vsj3ZngE9AIfgBmMR5fVk8qElsRjHOHAYW%2BQwyumxct4bKxXkWDEvx7JjdszQNAZcekzi9Zho8oV8NCbnIT%2FfEXNRJwqmlaemnQMbN8E1OE7Mzb%2FP%2F8xzKZrEMA2hl3rQATa0Uxs2bN%2B2f8M2AEpwj5yQBvklvJ3AqRcEaMKrWq%2F19eWakl7NsZbyJoNblqlZc7KywcRbRnBjc00FeF6%2Fenoi05EcG62tsXhkPcdk87BHVC%2BZXleUPrOsUHaUI2tb4y%2F8OwbsTEAJAA%3D%3D%29%20format%28%22woff%22%29%7D%2A%7Bbox%2Dsizing%3Aborder%2Dbox%7Dbody%7Bpadding%3A0%3Bmargin%3A0%3Bfont%2Dfamily%3A%22Open%20Sans%22%2C%22Helvetica%20Neue%22%2CHelvetica%2CArial%2Csans%2Dserif%3Bfont%2Dsize%3A16px%3Bline%2Dheight%3A1%2E5%3Bcolor%3A%23606c71%7Da%7Bcolor%3A%231e6bb8%3Btext%2Ddecoration%3Anone%7Da%3Ahover%7Btext%2Ddecoration%3Aunderline%7D%2Epage%2Dheader%7Bcolor%3A%23fff%3Btext%2Dalign%3Acenter%3Bbackground%2Dcolor%3A%23159957%3Bbackground%2Dimage%3Alinear%2Dgradient%28120deg%2C%23155799%2C%23159957%29%3Bpadding%3A1%2E5rem%202rem%7D%2Eproject%2Dname%7Bmargin%2Dtop%3A0%3Bmargin%2Dbottom%3A%2E1rem%3Bfont%2Dsize%3A2rem%7D%2Eproject%2Dtagline%7Bmargin%2Dbottom%3A2rem%3Bfont%2Dweight%3A400%3Bopacity%3A%2E7%3Bfont%2Dsize%3A1%2E5rem%7D%2Eproject%2Dauthor%2C%2Eproject%2Ddate%7Bfont%2Dweight%3A400%3Bopacity%3A%2E7%3Bfont%2Dsize%3A1%2E2rem%7D%40media%20screen%20and%20%28max%2Dwidth%3A%2042em%29%7B%2Epage%2Dheader%7Bpadding%3A1rem%7D%2Eproject%2Dname%7Bfont%2Dsize%3A1%2E75rem%7D%2Eproject%2Dtagline%7Bfont%2Dsize%3A1%2E2rem%7D%2Eproject%2Dauthor%2C%2Eproject%2Ddate%7Bfont%2Dsize%3A1rem%7D%7D%2Emain%2Dcontent%3Afirst%2Dchild%7Bmargin%2Dtop%3A0%7D%2Emain%2Dcontent%20img%7Bmax%2Dwidth%3A100%25%7D%2Emain%2Dcontent%20h1%2C%2Emain%2Dcontent%20h2%2C%2Emain%2Dcontent%20h3%2C%2Emain%2Dcontent%20h4%2C%2Emain%2Dcontent%20h5%2C%2Emain%2Dcontent%20h6%7Bmargin%2Dtop%3A2rem%3Bmargin%2Dbottom%3A1rem%3Bfont%2Dweight%3A400%3Bcolor%3A%23159957%7D%2Emain%2Dcontent%20p%7Bmargin%2Dbottom%3A1em%7D%2Emain%2Dcontent%20code%7Bpadding%3A2px%204px%3Bfont%2Dfamily%3AConsolas%2C%22Liberation%20Mono%22%2CMenlo%2CCourier%2Cmonospace%3Bcolor%3A%23383e41%3Bbackground%2Dcolor%3A%23f3f6fa%3Bborder%2Dradius%3A%2E3rem%7D%2Emain%2Dcontent%20pre%7Bpadding%3A%2E8rem%3Bmargin%2Dtop%3A0%3Bmargin%2Dbottom%3A1rem%3Bfont%3A1rem%20Consolas%2C%22Liberation%20Mono%22%2CMenlo%2CCourier%2Cmonospace%3Bcolor%3A%23567482%3Bword%2Dwrap%3Anormal%3Bbackground%2Dcolor%3A%23f3f6fa%3Bborder%3Asolid%201px%20%23dce6f0%3Bborder%2Dradius%3A%2E3rem%3Bline%2Dheight%3A1%2E45%3Boverflow%3Aauto%7D%2Emain%2Dcontent%20pre%3E%20code%7Bpadding%3A0%3Bmargin%3A0%3Bfont%2Dsize%3A1rem%3Bcolor%3A%23567482%3Bword%2Dbreak%3Anormal%3Bwhite%2Dspace%3Apre%3Bbackground%3Atransparent%3Bborder%3A0%7D%2Emain%2Dcontent%20pre%20code%2C%2Emain%2Dcontent%20pre%20tt%7Bdisplay%3Ainline%3Bpadding%3A0%3Bline%2Dheight%3Ainherit%3Bword%2Dwrap%3Anormal%3Bbackground%2Dcolor%3Atransparent%3Bborder%3A0%7D%2Emain%2Dcontent%20pre%20code%3Abefore%2C%2Emain%2Dcontent%20pre%20code%3Aafter%2C%2Emain%2Dcontent%20pre%20tt%3Abefore%2C%2Emain%2Dcontent%20pre%20tt%3Aafter%7Bcontent%3Anormal%7D%2Emain%2Dcontent%20ul%2C%2Emain%2Dcontent%20ol%7Bmargin%2Dtop%3A0%7D%2Emain%2Dcontent%20blockquote%7Bpadding%3A0%201rem%3Bmargin%2Dleft%3A0%3Bfont%2Dsize%3A1%2E2rem%3Bcolor%3A%23819198%3Bborder%2Dleft%3A%2E3rem%20solid%20%23dce6f0%7D%2Emain%2Dcontent%20blockquote%3E%3Afirst%2Dchild%7Bmargin%2Dtop%3A0%7D%2Emain%2Dcontent%20blockquote%3E%3Alast%2Dchild%7Bmargin%2Dbottom%3A0%7D%2Emain%2Dcontent%20table%7Bwidth%3A100%25%3Boverflow%3Aauto%3Bword%2Dbreak%3Anormal%3Bword%2Dbreak%3Akeep%2Dall%3Bborder%2Dcollapse%3Acollapse%3Bborder%2Dspacing%3A0%3Bmargin%3A1rem%200%7D%2Emain%2Dcontent%20table%20th%7Bfont%2Dweight%3A700%3Bbackground%2Dcolor%3A%234CAF50%3Bcolor%3A%23fff%7D%2Emain%2Dcontent%20table%20th%2C%2Emain%2Dcontent%20table%20td%7Bpadding%3A%2E5rem%201rem%3Bborder%2Dbottom%3A1px%20solid%20%23e9ebec%3Btext%2Dalign%3Aleft%7D%2Emain%2Dcontent%20table%20tr%3Anth%2Dchild%28odd%29%7Bbackground%2Dcolor%3A%23f2f2f2%7D%2Emain%2Dcontent%20dl%7Bpadding%3A0%7D%2Emain%2Dcontent%20dl%20dt%7Bpadding%3A0%3Bmargin%2Dtop%3A1rem%3Bfont%2Dsize%3A1rem%3Bfont%2Dweight%3A700%7D%2Emain%2Dcontent%20dl%20dd%7Bpadding%3A0%3Bmargin%2Dbottom%3A1rem%7D%2Emain%2Dcontent%20hr%7Bmargin%3A1rem%200%3Bborder%3A0%3Bheight%3A1px%3Bbackground%3A%23aaa%3Bbackground%2Dimage%3Alinear%2Dgradient%28to%20right%2C%23eee%2C%23aaa%2C%23eee%29%7D%2Emain%2Dcontent%2C%2Etoc%7Bmax%2Dwidth%3A64rem%3Bpadding%3A2rem%204rem%3Bmargin%3A0%20auto%3Bfont%2Dsize%3A1%2E1rem%7D%2Etoc%7Bpadding%2Dbottom%3A0%7D%2Etoc%20ul%7Bmargin%2Dbottom%3A0%7D%40media%20screen%20and%20%28min%2Dwidth%3A%2042em%29%20and%20%28max%2Dwidth%3A%2064em%29%7B%2Etoc%7Bpadding%3A2rem%202rem%200%7D%2Emain%2Dcontent%7Bpadding%3A2rem%7D%7D%40media%20screen%20and%20%28max%2Dwidth%3A%2042em%29%7B%2Etoc%7Bpadding%3A2rem%201rem%200%3Bfont%2Dsize%3A1rem%7D%2Emain%2Dcontent%7Bpadding%3A2rem%201rem%3Bfont%2Dsize%3A1rem%7D%2Emain%2Dcontent%20pre%2C%2Emain%2Dcontent%20pre%3E%20code%7Bfont%2Dsize%3A%2E9rem%7D%2Emain%2Dcontent%20blockquote%7Bfont%2Dsize%3A1%2E1rem%7D%7D%2Esite%2Dfooter%7Bpadding%2Dtop%3A2rem%3Bmargin%2Dtop%3A2rem%3Bborder%2Dtop%3Asolid%201px%20%23eff0f1%3Bfont%2Dsize%3A1rem%7D%2Esite%2Dfooter%2Downer%7Bdisplay%3Ablock%3Bfont%2Dweight%3A700%7D%2Esite%2Dfooter%2Dcredits%7Bcolor%3A%23819198%7D%0Acode%20%3E%20span%2Ekw%20%7B%20color%3A%20%23a71d5d%3B%20font%2Dweight%3A%20normal%3B%20%7D%20%0Acode%20%3E%20span%2Edt%20%7B%20color%3A%20%23795da3%3B%20%7D%20%0Acode%20%3E%20span%2Edv%20%7B%20color%3A%20%230086b3%3B%20%7D%20%0Acode%20%3E%20span%2Ebn%20%7B%20color%3A%20%230086b3%3B%20%7D%20%0Acode%20%3E%20span%2Efl%20%7B%20color%3A%20%230086b3%3B%20%7D%20%0Acode%20%3E%20span%2Ech%20%7B%20color%3A%20%234070a0%3B%20%7D%20%0Acode%20%3E%20span%2Est%20%7B%20color%3A%20%23183691%3B%20%7D%20%0Acode%20%3E%20span%2Eco%20%7B%20color%3A%20%23969896%3B%20font%2Dstyle%3A%20italic%3B%20%7D%20%0Acode%20%3E%20span%2Eot%20%7B%20color%3A%20%23007020%3B%20%7D%20%0A" rel="stylesheet" type="text/css" />
63
+
64
+</head>
65
+
66
+<body>
67
+
68
+
69
+
70
+
71
+<section class="page-header">
72
+<h1 class="title toc-ignore project-name">Annotate a phylogenetic tree with insets</h1>
73
+<h4 class="author project-author">Guangchuang Yu<br />
74
+School of Public Health, The University of Hong Kong</h4>
75
+<h4 class="date project-date">2018-01-03</h4>
76
+</section>
77
+
78
+
79
+<div id="TOC" class="toc">
80
+<ul>
81
+<li><a href="#annotate-with-bar-charts">Annotate with bar charts</a></li>
82
+<li><a href="#annotate-with-pie-charts">Annotate with pie charts</a></li>
83
+<li><a href="#annotate-with-other-types-of-charts">Annotate with other types of charts</a></li>
84
+</ul>
85
+</div>
86
+
87
+<section class="main-content">
88
+<p><code>ggtree</code> provides a function, <code>inset</code>, for adding subplots to a phylogenetic tree. The input is a tree graphic object and a named list of ggplot graphic objects (can be any kind of charts), these objects should named by node numbers. To facilitate adding bar and pie charts (e.g. summarized stats of results from ancestral reconstruction) to phylogenetic tree, <em>ggtree</em> provides <code>nodepie</code> and <code>nodebar</code> functions to create a list of pie or bar charts.</p>
89
+<div id="annotate-with-bar-charts" class="section level2">
90
+<h2>Annotate with bar charts</h2>
91
+<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">set.seed</span>(<span class="dv">2015</span><span class="op">-</span><span class="dv">12</span><span class="op">-</span><span class="dv">31</span>)
92
+tr &lt;-<span class="st"> </span><span class="kw">rtree</span>(<span class="dv">15</span>)
93
+p &lt;-<span class="st"> </span><span class="kw">ggtree</span>(tr)
94
+
95
+a &lt;-<span class="st"> </span><span class="kw">runif</span>(<span class="dv">14</span>, <span class="dv">0</span>, <span class="fl">0.33</span>)
96
+b &lt;-<span class="st"> </span><span class="kw">runif</span>(<span class="dv">14</span>, <span class="dv">0</span>, <span class="fl">0.33</span>)
97
+c &lt;-<span class="st"> </span><span class="kw">runif</span>(<span class="dv">14</span>, <span class="dv">0</span>, <span class="fl">0.33</span>)
98
+d &lt;-<span class="st"> </span><span class="dv">1</span> <span class="op">-</span><span class="st"> </span>a <span class="op">-</span><span class="st"> </span>b <span class="op">-</span><span class="st"> </span>c
99
+dat &lt;-<span class="st"> </span><span class="kw">data.frame</span>(<span class="dt">a=</span>a, <span class="dt">b=</span>b, <span class="dt">c=</span>c, <span class="dt">d=</span>d)
100
+## input data should have a column of `node` that store the node number
101
+dat<span class="op">$</span>node &lt;-<span class="st"> </span><span class="dv">15</span><span class="op">+</span><span class="dv">1</span><span class="op">:</span><span class="dv">14</span>
102
+
103
+## cols parameter indicate which columns store stats (a, b, c and d in this example)
104
+bars &lt;-<span class="st"> </span><span class="kw">nodebar</span>(dat, <span class="dt">cols=</span><span class="dv">1</span><span class="op">:</span><span class="dv">4</span>)
105
+
106
+<span class="kw">inset</span>(p, bars, <span class="dt">width=</span>.<span class="dv">2</span>, <span class="dt">height=</span><span class="dv">1</span>)</code></pre></div>
107
+<p><img src="" /><!-- --></p>
108
+<p>Users can set the color via the parameter <em>color</em>. The <em>x</em> position can be one of ‘node’ or ‘branch’ and can be adjusted by the parameter <em>hjust</em> and <em>vjust</em> for horizontal and vertical adjustment respecitvely.</p>
109
+<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">bars2 &lt;-<span class="st"> </span><span class="kw">nodebar</span>(dat, <span class="dt">cols=</span><span class="dv">1</span><span class="op">:</span><span class="dv">4</span>, <span class="dt">position=</span><span class="st">'dodge'</span>,
110
+                 <span class="dt">color=</span><span class="kw">c</span>(<span class="dt">a=</span><span class="st">'blue'</span>, <span class="dt">b=</span><span class="st">'red'</span>, <span class="dt">c=</span><span class="st">'green'</span>, <span class="dt">d=</span><span class="st">'cyan'</span>))
111
+p2 &lt;-<span class="st"> </span><span class="kw">inset</span>(p, bars2, <span class="dt">x=</span><span class="st">'branch'</span>, <span class="dt">width=</span>.<span class="dv">2</span>, <span class="dt">height=</span><span class="dv">1</span>, <span class="dt">vjust=</span><span class="op">-</span>.<span class="dv">3</span>)
112
+<span class="kw">print</span>(p2)</code></pre></div>
113
+<p><img src="" /><!-- --></p>
114
+</div>
115
+<div id="annotate-with-pie-charts" class="section level2">
116
+<h2>Annotate with pie charts</h2>
117
+<p>Similarly, users can use <code>nodepie</code> function to generate a list of pie charts and place these charts to annotate corresponding nodes. Both <code>nodebar</code> and <code>nodepie</code> accepts parameter <em>alpha</em> to allow transparency.</p>
118
+<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">pies &lt;-<span class="st"> </span><span class="kw">nodepie</span>(dat, <span class="dt">cols=</span><span class="dv">1</span><span class="op">:</span><span class="dv">4</span>, <span class="dt">alpha=</span>.<span class="dv">6</span>)
119
+<span class="kw">inset</span>(p, pies, <span class="dt">width=</span><span class="dv">1</span>, <span class="dt">height=</span><span class="dv">1</span>, <span class="dt">hjust=</span><span class="op">-</span>.<span class="dv">06</span>)</code></pre></div>
120
+<p><img src="" /><!-- --></p>
121
+</div>
122
+<div id="annotate-with-other-types-of-charts" class="section level2">
123
+<h2>Annotate with other types of charts</h2>
124
+<p>The <code>inset</code> function accepts a list of ggplot graphic objects and these input objects are not restricted to pie or bar charts. They can be any kinds of charts and hybrid of these charts.</p>
125
+<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">pies_and_bars &lt;-<span class="st"> </span>bars2
126
+pies_and_bars[<span class="dv">9</span><span class="op">:</span><span class="dv">14</span>] &lt;-<span class="st"> </span>pies[<span class="dv">9</span><span class="op">:</span><span class="dv">14</span>]
127
+<span class="kw">inset</span>(p, pies_and_bars, <span class="dt">width=</span>.<span class="dv">3</span>, <span class="dt">height=</span><span class="dv">1</span>)</code></pre></div>
128
+<p><img src="" /><!-- --></p>
129
+<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">d &lt;-<span class="st"> </span><span class="kw">lapply</span>(<span class="dv">1</span><span class="op">:</span><span class="dv">15</span>, rnorm, <span class="dt">n=</span><span class="dv">100</span>)
130
+ylim &lt;-<span class="st"> </span><span class="kw">range</span>(<span class="kw">unlist</span>(d))
131
+bx &lt;-<span class="st"> </span><span class="kw">lapply</span>(d, <span class="cf">function</span>(y) {
132
+    dd &lt;-<span class="st"> </span><span class="kw">data.frame</span>(<span class="dt">y=</span>y)
133
+    <span class="kw">ggplot</span>(dd, <span class="kw">aes</span>(<span class="dt">x=</span><span class="dv">1</span>, <span class="dt">y=</span>y))<span class="op">+</span><span class="kw">geom_boxplot</span>() <span class="op">+</span><span class="st"> </span><span class="kw">ylim</span>(ylim) <span class="op">+</span><span class="st"> </span><span class="kw">theme_inset</span>()
134
+})
135
+<span class="kw">names</span>(bx) &lt;-<span class="st"> </span><span class="dv">1</span><span class="op">:</span><span class="dv">15</span>
136
+<span class="kw">inset</span>(p, bx, <span class="dt">width=</span>.<span class="dv">2</span>, <span class="dt">height=</span><span class="dv">2</span>, <span class="dt">hjust=</span><span class="op">-</span>.<span class="dv">05</span>)</code></pre></div>
137
+<p><img src="" /><!-- --></p>
138
+<p>After annotating with insets, users can further annotate the tree with another layer of insets.</p>
139
+<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">p2 &lt;-<span class="st"> </span><span class="kw">inset</span>(p, bars2, <span class="dt">x=</span><span class="st">'branch'</span>, <span class="dt">width=</span>.<span class="dv">5</span>, <span class="dt">height=</span><span class="dv">1</span>, <span class="dt">vjust=</span><span class="op">-</span>.<span class="dv">4</span>)
140
+p2 &lt;-<span class="st"> </span><span class="kw">inset</span>(p2, pies, <span class="dt">x=</span><span class="st">'branch'</span>, <span class="dt">vjust=</span>.<span class="dv">4</span>, <span class="dt">width=</span>.<span class="dv">5</span>, <span class="dt">height=</span><span class="dv">1</span>)
141
+bx2 &lt;-<span class="st"> </span><span class="kw">lapply</span>(bx, <span class="cf">function</span>(g) g<span class="op">+</span><span class="kw">coord_flip</span>())
142
+<span class="kw">inset</span>(p2, bx2, <span class="dt">width=</span><span class="dv">2</span>, <span class="dt">height=</span><span class="dv">1</span>, <span class="dt">vjust=</span>.<span class="dv">04</span>, <span class="dt">hjust=</span>p2<span class="op">$</span>data<span class="op">$</span>x[<span class="dv">1</span><span class="op">:</span><span class="dv">15</span>]<span class="op">-</span><span class="dv">5</span>) <span class="op">+</span><span class="st"> </span><span class="kw">xlim</span>(<span class="ot">NA</span>, <span class="dv">6</span>)</code></pre></div>
143
+<p><img src="" /><!-- --></p>
144
+</div>
145
+</section>
146
+
147
+
148
+
149
+<!-- dynamically load mathjax for compatibility with self-contained -->
150
+<script>
151
+  (function () {
152
+    var script = document.createElement("script");
153
+    script.type = "text/javascript";
154
+    script.src  = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
155
+    document.getElementsByTagName("head")[0].appendChild(script);
156
+  })();
157
+</script>
158
+
159
+</body>
160
+</html>
0 161
new file mode 100644
... ...
@@ -0,0 +1,60 @@
1
+
2
+# Tree annotation with analysis of R packages
3
+
4
+## annotating tree with ape bootstraping analysis
5
+
6
+```{r results='hide', message=FALSE}
7
+library(ape)
8
+data(woodmouse)
9
+d <- dist.dna(woodmouse)
10
+tr <- nj(d)
11
+bp <- boot.phylo(tr, woodmouse, function(xx) nj(dist.dna(xx)))
12
+```
13
+
14
+
15
+```{r fig.width=6, fig.height=6, warning=FALSE, fig.align="center"}
16
+library(treeio)
17
+tree <- as.treedata(tr, boot = bp)
18
+ggtree(tree) + geom_label(aes(label=bootstrap)) + geom_tiplab()
19
+```
20
+
21
+## annotating tree with phangorn output
22
+
23
+```{r results='hide', message=FALSE, fig.width=12, fig.height=10, width=60, warning=FALSE, fig.align="center", eval=FALSE}
24
+library(phangorn)
25
+treefile <- system.file("extdata", "pa.nwk", package="treeio")
26
+tre <- read.tree(treefile)
27
+tipseqfile <- system.file("extdata", "pa.fas", package="treeio")
28
+tipseq <- read.phyDat(tipseqfile,format="fasta")
29
+fit <- pml(tre, tipseq, k=4)
30
+fit <- optim.pml(fit, optNni=FALSE, optBf=T, optQ=T,
31
+                 optInv=T, optGamma=T, optEdge=TRUE,
32
+                 optRooted=FALSE, model = "GTR")
33
+
34
+phangorn <- phyPML(fit, type="ml")
35
+ggtree(phangorn) + geom_text(aes(x=branch, label=AA_subs, vjust=-.5))
36
+```
37
+
38
+![](figures/phangorn_example.png)
39
+
40
+
41
+## phylo4d
42
+
43
+`phylo4d` was defined in the `phylobase` package, which can be employed to integrate user's data with phylogenetic tree. `phylo4d` was supported in `ggtree` and the data stored in the object can be used directly to annotate the tree.
44
+
45
+```{r fig.width=6, fig.height=5, warning=FALSE, fig.align="center", eval=FALSE}
46
+dd2 <- dd[, -1]
47
+rownames(dd2) <- dd[,1]
48
+require(phylobase)
49
+tr2 <- phylo4d(tree, dd2)
50
+ggtree(tr2) + geom_tiplab(aes(color=place)) +
51
+    geom_tippoint(aes(size=value, shape=place, color=place), alpha=0.25)
52
+```
53
+
54
+
55
+![](figures/phylobase_example.png)
56
+
57
+## jplace file format
58
+
59
+`ggtree` provides `write.jplace()` function to store user's own data and associated newick tree to a single `jplace` file, which can be parsed directly in `ggtree` and user's data can be used to annotate the tree directly. For more detail, please refer to the [Tree Data Import](treeImport.html#jplace-file-format) vignette.
60
+
... ...
@@ -1,15 +1,17 @@
1 1
 % Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/clade-functions.R
3
-\name{collapse}
4
-\alias{collapse}
5
-\title{collapse}
3
+\name{collapse.ggtree}
4
+\alias{collapse.ggtree}
5
+\title{collapse-ggtree}
6 6
 \usage{
7
-collapse(tree_view = NULL, node)
7
+\method{collapse}{ggtree}(x = NULL, node, ...)
8 8
 }
9 9
 \arguments{
10
-\item{tree_view}{tree view}
10
+\item{x}{tree view}
11 11
 
12 12
 \item{node}{clade node}
13
+
14
+\item{...}{additional parameters}
13 15
 }
14 16
 \value{
15 17
 tree view
... ...
@@ -4,8 +4,8 @@
4 4
 \alias{inset}
5 5
 \title{inset}
6 6
 \usage{
7
-inset(tree_view, insets, width = 0.1, height = 0.1, hjust = 0,
8
-  vjust = 0, x = "node", reverse_x = FALSE, reverse_y = FALSE)
7
+inset(tree_view, insets, width, height, hjust = 0, vjust = 0, x = "node",
8
+  reverse_x = FALSE, reverse_y = FALSE)
9 9
 }
10 10
 \arguments{
11 11
 \item{tree_view}{tree view}
... ...
@@ -7,10 +7,18 @@
7 7
 \alias{reexports}
8 8
 \alias{read.tree}
9 9
 \alias{reexports}
10
+\alias{read.nexus}
11
+\alias{reexports}
10 12
 \alias{groupOTU}
11 13
 \alias{reexports}
12 14
 \alias{groupClade}
13 15
 \alias{reexports}
16
+\alias{collapse}
17
+\alias{reexports}
18
+\alias{fortify}
19
+\alias{reexports}
20
+\alias{ggplot}
21
+\alias{reexports}
14 22
 \alias{xlim}
15 23
 \alias{reexports}
16 24
 \alias{theme}
... ...
@@ -24,6 +32,34 @@
24 32
 \alias{geom_label}
25 33
 \alias{reexports}
26 34
 \alias{geom_point}
35
+\alias{reexports}
36
+\alias{read.beast}
37
+\alias{reexports}
38
+\alias{read.codeml}
39
+\alias{reexports}
40
+\alias{read.codeml_mlc}
41
+\alias{reexports}
42
+\alias{read.hyphy}
43
+\alias{reexports}
44
+\alias{read.jplace}
45
+\alias{reexports}
46
+\alias{read.jtree}
47
+\alias{reexports}
48
+\alias{read.mrbayes}
49
+\alias{reexports}
50
+\alias{read.newick}
51
+\alias{reexports}
52
+\alias{read.nhx}
53
+\alias{reexports}
54
+\alias{read.paml_rst}
55
+\alias{reexports}
56
+\alias{read.phylip}
57
+\alias{reexports}
58
+\alias{read.phyloT}
59
+\alias{reexports}
60
+\alias{read.r8s}
61
+\alias{reexports}
62
+\alias{read.raxml}
27 63
 \title{Objects exported from other packages}
28 64
 \keyword{internal}
29 65
 \description{
... ...
@@ -31,10 +67,14 @@ These objects are imported from other packages. Follow the links
31 67
 below to see their documentation.
32 68
 
33 69
 \describe{
34
-  \item{ape}{\code{\link[ape]{rtree}}, \code{\link[ape]{read.tree}}}
70
+  \item{ape}{\code{\link[ape]{rtree}}, \code{\link[ape]{read.tree}}, \code{\link[ape]{read.nexus}}}
35 71
 
36
-  \item{ggplot2}{\code{\link[ggplot2]{xlim}}, \code{\link[ggplot2]{theme}}, \code{\link[ggplot2]{ggsave}}, \code{\link[ggplot2]{aes}}, \code{\link[ggplot2]{geom_text}}, \code{\link[ggplot2]{geom_label}}, \code{\link[ggplot2]{geom_point}}}
72
+  \item{dplyr}{\code{\link[dplyr]{collapse}}}
73
+
74
+  \item{ggplot2}{\code{\link[ggplot2]{fortify}}, \code{\link[ggplot2]{ggplot}}, \code{\link[ggplot2]{xlim}}, \code{\link[ggplot2]{theme}}, \code{\link[ggplot2]{ggsave}}, \code{\link[ggplot2]{aes}}, \code{\link[ggplot2]{geom_text}}, \code{\link[ggplot2]{geom_label}}, \code{\link[ggplot2]{geom_point}}}
37 75
 
38 76
   \item{tidytree}{\code{\link[tidytree]{groupOTU}}, \code{\link[tidytree]{groupClade}}}
77
+
78
+  \item{treeio}{\code{\link[treeio]{read.beast}}, \code{\link[treeio]{read.codeml}}, \code{\link[treeio]{read.codeml_mlc}}, \code{\link[treeio]{read.hyphy}}, \code{\link[treeio]{read.jplace}}, \code{\link[treeio]{read.jtree}}, \code{\link[treeio]{read.mrbayes}}, \code{\link[treeio]{read.newick}}, \code{\link[treeio]{read.nhx}}, \code{\link[treeio]{read.paml_rst}}, \code{\link[treeio]{read.phylip}}, \code{\link[treeio]{read.phyloT}}, \code{\link[treeio]{read.r8s}}, \code{\link[treeio]{read.raxml}}}
39 79
 }}
40 80
 
... ...
@@ -9,7 +9,7 @@ weight: 1
9 9
 
10 10
 <p><link rel="stylesheet" href="https://guangchuangyu.github.io/css/font-awesome.min.css"> <link rel="stylesheet" href="https://guangchuangyu.github.io/css/academicons.min.css"></p>
11 11
 <p><img src="https://raw.githubusercontent.com/Bioconductor/BiocStickers/master/ggtree/ggtree.png" height="200" align="right" /></p>
12
-<p><a href="https://bioconductor.org/packages/ggtree"><img src="https://img.shields.io/badge/release%20version-1.10.0-blue.svg?style=flat" alt="releaseVersion" /></a> <a href="https://github.com/guangchuangyu/ggtree"><img src="https://img.shields.io/badge/devel%20version-1.11.4-blue.svg?style=flat" alt="develVersion" /></a> <a href="https://bioconductor.org/packages/stats/bioc/ggtree"><img src="https://img.shields.io/badge/downloads-22808/total-blue.svg?style=flat" alt="total" /></a> <a href="https://bioconductor.org/packages/stats/bioc/ggtree"><img src="https://img.shields.io/badge/downloads-1218/month-blue.svg?style=flat" alt="month" /></a></p>
12
+<p><a href="https://bioconductor.org/packages/ggtree"><img src="https://img.shields.io/badge/release%20version-1.10.0-blue.svg?style=flat" alt="releaseVersion" /></a> <a href="https://github.com/guangchuangyu/ggtree"><img src="https://img.shields.io/badge/devel%20version-1.11.4-blue.svg?style=flat" alt="develVersion" /></a> <a href="https://bioconductor.org/packages/stats/bioc/ggtree"><img src="https://img.shields.io/badge/downloads-22863/total-blue.svg?style=flat" alt="total" /></a> <a href="https://bioconductor.org/packages/stats/bioc/ggtree"><img src="https://img.shields.io/badge/downloads-906/month-blue.svg?style=flat" alt="month" /></a></p>
13 13
 <p>The <code>ggtree</code> package extending the <em>ggplot2</em> package. It based on grammar of graphics and takes all the good parts of <em>ggplot2</em>. <em>ggtree</em> is designed for not only viewing phylogenetic tree but also displaying annotation data on the tree. <em>ggtree</em> is released within the <a href="https://bioconductor.org/packages/ggtree/">Bioconductor</a> project and the source code is hosted on <a href="https://github.com/GuangchuangYu/ggtree"><i class="fa fa-github fa-lg"></i> GitHub</a>.</p>
14 14
 <div id="authors" class="section level2">
15 15
 <h2><i class="fa fa-user"></i> Authors</h2>
... ...
@@ -18,7 +18,7 @@ weight: 1
18 18
 <div id="citation" class="section level2">
19 19
 <h2><i class="fa fa-book"></i> Citation</h2>
20 20
 <p>Please cite the following article when using <code>ggtree</code>:</p>
21
-<p><a href="http://dx.doi.org/10.1111/2041-210X.12628"><img src="https://img.shields.io/badge/doi-10.1111/2041--210X.12628-blue.svg?style=flat" alt="doi" /></a> <a href="https://www.altmetric.com/details/10533079"><img src="https://img.shields.io/badge/Altmetric-325-blue.svg?style=flat" alt="Altmetric" /></a> <a href="https://scholar.google.com.hk/scholar?oi=bibs&amp;hl=en&amp;cites=7268358477862164627"><img src="https://img.shields.io/badge/cited%20by-60-blue.svg?style=flat" alt="citation" /></a></p>
21
+<p><a href="http://dx.doi.org/10.1111/2041-210X.12628"><img src="https://img.shields.io/badge/doi-10.1111/2041--210X.12628-blue.svg?style=flat" alt="doi" /></a> <a href="https://www.altmetric.com/details/10533079"><img src="https://img.shields.io/badge/Altmetric-325-blue.svg?style=flat" alt="Altmetric" /></a> <a href="https://scholar.google.com.hk/scholar?oi=bibs&amp;hl=en&amp;cites=7268358477862164627"><img src="https://img.shields.io/badge/cited%20by-64-blue.svg?style=flat" alt="citation" /></a></p>
22 22
 <p><strong>G Yu</strong>, DK Smith, H Zhu, Y Guan, TTY Lam<sup>*</sup>. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. <strong><em>Methods in Ecology and Evolution</em></strong>. 2017, 8(1):28-36.</p>
23 23
 </div>
24 24
 <div id="featured-articles" class="section level2">
... ...
@@ -8,4 +8,4 @@ weight: 50
8 8
 
9 9
 <p><link rel="stylesheet" href="https://guangchuangyu.github.io/css/font-awesome.min.css"></p>
10 10
 <p><font size="4"><strong>Leave me a message on <a href="https://twitter.com/hashtag/ggtree"><i class="fa fa-twitter fa-lg"></i></a></strong></font></p>
11
-<p>{{% tweet "941463119490150405" %}}{{% tweet "941040327816892416" %}}{{% tweet "940738021514547201" %}}{{% tweet "940337892030910467" %}}{{% tweet "938702392450617344" %}}{{% tweet "936241103585517568" %}}{{% tweet "920370392451178496" %}}{{% tweet "912971120198012929" %}}{{% tweet "907543915686793217" %}}{{% tweet "910671384069722112" %}}{{% tweet "903786057182957568" %}}{{% tweet "899635001247059969" %}}{{% tweet "898729425168080897" %}}{{% tweet "891144389715783680" %}}{{% tweet "883301626022375424" %}}{{% tweet "883246854695256064" %}}{{% tweet "877576023109390336" %}}{{% tweet "875594411584782337" %}}{{% tweet "871775262152810496" %}}{{% tweet "867408666852511744" %}}{{% tweet "857665638600507393" %}}{{% tweet "840181267542994944" %}}{{% tweet "839831849736232962" %}}{{% tweet "830023569887391744" %}}{{% tweet "829398997735313408" %}}{{% tweet "824264788456984576" %}}{{% tweet "822383911258890242" %}}{{% tweet "811666431452450816" %}}{{% tweet "811661275889549312" %}}{{% tweet "797041236867686400" %}}{{% tweet "797037016403820546" %}}{{% tweet "794278716859879424" %}}{{% tweet "831952966701678592" %}}{{% tweet "788751417746059264" %}}{{% tweet "693123105707986944" %}}{{% tweet "691762302492790788" %}}{{% tweet "687933344219312128" %}}{{% tweet "684411780412526592" %}}{{% tweet "665188011047563268" %}}{{% tweet "664040586001915904" %}}{{% tweet "639507420054749184" %}}{{% tweet "671673570259509248" %}}{{% tweet "667490462693912576" %}}{{% tweet "660278158663401473" %}}{{% tweet "641251456595685376" %}}{{% tweet "559734740488818688" %}}{{% tweet "559762891478667264" %}}{{% tweet "561514846291001344" %}}{{% tweet "559542705663905793" %}}{{% tweet "561056244782227456" %}}{{% tweet "664085841766195200" %}}{{% tweet "664431087683260416" %}}{{% tweet "667706456045694976" %}}{{% tweet "663937183791759360" %}}{{% tweet "663771499589861376" %}}{{% tweet "667433534756397057" %}}{{% tweet "640573716733169664" %}}{{% tweet "664407764001779712" %}}{{% tweet "630500659960254464" %}}{{% tweet "547497335412899840" %}}{{% tweet "610364467939913728" %}}</p>
11
+<p>{{% tweet "932751454938415105" %}}{{% tweet "941463119490150405" %}}{{% tweet "941040327816892416" %}}{{% tweet "940738021514547201" %}}{{% tweet "940337892030910467" %}}{{% tweet "938702392450617344" %}}{{% tweet "936241103585517568" %}}{{% tweet "920370392451178496" %}}{{% tweet "912971120198012929" %}}{{% tweet "907543915686793217" %}}{{% tweet "910671384069722112" %}}{{% tweet "903786057182957568" %}}{{% tweet "899635001247059969" %}}{{% tweet "898729425168080897" %}}{{% tweet "891144389715783680" %}}{{% tweet "883301626022375424" %}}{{% tweet "883246854695256064" %}}{{% tweet "877576023109390336" %}}{{% tweet "875594411584782337" %}}{{% tweet "871775262152810496" %}}{{% tweet "867408666852511744" %}}{{% tweet "857665638600507393" %}}{{% tweet "840181267542994944" %}}{{% tweet "839831849736232962" %}}{{% tweet "830023569887391744" %}}{{% tweet "829398997735313408" %}}{{% tweet "824264788456984576" %}}{{% tweet "822383911258890242" %}}{{% tweet "811666431452450816" %}}{{% tweet "811661275889549312" %}}{{% tweet "797041236867686400" %}}{{% tweet "797037016403820546" %}}{{% tweet "794278716859879424" %}}{{% tweet "831952966701678592" %}}{{% tweet "788751417746059264" %}}{{% tweet "693123105707986944" %}}{{% tweet "691762302492790788" %}}{{% tweet "687933344219312128" %}}{{% tweet "684411780412526592" %}}{{% tweet "665188011047563268" %}}{{% tweet "664040586001915904" %}}{{% tweet "639507420054749184" %}}{{% tweet "671673570259509248" %}}{{% tweet "667490462693912576" %}}{{% tweet "660278158663401473" %}}{{% tweet "641251456595685376" %}}{{% tweet "559734740488818688" %}}{{% tweet "559762891478667264" %}}{{% tweet "561514846291001344" %}}{{% tweet "559542705663905793" %}}{{% tweet "561056244782227456" %}}{{% tweet "664085841766195200" %}}{{% tweet "664431087683260416" %}}{{% tweet "667706456045694976" %}}{{% tweet "663937183791759360" %}}{{% tweet "663771499589861376" %}}{{% tweet "667433534756397057" %}}{{% tweet "640573716733169664" %}}{{% tweet "664407764001779712" %}}{{% tweet "630500659960254464" %}}{{% tweet "547497335412899840" %}}{{% tweet "610364467939913728" %}}</p>
... ...
@@ -11,6 +11,7 @@ weight: 50
11 11
 
12 12
 
13 13
 ````{r echo=FALSE}
14
+blogdown::shortcode('tweet', '932751454938415105')
14 15
 blogdown::shortcode('tweet', '941463119490150405')
15 16
 blogdown::shortcode('tweet', '941040327816892416')
16 17
 blogdown::shortcode('tweet', '940738021514547201')
17 18
new file mode 100644
... ...
@@ -0,0 +1,104 @@
1
+---
2
+title: "Annotate a phylogenetic tree with insets"
3
+author: "Guangchuang Yu\\
4
+
5
+        School of Public Health, The University of Hong Kong"
6
+date: "`r Sys.Date()`"
7
+output:
8
+  prettydoc::html_pretty:
9
+    toc: true
10
+    theme: cayman
11
+    highlight: github
12
+  pdf_document:
13
+    toc: true
14
+vignette: >
15
+  %\VignetteIndexEntry{Annotating phylogenetic tree with images}
16
+  %\VignetteEngine{knitr::rmarkdown}
17
+  %\usepackage[utf8]{inputenc}
18
+---
19
+
20
+```{r style, echo=FALSE, results="asis", message=FALSE}
21
+knitr::opts_chunk$set(tidy = FALSE,
22
+		   message = FALSE)
23
+```
24
+
25
+
26
+```{r echo=FALSE, results="hide", message=FALSE}
27
+library(ape)
28
+library("ggplot2")
29
+library("ggimage")
30
+library("ggtree")
31
+```
32
+
33
+
34
+`ggtree` provides a function, `inset`, for adding subplots to a phylogenetic tree. The input is a tree graphic object and a named list of ggplot graphic objects (can be any kind of charts), these objects should named by node numbers. To facilitate adding bar and pie charts (e.g. summarized stats of results from ancestral reconstruction) to phylogenetic tree, *ggtree* provides `nodepie` and `nodebar` functions to create a list of pie or bar charts.
35
+
36
+## Annotate with bar charts
37
+
38
+```{r fig.width=7, fig.height=7}
39
+set.seed(2015-12-31)
40
+tr <- rtree(15)
41
+p <- ggtree(tr)
42
+
43
+a <- runif(14, 0, 0.33)
44
+b <- runif(14, 0, 0.33)
45
+c <- runif(14, 0, 0.33)
46
+d <- 1 - a - b - c
47
+dat <- data.frame(a=a, b=b, c=c, d=d)
48
+## input data should have a column of `node` that store the node number
49
+dat$node <- 15+1:14
50
+
51
+## cols parameter indicate which columns store stats (a, b, c and d in this example)
52
+bars <- nodebar(dat, cols=1:4)
53
+
54
+inset(p, bars, width=.2, height=1)
55
+```
56
+
57
+Users can set the color via the parameter *color*. The *x* position can be one of 'node' or 'branch' and can be adjusted by the parameter *hjust* and *vjust* for horizontal and vertical adjustment respecitvely.
58
+
59
+
60
+```{r fig.width=7, fig.height=7}
61
+bars2 <- nodebar(dat, cols=1:4, position='dodge',
62
+                 color=c(a='blue', b='red', c='green', d='cyan'))
63
+p2 <- inset(p, bars2, x='branch', width=.2, height=1, vjust=-.3)
64
+print(p2)
65
+```
66
+
67
+## Annotate with pie charts
68
+
69
+Similarly, users can use `nodepie` function to generate a list of pie charts and place these charts to annotate corresponding nodes. Both `nodebar` and `nodepie` accepts parameter *alpha* to allow transparency.
70
+
71
+```{r fig.width=7, fig.height=7}
72
+pies <- nodepie(dat, cols=1:4, alpha=.6)
73
+inset(p, pies, width=1, height=1, hjust=-.06)
74
+```
75
+
76
+
77
+## Annotate with other types of charts
78
+
79
+The `inset` function accepts a list of ggplot graphic objects and these input objects are not restricted to pie or bar charts. They can be any kinds of charts and hybrid of these charts.
80
+
81
+```{r fig.width=7, fig.height=7}
82
+pies_and_bars <- bars2
83
+pies_and_bars[9:14] <- pies[9:14]
84
+inset(p, pies_and_bars, width=.3, height=1)
85
+
86
+d <- lapply(1:15, rnorm, n=100)
87
+ylim <- range(unlist(d))
88
+bx <- lapply(d, function(y) {
89
+    dd <- data.frame(y=y)
90
+    ggplot(dd, aes(x=1, y=y))+geom_boxplot() + ylim(ylim) + theme_inset()
91
+})
92
+names(bx) <- 1:15
93
+inset(p, bx, width=.2, height=2, hjust=-.05)
94
+```
95
+
96
+
97
+After annotating with insets, users can further annotate the tree with another layer of insets.
98
+
99
+```{r fig.width=7, fig.height=7}
100
+p2 <- inset(p, bars2, x='branch', width=.5, height=1, vjust=-.4)
101
+p2 <- inset(p2, pies, x='branch', vjust=.4, width=.5, height=1)
102
+bx2 <- lapply(bx, function(g) g+coord_flip())
103
+inset(p2, bx2, width=2, height=1, vjust=.04, hjust=p2$data$x[1:15]-5) + xlim(NA, 6)
104
+```
0 105
deleted file mode 100644
... ...
@@ -1,196 +0,0 @@
1
-title: "Advance Tree Annotation"
2
-author: "Guangchuang Yu and Tommy Tsan-Yuk Lam\\
3
-
4
-        School of Public Health, The University of Hong Kong"
5
-date: "`r Sys.Date()`"
6
-bibliography: ggtree.bib
7
-biblio-style: apalike
8
-output:
9
-  prettydoc::html_pretty:
10
-    toc: true
11
-    theme: cayman
12
-    highlight: github
13
-  pdf_document:
14
-    toc: true
15
-vignette: >
16
-  %\VignetteIndexEntry{05 Advance Tree Annotation}
17
-  %\VignetteEngine{knitr::rmarkdown}
18
-  %\usepackage[utf8]{inputenc}
19
-
20
-```{r style, echo=FALSE, results="asis", message=FALSE}
21
-knitr::opts_chunk$set(tidy = FALSE,
22
-		   message = FALSE)
23
-```
24
-
25
-
26
-```{r echo=FALSE, results="hide", message=FALSE}
27
-library("ape")
28
-library("treeio")
29
-library("ggplot2")
30
-library("ggtree")
31
-```
32
-
33
-
34
-# Visualize tree with associated matrix
35
-
36
-<!--
37
-At first we implemented `gplot` function to visualize tree with heatmap but it has [an issue](https://github.com/GuangchuangYu/ggtree/issues/3) that it can't always guarantee the heatmap aligning to the tree properly, since the line up is between two figures and it's currently not supported internally by ggplot2. I have implemented another function `gheatmap` that can do the line up properly by creating a new layer above the tree.
38
-
39
-The `gheatmap` function is designed to visualize phylogenetic tree with heatmap of associated matrix.
40
-
41
-In the following example, we visualized a tree of H3 influenza viruses with their associated genotype.
42
-
43
-```{r fig.width=8, fig.height=6, fig.align="center", warning=FALSE, message=FALSE}
44
-beast_file <- system.file("examples/MCC_FluA_H3.tree", package="ggtree")
45
-beast_tree <- read.beast(beast_file)
46
-
47
-genotype_file <- system.file("examples/Genotype.txt", package="ggtree")
48
-genotype <- read.table(genotype_file, sep="\t", stringsAsFactor=F)
49
-colnames(genotype) <- sub("\\.$", "", colnames(genotype))
50
-p <- ggtree(beast_tree, mrsd="2013-01-01") + geom_treescale(x=2008, y=1, offset=2)
51
-p <- p + geom_tiplab(size=2)
52
-gheatmap(p, genotype, offset = 5, width=0.5, font.size=3, colnames_angle=-45, hjust=0) +
53
-    scale_fill_manual(breaks=c("HuH3N2", "pdm", "trig"), values=c("steelblue", "firebrick", "darkgreen"))
54
-```
55
-
56
-The _width_ parameter is to control the width of the heatmap. It supports another parameter _offset_ for controlling the distance between the tree and the heatmap, for instance to allocate space for tip labels.
57
-
58
-
59
-For time-scaled tree, as in this example, it's more often to use x axis by using `theme_tree2`. But with this solution, the heatmap is just another layer and will change the `x` axis. To overcome this issue, we implemented `scale_x_ggtree` to set the x axis more reasonable.
60
-
61
-<!-- User can also use `gplot` and tweak the positions of two plot to align properly. -->
62
-
63
-
64
-
65
-```{r fig.width=8, fig.height=6, fig.align="center", warning=FALSE}
66
-p <- ggtree(beast_tree, mrsd="2013-01-01") + geom_tiplab(size=2, align=TRUE, linesize=.5) + theme_tree2()
67
-pp <- (p + scale_y_continuous(expand=c(0, 0.3))) %>%
68
-    gheatmap(genotype, offset=8, width=0.6, colnames=FALSE) %>%
69
-        scale_x_ggtree()
70
-pp + theme(legend.position="right")
71
-```
72
-
73
-
74
-# Visualize tree with multiple sequence alignment
75
-
76
-With `msaplot` function, user can visualize multiple sequence alignment with phylogenetic tree, as demonstrated below:
77
-```{r fig.width=8, fig.height=6, fig.align='center', warning=FALSE}
78
-fasta <- system.file("examples/FluA_H3_AA.fas", package="ggtree")
79
-msaplot(ggtree(beast_tree), fasta)
80
-```
81
-
82
-A specific slice of the alignment can also be displayed by specific _window_ parameter.
83
-
84
-```{r fig.width=7, fig.height=7, fig.align='center', warning=FALSE}
85
-msaplot(ggtree(beast_tree), fasta, window=c(150, 200)) + coord_polar(theta='y')
86
-```
87
-
88
-# Annotate a phylogenetic tree with insets
89
-
90
-`ggtree` provides a function, `inset`, for adding subplots to a phylogenetic tree. The input is a tree graphic object and a named list of ggplot graphic objects (can be any kind of charts), these objects should named by node numbers. To facilitate adding bar and pie charts (e.g. summarized stats of results from ancestral reconstruction) to phylogenetic tree, *ggtree* provides `nodepie` and `nodebar` functions to create a list of pie or bar charts.
91
-
92
-## Annotate with bar charts
93
-
94
-```{r}
95
-set.seed(2015-12-31)
96
-tr <- rtree(15)
97
-p <- ggtree(tr)
98
-
99
-a <- runif(14, 0, 0.33)
100
-b <- runif(14, 0, 0.33)
101
-c <- runif(14, 0, 0.33)
102
-d <- 1 - a - b - c
103
-dat <- data.frame(a=a, b=b, c=c, d=d)
104
-## input data should have a column of `node` that store the node number
105
-dat$node <- 15+1:14
106
-
107
-## cols parameter indicate which columns store stats (a, b, c and d in this example)
108
-bars <- nodebar(dat, cols=1:4)
109
-
110
-inset(p, bars)
111
-```
112
-
113
-The sizes of the insets can be ajusted by the paramter *width* and *height*.
114
-
115
-```{r}
116
-inset(p, bars, width=.06, height=.1)
117
-```
118
-
119
-Users can set the color via the parameter *color*. The *x* position can be one of 'node' or 'branch' and can be adjusted by the parameter *hjust* and *vjust* for horizontal and vertical adjustment respecitvely.
120
-
121
-
122
-```{r}
123
-bars2 <- nodebar(dat, cols=1:4, position='dodge',
124
-                 color=c(a='blue', b='red', c='green', d='cyan'))
125
-p2 <- inset(p, bars2, x='branch', width=.06, vjust=-.3)
126
-print(p2)
127
-```
128
-
129
-## Annotate with pie charts
130
-
131
-Similarly, users can use `nodepie` function to generate a list of pie charts and place these charts to annotate corresponding nodes. Both `nodebar` and `nodepie` accepts parameter *alpha* to allow transparency.
132
-
133
-```{r}
134
-pies <- nodepie(dat, cols=1:4, alpha=.6)
135
-inset(p, pies)
136
-```
137
-
138
-
139
-```{r}
140
-inset(p, pies, hjust=-.06)
141
-```
142
-
143
-## Annotate with other types of charts
144
-
145
-The `inset` function accepts a list of ggplot graphic objects and these input objects are not restricted to pie or bar charts. They can be any kinds of charts and hybrid of these charts.
146
-
147
-```{r}
148
-pies_and_bars <- bars2
149
-pies_and_bars[9:14] <- pies[9:14]
150
-inset(p, pies_and_bars)
151
-```
152
-
153
-```{r}
154
-d <- lapply(1:15, rnorm, n=100)
155
-ylim <- range(unlist(d))
156
-bx <- lapply(d, function(y) {
157
-    dd <- data.frame(y=y)
158
-    ggplot(dd, aes(x=1, y=y))+geom_boxplot() + ylim(ylim) + theme_inset()
159
-})
160
-names(bx) <- 1:15
161
-inset(p, bx, width=.06, height=.2, hjust=-.05)
162
-```
163
-
164
-
165
-After annotating with insets, users can further annotate the tree with another layer of insets.
166
-
167
-```{r fig.width=10, fig.height=7}
168
-p2 <- inset(p, bars2, x='branch', width=.06, vjust=-.4)
169
-p2 <- inset(p2, pies, x='branch', vjust=.4)
170
-bx2 <- lapply(bx, function(g) g+coord_flip())
171
-inset(p2, bx2, width=.4, height=.06, vjust=.04, hjust=p2$data$x[1:15]-4) + xlim(NA, 4.5)
172
-```
173
-
174
-# Plot tree with associated data
175
-
176
-For associating phylogenetic tree with different type of plot produced by user's data, `ggtree` provides `facet_plot` function which accepts an input `data.frame` and a `geom` function to draw the input data. The data will be displayed in an additional panel of the plot.
177
-
178
-```{r warning=F, fig.width=10, fig.height=6}
179
-tr <- rtree(30)
180
-
181
-d1 <- data.frame(id=tr$tip.label, val=rnorm(30, sd=3))
182
-p <- ggtree(tr)
183
-
184
-p2 <- facet_plot(p, panel="dot", data=d1, geom=geom_point, aes(x=val), color='firebrick')
185
-d2 <- data.frame(id=tr$tip.label, value = abs(rnorm(30, mean=100, sd=50)))
186
-
187
-facet_plot(p2, panel='bar', data=d2, geom=geom_segment, aes(x=0, xend=value, y=y, yend=y), size=3, color='steelblue') + theme_tree2()
188
-```
189
-
190
-
191
-
192
-
193
-
... ...
@@ -225,6 +225,7 @@ the [Tree Annotation](treeAnnotation.html) vignette.
225 225
 + [Tree Annotation](treeAnnotation.html)
226 226
 + [Phylomoji](https://cran.r-project.org/web/packages/emojifont/vignettes/phylomoji.html)
227 227
 + [Annotating phylogenetic tree with images](https://guangchuangyu.github.io/ggtree/vignettes/ggtree-ggimage.html)
228
++ [Annotate a phylogenetic tree with insets](https://guangchuangyu.github.io/ggtree/vignettes/ggtree-inset.html)
228 229
 
229 230
 
230 231
 **ggtree homepage**: <https://guangchuangyu.github.io/ggtree> (contains more
... ...
@@ -29,81 +29,27 @@ knitr::opts_chunk$set(tidy = FALSE,
29 29
 library("ape")
30 30
 library("ggplot2")
31 31
 library("cowplot")
32
+library("treeio")
32 33
 library("ggtree")
33
-```
34
-
35
-
36
-# Rescale tree
37
-
38
-Most of the phylogenetic trees are scaled by evolutionary distance (substitution/site). In `ggtree`, users can re-scale a phylogenetic tree by any numerical variable inferred by evolutionary analysis (e.g. *dN/dS*).
39
-
40
-
41
-```{r fig.width=10, fig.height=5}
42
-beast_file <- system.file("examples/MCC_FluA_H3.tree", package="ggtree")
43
-beast_tree <- read.beast(beast_file)
44
-beast_tree
45
-p1 <- ggtree(beast_tree, mrsd='2013-01-01') + theme_tree2() +
46
-    ggtitle("Divergence time")
47
-p2 <- ggtree(beast_tree, branch.length = 'rate') + theme_tree2() +
48
-    ggtitle("Substitution rate")
49
-
50
-library(cowplot)
51
-plot_grid(p1, p2, ncol=2)
52
-```
53
-
54
-```{r fig.width=10, fig.height=5}
55
-mlcfile <- system.file("extdata/PAML_Codeml", "mlc", package="treeio")
56
-mlc_tree <- read.codeml_mlc(mlcfile)
57
-p1 <- ggtree(mlc_tree) + theme_tree2() +
58
-    ggtitle("nucleotide substitutions per codon")
59
-p2 <- ggtree(mlc_tree, branch.length='dN_vs_dS') + theme_tree2() +
60
-    ggtitle("dN/dS tree")
61
-plot_grid(p1, p2, ncol=2)
62
-```
63 34
 
64
-In addition to specify `branch.length` in tree visualization, users can change branch length stored in tree object by using `rescale_tree` function.
35
+CRANpkg <- function (pkg) {
36
+    cran <- "https://CRAN.R-project.org/package"
37
+    fmt <- "[%s](%s=%s)"
38
+    sprintf(fmt, pkg, cran, pkg)
39
+}
65 40
 
66
-```{r}
67
-beast_tree2 <- rescale_tree(beast_tree, branch.length = 'rate')
68
-ggtree(beast_tree2) + theme_tree2()
69
-```
70
-
71
-# Zoom on a portion of tree
41
+Biocpkg <- function (pkg) {
42
+    sprintf("[%s](http://bioconductor.org/packages/%s)", pkg, pkg)
43
+}
72 44
 
73
-`ggtree` provides _`gzoom`_ function that similar to _`zoom`_ function provided in `ape`. This function plots simultaneously a whole phylogenetic tree and a portion of it. It aims at exploring very large trees.
74
-
75
-```{r fig.width=9, fig.height=5, fig.align="center"}
76
-library("ape")
77
-data(chiroptera)
78
-library("ggtree")
79
-gzoom(chiroptera, grep("Plecotus", chiroptera$tip.label))
45
+inset <- ggtree::inset
80 46
 ```
81 47
 
82
-Zoom in selected clade of a tree that was already annotated with `ggtree` is also supported.
83 48
 
84
-```{r fig.width=9, fig.height=5, message=FALSE, warning=FALSE}
85
-groupInfo <- split(chiroptera$tip.label, gsub("_\\w+", "", chiroptera$tip.label))
86
-chiroptera <- groupOTU(chiroptera, groupInfo)
87
-p <- ggtree(chiroptera, aes(color=group)) + geom_tiplab() + xlim(NA, 23)
88
-gzoom(p, grep("Plecotus", chiroptera$tip.label), xmax_adjust=2)
89
-```
90
-
91
-
92
-# Color tree
93
-
94
-In `ggtree`, coloring phylogenetic tree is easy, by using `aes(color=VAR)` to map the color of tree based on a specific variable (numeric and category are both supported).
95
-
96
-```{r fig.width=5, fig.height=5}
97
-ggtree(beast_tree, aes(color=rate)) +
98
-    scale_color_continuous(low='darkgreen', high='red') +
99
-    theme(legend.position="right")
100
-```
101
-
102
-User can use any feature (if available), including clade posterior and *dN/dS* _etc._, to scale the color of the tree.
103 49
 
104 50
 # Annotate clades
105 51
 
106
-`ggtree` implements _`geom_cladelabel`_ layer to annotate a selected clade with a bar indicating the clade with a corresponding label.
52
+`r Biocpkg("ggtree")` [@yu_ggtree:_2017] implements _`geom_cladelabel`_ layer to annotate a selected clade with a bar indicating the clade with a corresponding label.
107 53
 
108 54
 The _`geom_cladelabel`_ layer accepts a selected internal node number. To get the internal node number, please refer to [Tree Manipulation](treeManipulation.html#internal-node-number) vignette.
109 55
 
... ...
@@ -151,13 +97,34 @@ Users can also use `geom_label` to label the text.
151 97
 p+ geom_cladelabel(node=34, label="another clade", align=T, geom='label', fill='lightblue')
152 98
 ```
153 99
 
154
-# Highlight clades
100
+## Annotate clades for unrooted tree
101
+
102
+`r Biocpkg("ggtree")` provides `geom_clade2` for labeling clades of unrooted
103
+layout trees.
155 104
 
156
-`ggtree` implements _`geom_hilight`_ layer, that accepts an internal node number and add a layer of rectangle to highlight the selected clade.
105
+
106
+```{r fig.wdith=7, fig.height=7, fig.align='center', warning=FALSE, message=FALSE}
107
+pg <- ggtree(tree, layout = "daylight")
108
+pg + geom_cladelabel2(node=45, label="test label", angle = 10) +
109
+    geom_cladelabel2(node = 34, label="another clade", angle=305)
110
+```
111
+
112
+# Labelling associated taxa (Monophyletic, Polyphyletic or Paraphyletic)
113
+
114
+`geom_cladelabel` is designed for labelling Monophyletic (Clade) while there are related taxa that are not form a clade. `ggtree` provides `geom_strip` to add a strip/bar to indicate the association with optional label (see [the issue](https://github.com/GuangchuangYu/ggtree/issues/52)).
157 115
 
158 116
 ```{r fig.width=5, fig.height=5, fig.align="center", warning=FALSE}
159 117
 nwk <- system.file("extdata", "sample.nwk", package="treeio")
160 118
 tree <- read.tree(nwk)
119
+ggtree(tree) + geom_tiplab() + geom_strip(5, 7, barsize=2, color='red') + geom_strip(6, 12, barsize=2, color='blue')
120
+```
121
+
122
+
123
+# Highlight clades
124
+
125
+`ggtree` implements _`geom_hilight`_ layer, that accepts an internal node number and add a layer of rectangle to highlight the selected clade.
126
+
127
+```{r fig.width=5, fig.height=5, fig.align="center", warning=FALSE}
161 128
 ggtree(tree) + geom_hilight(node=21, fill="steelblue", alpha=.6) +
162 129
     geom_hilight(node=17, fill="darkgreen", alpha=.6)
163 130
 ```
... ...
@@ -170,7 +137,8 @@ ggtree(tree, layout="circular") + geom_hilight(node=21, fill="steelblue", alpha=
170 137
 
171 138
 Another way to highlight selected clades is setting the clades with different colors and/or line types as demonstrated in [Tree Manipulation](treeManipulation.html#groupclade) vignette.
172 139
 
173
-# Highlight balances
140
+## Highlight balances
141
+
174 142
 In addition to _`geom_hilight`_, `ggtree` also implements _`geom_balance`_
175 143
 which is designed to highlight neighboring subclades of a given internal node.
176 144
 
... ...
@@ -180,14 +148,17 @@ ggtree(tree) +
180 148
   geom_balance(node=19, fill='darkgreen', color='white', alpha=0.6, extend=1)
181 149
 ```
182 150
 
183
-# labelling associated taxa (Monophyletic, Polyphyletic or Paraphyletic)
151
+## Highlight clades for unrooted tree
184 152
 
185
-`geom_cladelabel` is designed for labelling Monophyletic (Clade) while there are related taxa that are not form a clade. `ggtree` provides `geom_strip` to add a strip/bar to indicate the association with optional label (see [the issue](https://github.com/GuangchuangYu/ggtree/issues/52)).
153
+`r Biocpkg("ggtree")` provides `geom_hilight_encircle` to support highlight
154
+clades for unrooted layout trees.
186 155
 
187
-```{r fig.width=5, fig.height=5, fig.align="center", warning=FALSE}
188
-ggtree(tree) + geom_tiplab() + geom_strip(5, 7, barsize=2, color='red') + geom_strip(6, 12, barsize=2, color='blue')
156
+
157
+```{r fig.width=5, fig.height=5, fig.align='center', warning=FALSE, message=FALSE}
158
+pg + geom_hilight_encircle(node=45) + geom_hilight_encircle(node=34, fill='darkgreen')
189 159
 ```
190 160
 
161
+
191 162
 # taxa connection
192 163
 
193 164
 Some evolutionary events (e.g. reassortment, horizontal gene transfer) can be modeled by a simple tree. `ggtree` provides `geom_taxalink` layer that allows drawing straight or curved lines between any of two nodes in the tree, allow it to represent evolutionary events by connecting taxa.
... ...
@@ -197,67 +168,40 @@ ggtree(tree) + geom_tiplab() + geom_taxalink('A', 'E') + geom_taxalink('F', 'K',
197 168
 ```
198 169
 
199 170
 
200
-# Tree annotation with analysis of R packages
171
+# Tree annotation with output from evolution software
201 172
 
202
-## annotating tree with ape bootstraping analysis
173
+The `r Biocpkg("treeio")` package implemented several parser functiions to parse
174
+output from commonly used software in evolutionary biology.
203 175
 
204
-```{r results='hide', message=FALSE}
205
-library(ape)
206
-data(woodmouse)
207
-d <- dist.dna(woodmouse)
208
-tr <- nj(d)
209
-bp <- boot.phylo(tr, woodmouse, function(xx) nj(dist.dna(xx)))
210
-```
176
+Here, we used [BEAST](http://beast2.org/)[@bouckaert_beast_2014] output as an
177
+example. For details, please refer to the
178
+[Importer](https://bioconductor.org/packages/devel/bioc/vignettes/treeio/inst/doc/Importer.html) vignette.
211 179
 
212 180
 
213
-```{r fig.width=6, fig.height=6, warning=FALSE, fig.align="center"}
214
-library(treeio)
215
-tree <- as.treedata(tr, boot = bp)
216
-ggtree(tree) + geom_label(aes(label=bootstrap)) + geom_tiplab()
181
+```{r warning=FALSE, fig.width=5, fig.height=5, fig.align='center'}
182
+file <- system.file("extdata/BEAST", "beast_mcc.tree", package="treeio")
183
+beast <- read.beast(file)
184
+ggtree(beast, aes(color = rate))  +
185
+    geom_range(range='length_0.95_HPD', color='red', alpha=.6, size=2) +
186
+    geom_nodelab(aes(x=branch, label=round(posterior, 2)), vjust=-.5, size=3) +
187
+    scale_color_continuous(low="darkgreen", high="red") +
188
+    theme(legend.position=c(.1, .8))
217 189
 ```
218 190
 
219
-## annotating tree with phangorn output
220
-
221
-```{r results='hide', message=FALSE, fig.width=12, fig.height=10, width=60, warning=FALSE, fig.align="center", eval=FALSE}
222
-library(phangorn)
223
-treefile <- system.file("extdata", "pa.nwk", package="treeio")
224
-tre <- read.tree(treefile)
225
-tipseqfile <- system.file("extdata", "pa.fas", package="treeio")
226
-tipseq <- read.phyDat(tipseqfile,format="fasta")
227
-fit <- pml(tre, tipseq, k=4)
228
-fit <- optim.pml(fit, optNni=FALSE, optBf=T, optQ=T,
229
-                 optInv=T, optGamma=T, optEdge=TRUE,
230
-                 optRooted=FALSE, model = "GTR")
231
-
232
-phangorn <- phyPML(fit, type="ml")
233
-ggtree(phangorn) + geom_text(aes(x=branch, label=AA_subs, vjust=-.5))
234
-```
235
-
236
-![](figures/phangorn_example.png)
237
-
238
-# Tree annotation with output from evolution software
239
-
240
-In `ggtree`, we implemented several parser functions to parse output from commonly used software package in evolutionary biology, including:
241 191
 
242
-+ [BEAST](http://beast2.org/)[@bouckaert_beast_2014]
243
-+ [EPA](http://sco.h-its.org/exelixis/web/software/epa/index.html)[@berger_EPA_2011]
244
-+ [HYPHY](http://hyphy.org/w/index.php/Main_Page)[@pond_hyphy_2005]
245
-+ [PAML](http://abacus.gene.ucl.ac.uk/software/paml.html)[@yang_paml_2007]
246
-+ [PHYLDOG](http://pbil.univ-lyon1.fr/software/phyldog/)[@boussau_genome-scale_2013]
247
-+ [pplacer](http://matsen.fhcrc.org/pplacer/)[@matsen_pplacer_2010]
248
-+ [r8s](http://loco.biosci.arizona.edu/r8s/)[@marazzi_locating_2012]
249
-+ [RAxML](http://sco.h-its.org/exelixis/web/software/raxml/)[@stamatakis_raxml_2014]
250
-+ [RevBayes](http://revbayes.github.io/intro.html)[@hohna_probabilistic_2014]
251
-
252
-Evolutionary evidences inferred by these software packages can be used for further analysis in `R` and annotating phylogenetic tree directly in `ggtree`. For more details, please refer to the [Tree Data Import](treeImport.html) vignette.
192
+# Tree annotation with user specified annotation
253 193
 
194
+Integrating user data to annotate phylogenetic tree can be done at different
195
+levels. The `r Biocpkg("treeio")` package implements `full_join` methods to
196
+[combine tree data to phylogenetic tree object](https://bioconductor.org/packages/devel/bioc/vignettes/treeio/inst/doc/Importer.html).
197
+The `r CRANpkg("tidytree")` package supports [linking tree data to phylogeny
198
+using tidyverse verbs](https://cran.r-project.org/web/packages/tidytree/vignette/tiytree.html).
199
+`r Biocpkg("ggtree")` supports mapping external data to phylogeny for
200
+visualization  and annotation on the fly.
254 201
 
255
-# Tree annotation with user specified annotation
256 202
 
257 203
 ## the `%<+%` operator
258 204
 
259
-In addition to parse commonly used software output, `ggtree` also supports annotating a phylogenetic tree using user's own data.
260
-
261 205
 Suppose we have the following data that associate with the tree and would like to attach the data in the tree.
262 206
 
263 207
 ```{r}
... ...
@@ -273,6 +217,7 @@ dd <- data.frame(taxa  = LETTERS[1:13],
273 217
 dd <- dd[sample(1:13, 13), ]
274 218
 row.names(dd) <- NULL
275 219
 ```
220
+
276 221
 ```{r eval=FALSE}
277 222
 print(dd)
278 223
 ```
... ...
@@ -281,52 +226,114 @@ print(dd)
281 226
 knitr::kable(dd)
282 227
 ```
283 228
 
284
-We can imaging that the _`place`_ column stores the location that we isolated the species and _`value`_ column stores numerical values (e.g. bootstrap values).
229
+We can imaging that the _place_ column stores the location that we isolated the
230
+species and _value_ column stores numerical values (*e.g.* bootstrap values).
285 231
 
286
-We have demonstrated using the operator, _`%<%`_, to update a tree view with a new tree. Here, we will introduce another operator, _`%<+%`_, that attaches annotation data to a tree view. The only requirement of the input data is that its first column should be matched with the node/tip labels of the tree.
232
+We have demonstrated using the operator, `%<%`, to update a tree view with a new
233
+tree. Here, we will introduce another operator, `%<+%`, that attaches annotation
234
+data to a tree view. The only requirement of the input data is that its first
235
+column should be matched with the node/tip labels of the tree.
287 236
 
288
-After attaching the annotation data to the tree by _`%<+%`_, all the columns in the data are visible to _`ggtree`_. As an example, here we attach the above annotation data to the tree view, _`p`_, and add a layer that showing the tip labels and colored them by the isolation site stored in _`place`_ column.
237
+After attaching the annotation data to the tree by `%<+%`, all the columns in
238
+the data are visible to `r Biocpkg("ggtree")`. As an example, here we attach the
239
+above annotation data to the tree view, _p_, and add a layer that showing the
240
+tip labels and colored them by the isolation site stored in _place_ column.
289 241
 
290 242
 ```{r fig.width=6, fig.height=5, warning=FALSE, fig.align="center"}
291 243
 p <- p %<+% dd + geom_tiplab(aes(color=place)) +
292 244
        geom_tippoint(aes(size=value, shape=place, color=place), alpha=0.25)
293
-p+theme(legend.position="right")
245
+p + theme(legend.position="right")
294 246
 ```
295 247
 
296 248
 Once the data was attached, it is always attached. So that we can add other layers to display these information easily.
249
+
297 250
 ```{r fig.width=6, fig.height=5, warning=FALSE, fig.align="center"}
298 251
 p + geom_text(aes(color=place, label=place), hjust=1, vjust=-0.4, size=3) +
299 252
     geom_text(aes(color=place, label=value), hjust=1, vjust=1.4, size=3)
300 253
 ```
301 254
 
302
-## phylo4d
303 255
 
304
-`phylo4d` was defined in the `phylobase` package, which can be employed to integrate user's data with phylogenetic tree. `phylo4d` was supported in `ggtree` and the data stored in the object can be used directly to annotate the tree.
256
+# Visualize tree with associated matrix
305 257
 
306
-```{r fig.width=6, fig.height=5, warning=FALSE, fig.align="center", eval=FALSE}
307
-dd2 <- dd[, -1]
308
-rownames(dd2) <- dd[,1]
309
-require(phylobase)
310
-tr2 <- phylo4d(tree, dd2)
311
-ggtree(tr2) + geom_tiplab(aes(color=place)) +
312
-    geom_tippoint(aes(size=value, shape=place, color=place), alpha=0.25)
258
+<!--
259
+At first we implemented `gplot` function to visualize tree with heatmap but it has [an issue](https://github.com/GuangchuangYu/ggtree/issues/3) that it can't always guarantee the heatmap aligning to the tree properly, since the line up is between two figures and it's currently not supported internally by ggplot2. I have implemented another function `gheatmap` that can do the line up properly by creating a new layer above the tree.
260
+-->
261
+
262
+The `gheatmap` function is designed to visualize phylogenetic tree with heatmap of associated matrix.
263
+
264
+In the following example, we visualized a tree of H3 influenza viruses with their associated genotype.
265
+
266
+```{r fig.width=8, fig.height=6, fig.align="center", warning=FALSE, message=FALSE}
267
+beast_file <- system.file("examples/MCC_FluA_H3.tree", package="ggtree")
268
+beast_tree <- read.beast(beast_file)
269
+
270
+genotype_file <- system.file("examples/Genotype.txt", package="ggtree")
271
+genotype <- read.table(genotype_file, sep="\t", stringsAsFactor=F)
272
+colnames(genotype) <- sub("\\.$", "", colnames(genotype))
273
+p <- ggtree(beast_tree, mrsd="2013-01-01") + geom_treescale(x=2008, y=1, offset=2)
274
+p <- p + geom_tiplab(size=2)
275
+gheatmap(p, genotype, offset = 5, width=0.5, font.size=3, colnames_angle=-45, hjust=0) +
276
+    scale_fill_manual(breaks=c("HuH3N2", "pdm", "trig"), values=c("steelblue", "firebrick", "darkgreen"))
313 277
 ```
314 278
 
279
+The _width_ parameter is to control the width of the heatmap. It supports another parameter _offset_ for controlling the distance between the tree and the heatmap, for instance to allocate space for tip labels.