Name Mode Size
R 040000
inst 040000
man 040000
vignettes 040000
.Rbuildignore 100644 0 kb
.gitignore 100644 0 kb
.travis.yml 100644 0 kb
DESCRIPTION 100644 1 kb
NAMESPACE 100644 1 kb
NEWS 100644 0 kb
README.md 100644 2 kb
README.md
# funtooNorm [![Build Status](https://travis-ci.org/GreenwoodLab/funtooNorm.svg?branch=master)](https://travis-ci.org/GreenwoodLab/funtooNorm) The R package ```funtooNorm``` provides a function for normalization of Illumina Infinium Human Methylation 450 BeadChip (Illumina 450K) data when there are samples from multiple tissues or cell types. ## Installation options Install from bioconductor ```shell if (!requireNamespace("BiocManager", quietly=TRUE)) install.packages("BiocManager") BiocManager::install("funtooNorm") ``` Download the current build <a href="https://github.com/GreenwoodLab/funtooNorm/releases" ><b>here</b></a> and install it with ``` shell $ R CMD INSTALL funtooNorm_1.00.1.tar.gz ``` Or, if you want to build from source, you can also install from GitHub using the [devtools](https://cran.r-project.org/package=devtools) package in `R`: ```r library(devtools) install_github('GreenwoodLab/funtooNorm', local=TRUE, build_vignettes = TRUE) ``` If you have difficulties with the function ```install_github``` you can download and install from source using the commands ```R CMD build``` and ```install```: ``` shell $ git clone https://github.com/GreenwoodLab/funtooNorm.git $ R CMD build ./funtooNorm $ R CMD INSTALL funtooNorm_1.00.1.tar.gz install_github('greenwoodLab/funtooNorm') ``` ## Usage There are two functions in the package, ```funtoonorm``` and ```agreement```. The output of ```funtoonorm``` is two matrices: both a normalized methylation data set of beta values and also raw, non-normalized beta values. As an input, the user needs to provide signal A and signal B matrices of data extracted from Illumina IDAT files, as well as control probes signals. The function also requires a list of cell types or tissues. Besides its main purpose of normalization, ```funtoonorm``` can be run in a validation mode and its graphical output is used to choose optimal parameters for normalization. The function agreement accesses the performance of normalization measuring intra-replicate differences before and after normalization. It takes the output of funtoonorm as an input. For more details, see the vignette provided with the package or download the pdf file from <a href="https://github.com/GreenwoodLab/funtooNorm/blob/master/vignettes/funtooNorm.pdf"> <b>here</b></a>.