Name Mode Size
.github 040000
R 040000
data 040000
inst 040000
man 040000
tests 040000
vignettes 040000
.Rbuildignore 100644 0 kb
.gitignore 100644 1 kb
.travis.yml 100644 0 kb
DESCRIPTION 100644 1 kb
LICENSE 100644 1 kb
NAMESPACE 100644 1 kb
README.Rmd 100644 7 kb
README.md 100644 15 kb
README.md
<div align="center"> **F**isher’s Test for **E**nrichment and **D**epletion of **U**ser-Defined **P**athways <img align="right" width="300" height="345" src="inst/figures/fedup.png"> [![Build Status](https://travis-ci.com/rosscm/fedup.svg?token=GNK3AGqE8dtKVRC56zpJ&branch=main)](https://travis-ci.com/rosscm/fedup) ![R-CMD-check](https://github.com/rosscm/fedup/workflows/R-CMD-check/badge.svg) ![R-CMD-check-bioc](https://github.com/rosscm/fedup/workflows/R-CMD-check-bioc/badge.svg) ![test-coverage](https://github.com/rosscm/fedup/workflows/test-coverage/badge.svg) [![codecov](https://codecov.io/gh/rosscm/fedup/branch/main/graph/badge.svg?token=AVOAV1ILVL)](https://codecov.io/gh/rosscm/fedup) <div align="left"> `fedup` is an R package that tests for enrichment and depletion of user-defined pathways using a Fisher’s exact test. The method is designed for versatile pathway annotation formats (eg. gmt, txt, xlsx) to allow the user to run pathway analysis on custom annotations. This package is also integrated with Cytoscape to provide network-based pathway visualization that enhances the interpretability of the results. This README will quickly demonstrate how to use `fedup` when testing two sets of genes. Refer to full [vignettes](https://www.bioconductor.org/packages/devel/bioc/html/fedup.html) for additional information and implementations (e.g., using single or multiple test sets). # Contents - [System prerequisites](#system-prerequisites) - [Installation](#installation) - [Running the package](#running-the-package) - [Input data](#input-data) - [Pathway analysis](#pathway-analysis) - [Dot plot](#dot-plot) - [Enrichment map](#enrichment-map) - [Versioning](#versioning) - [Shoutouts](#shoutouts) # System prerequisites **R version** ≥ 4.1 **R packages**: - **CRAN**: openxlsx, tibble, dplyr, data.table, ggplot2, ggthemes, forcats, RColorBrewer - **Bioconductor**: RCy3 # Installation Install `fedup` from Bioconductor: ``` r if(!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("fedup") ``` Or install the development version from Github: ``` r devtools::install_github("rosscm/fedup", quiet = TRUE) ``` Load necessary packages: ``` r library(fedup) library(dplyr) library(tidyr) library(ggplot2) ``` # Running the package ## Input data Load test genes (`geneDouble`) and pathway annotations (`pathwaysGMT`): ``` r data(geneDouble) data(pathwaysGMT) ``` Take a look at the data structure: ``` r str(geneDouble) #> List of 3 #> $ background : chr [1:17804] "SLCO4A1" "PGRMC2" "LDLR" "RABL3" ... #> $ FASN_negative: chr [1:379] "SLCO4A1" "PGRMC2" "LDLR" "RABL3" ... #> $ FASN_positive: chr [1:298] "CDC34" "PRKCE" "SMARCC2" "EIF3A" ... str(head(pathwaysGMT)) #> List of 6 #> $ REGULATION OF PLK1 ACTIVITY AT G2 M TRANSITION%REACTOME%R-HSA-2565942.1 : chr [1:84] "CSNK1E" "DYNLL1" "TUBG1" "CKAP5" ... #> $ GLYCEROPHOSPHOLIPID BIOSYNTHESIS%REACTOME%R-HSA-1483206.4 : chr [1:126] "PCYT1B" "PCYT1A" "PLA2G4D" "PLA2G4B" ... #> $ MITOTIC PROPHASE%REACTOME DATABASE ID RELEASE 74%68875 : chr [1:134] "SETD8" "NUMA1" "NCAPG2" "LMNB1" ... #> $ ACTIVATION OF NF-KAPPAB IN B CELLS%REACTOME%R-HSA-1169091.1 : chr [1:67] "PSMA6" "PSMA3" "PSMA4" "PSMA1" ... #> $ CD28 DEPENDENT PI3K AKT SIGNALING%REACTOME DATABASE ID RELEASE 74%389357 : chr [1:22] "CD28" "THEM4" "AKT1" "TRIB3" ... #> $ UBIQUITIN-DEPENDENT DEGRADATION OF CYCLIN D%REACTOME DATABASE ID RELEASE 74%75815: chr [1:52] "PSMA6" "PSMA3" "PSMA4" "PSMA1" ... ``` To see more info on this data, run `?geneDouble` or `?pathwaysGMT`. You could also run `example("prepInput", package = "fedup")` or `example("readPathways", package = "fedup")` to see exactly how the data was generated using the `prepInput()` and `readPathways()` functions. `?` and `example()` can be used on any other functions mentioned here to see their documentation and run examples. ## Pathway analysis Now use `runFedup` on the sample data: ``` r fedupRes <- runFedup(geneDouble, pathwaysGMT) #> Running fedup with: #> => 2 test set(s) #> + FASN_negative: 379 genes #> + FASN_positive: 298 genes #> => 17804 background genes #> => 1437 pathway annotations #> All done! ``` The `fedupRes` output is a list of length `length(which(names(geneDouble) != "background"))`, corresponding to the number of test sets in `geneDouble` (i.e., 2). View `fedup` results for `FASN_negative` sorted by pvalue: ``` r set <- "FASN_negative" print(head(fedupRes[[set]][which(fedupRes[[set]]$status == "enriched"),])) #> pathway #> 1: ASPARAGINE N-LINKED GLYCOSYLATION%REACTOME DATABASE ID RELEASE 74%446203 #> 2: BIOSYNTHESIS OF THE N-GLYCAN PRECURSOR (DOLICHOL LIPID-LINKED OLIGOSACCHARIDE, LLO) AND TRANSFER TO A NASCENT PROTEIN%REACTOME%R-HSA-446193.1 #> 3: DISEASES ASSOCIATED WITH N-GLYCOSYLATION OF PROTEINS%REACTOME DATABASE ID RELEASE 74%3781860 #> 4: INTRA-GOLGI AND RETROGRADE GOLGI-TO-ER TRAFFIC%REACTOME DATABASE ID RELEASE 74%6811442 #> 5: RAB REGULATION OF TRAFFICKING%REACTOME DATABASE ID RELEASE 74%9007101 #> 6: DISEASES OF GLYCOSYLATION%REACTOME%R-HSA-3781865.1 #> size real_frac expected_frac fold_enrichment status #> 1: 286 8.179420 1.53336329 5.334300 enriched #> 2: 78 3.693931 0.42125365 8.768901 enriched #> 3: 17 2.110818 0.09548416 22.106472 enriched #> 4: 183 4.749340 0.99415862 4.777246 enriched #> 5: 120 3.693931 0.62345540 5.924933 enriched #> 6: 139 3.957784 0.74702314 5.298074 enriched #> real_gene pvalue qvalue #> 1: MOGS,DOLPP1,ALG9,ALG12,ALG3,MPDU1,... 1.596605e-12 2.294321e-09 #> 2: DOLPP1,ALG9,ALG12,ALG3,MPDU1,ALG8,... 6.358461e-09 4.568554e-06 #> 3: MOGS,ALG9,ALG12,ALG3,MPDU1,MGAT2,... 3.054616e-08 1.463161e-05 #> 4: ARL1,RAB18,RAB3GAP2,VPS52,NAA35,TMED9,... 2.516179e-07 9.039372e-05 #> 5: RAB18,TSC1,RAB3GAP2,TSC2,TBC1D20,RAB10,... 4.945154e-07 1.421237e-04 #> 6: MOGS,ALG9,ALG12,ALG3,MPDU1,MGAT2,... 7.240716e-07 1.734151e-04 print(head(fedupRes[[set]][which(fedupRes[[set]]$status == "depleted"),])) #> pathway size #> 1: GPCR LIGAND BINDING%REACTOME%R-HSA-500792.3 454 #> 2: OLFACTORY SIGNALING PATHWAY%REACTOME DATABASE ID RELEASE 74%381753 396 #> 3: CLASS A 1 (RHODOPSIN-LIKE RECEPTORS)%REACTOME%R-HSA-373076.7 323 #> 4: NEURONAL SYSTEM%REACTOME DATABASE ID RELEASE 74%112316 379 #> 5: PEPTIDE LIGAND-BINDING RECEPTORS%REACTOME%R-HSA-375276.5 195 #> 6: KERATINIZATION%REACTOME DATABASE ID RELEASE 74%6805567 217 #> real_frac expected_frac fold_enrichment status real_gene pvalue #> 1: 0.0000000 2.3702539 0.0000000 depleted 0.000318537 #> 2: 0.0000000 1.9096832 0.0000000 depleted 0.001508862 #> 3: 0.0000000 1.6906313 0.0000000 depleted 0.003316944 #> 4: 0.5277045 2.0950348 0.2518834 depleted KCNK2,PRKAB1 0.026904721 #> 5: 0.0000000 1.0166255 0.0000000 depleted 0.057057149 #> 6: 0.0000000 0.8425073 0.0000000 depleted 0.079543380 #> qvalue #> 1: 0.01760530 #> 2: 0.05420587 #> 3: 0.10361845 #> 4: 0.42024004 #> 5: 0.57670567 #> 6: 0.67813171 ``` Let’s also view `fedup` results for `FASN_positive`, sorted by pvalue: ``` r set <- "FASN_positive" print(head(fedupRes[[set]][which(fedupRes[[set]]$status == "enriched"),])) #> pathway #> 1: L13A-MEDIATED TRANSLATIONAL SILENCING OF CERULOPLASMIN EXPRESSION%REACTOME%R-HSA-156827.3 #> 2: GTP HYDROLYSIS AND JOINING OF THE 60S RIBOSOMAL SUBUNIT%REACTOME DATABASE ID RELEASE 74%72706 #> 3: CAP-DEPENDENT TRANSLATION INITIATION%REACTOME DATABASE ID RELEASE 74%72737 #> 4: EUKARYOTIC TRANSLATION INITIATION%REACTOME%R-HSA-72613.3 #> 5: TRANSLATION INITIATION COMPLEX FORMATION%REACTOME%R-HSA-72649.3 #> 6: RIBOSOMAL SCANNING AND START CODON RECOGNITION%REACTOME DATABASE ID RELEASE 74%72702 #> size real_frac expected_frac fold_enrichment status #> 1: 112 7.382550 0.4718041 15.64749 enriched #> 2: 113 7.382550 0.4774208 15.46340 enriched #> 3: 120 7.382550 0.5167378 14.28684 enriched #> 4: 120 7.382550 0.5167378 14.28684 enriched #> 5: 59 5.369128 0.2583689 20.78086 enriched #> 6: 59 5.369128 0.2583689 20.78086 enriched #> real_gene pvalue qvalue #> 1: EIF3A,RPL35,EIF3D,RPS3,EIF3G,EIF4H,... 9.628857e-18 8.562503e-15 #> 2: EIF3A,RPL35,EIF3D,RPS3,EIF3G,EIF4H,... 1.191719e-17 8.562503e-15 #> 3: EIF3A,RPL35,EIF3D,RPS3,EIF3G,EIF4H,... 4.970934e-17 1.785808e-14 #> 4: EIF3A,RPL35,EIF3D,RPS3,EIF3G,EIF4H,... 4.970934e-17 1.785808e-14 #> 5: EIF3A,EIF3D,RPS3,EIF3G,EIF4H,RPS5,... 5.796507e-15 1.388264e-12 #> 6: EIF3A,EIF3D,RPS3,EIF3G,EIF4H,RPS5,... 5.796507e-15 1.388264e-12 print(head(fedupRes[[set]][which(fedupRes[[set]]$status == "depleted"),])) #> pathway #> 1: GPCR LIGAND BINDING%REACTOME%R-HSA-500792.3 #> 2: NEURONAL SYSTEM%REACTOME DATABASE ID RELEASE 74%112316 #> 3: OLFACTORY SIGNALING PATHWAY%REACTOME DATABASE ID RELEASE 74%381753 #> 4: CLASS A 1 (RHODOPSIN-LIKE RECEPTORS)%REACTOME%R-HSA-373076.7 #> 5: G ALPHA (I) SIGNALLING EVENTS%REACTOME%R-HSA-418594.6 #> 6: TRANSMISSION ACROSS CHEMICAL SYNAPSES%REACTOME DATABASE ID RELEASE 74%112315 #> size real_frac expected_frac fold_enrichment status real_gene pvalue #> 1: 454 0.0000000 2.370254 0.0000000 depleted 0.002390509 #> 2: 379 0.0000000 2.095035 0.0000000 depleted 0.005261657 #> 3: 396 0.0000000 1.909683 0.0000000 depleted 0.007449873 #> 4: 323 0.0000000 1.690631 0.0000000 depleted 0.017309826 #> 5: 396 0.3355705 2.106268 0.1593199 depleted AHCYL1 0.034808044 #> 6: 238 0.0000000 1.314311 0.0000000 depleted 0.035700272 #> qvalue #> 1: 0.03240718 #> 2: 0.05953545 #> 3: 0.07989155 #> 4: 0.13667154 #> 5: 0.21016453 #> 6: 0.21198880 ``` ## Dot plot Prepare data for plotting via `dplyr` and `tidyr`: ``` r fedupPlot <- fedupRes %>% bind_rows(.id = "set") %>% separate(col = "set", into = c("set", "sign"), sep = "_") %>% subset(qvalue < 0.05) %>% mutate(log10qvalue = -log10(qvalue)) %>% mutate(pathway = gsub("\\%.*", "", pathway)) %>% mutate(status = factor(status, levels = c("enriched", "depleted"))) %>% as.data.frame() ``` Plot significant results (qvalue &lt; 0.05) in the form of a dot plot via `plotDotPlot`. Colour and facet the points by the `sign` column: ``` r p <- plotDotPlot( df = fedupPlot, xVar = "log10qvalue", yVar = "pathway", xLab = "-log10(qvalue)", fillVar = "sign", fillLab = "Genetic interaction", fillCol = c("#6D90CA", "#F6EB13"), sizeVar = "fold_enrichment", sizeLab = "Fold enrichment") + facet_grid("sign", scales = "free", space = "free") + theme(strip.text.y = element_blank()) print(p) ``` <img src="inst/figures/fedupDotplot-1.png" width="100%" /> Look at all those chick… enrichments! This is a bit overwhelming, isn’t it? How do we interpret these 156 fairly redundant pathways in a way that doesn’t hurt our tired brains even more? Oh I know, let’s use an enrichment map! ## Enrichment map First, make sure to have [Cytoscape](https://cytoscape.org/download.html) downloaded and and open on your computer. You’ll also need to install the [EnrichmentMap](http://apps.cytoscape.org/apps/enrichmentmap) (≥ v3.3.0) and [AutoAnnotate](http://apps.cytoscape.org/apps/autoannotate) apps. Then format results for compatibility with EnrichmentMap using `writeFemap`: ``` r resultsFolder <- tempdir() writeFemap(fedupRes, resultsFolder) #> Wrote out EM-formatted fedup results file to /var/folders/mh/_0z2r5zj3k75yhtgm6l7xy3m0000gn/T//Rtmptw9UQj/femap_FASN_negative.txt #> Wrote out EM-formatted fedup results file to /var/folders/mh/_0z2r5zj3k75yhtgm6l7xy3m0000gn/T//Rtmptw9UQj/femap_FASN_positive.txt ``` Prepare a pathway annotation file (gmt format) from the pathway list you passed to `runFedup` using the `writePathways` function (you don’t need to run this function if your pathway annotations are already in gmt format, but it doesn’t hurt to make sure): ``` r gmtFile <- tempfile("pathwaysGMT", fileext = ".gmt") writePathways(pathwaysGMT, gmtFile) #> Wrote out pathway gmt file to /var/folders/mh/_0z2r5zj3k75yhtgm6l7xy3m0000gn/T//Rtmptw9UQj/pathwaysGMTb4977d4811d.gmt ``` Cytoscape is open right? If so, run these lines and let the `plotFemap` magic happen: ``` r netFile <- tempfile("fedupEM", fileext = ".png") plotFemap( gmtFile = gmtFile, resultsFolder = resultsFolder, qvalue = 0.05, chartData = "DATA_SET", hideNodeLabels = TRUE, netName = "fedupEM", netFile = netFile ) ``` To note here, the EM nodes were coloured manually (by the same colours passed to `plotDotPlot`) in Cytoscape via the *Change Colors* option in the EM panel. A feature for automated dataset colouring is set to be released in [version 3.3.2](https://github.com/BaderLab/EnrichmentMapApp/issues/455) of EnrichmentMap. ![](inst/figures/fedupEM.png) This has effectively summarized the 156 pathways from our dot plot into 21 unique biological themes (including 4 unclustered pathways). We can now see clear themes in the data pertaining to negative *FASN* genetic interactions, such as `diseases glycosylation, proteins`, `golgi transport`, and `rab regulation trafficking`. These can be compared and constrasted with the enrichment seen for *FASN* positive interactions. Try this out yourself! Hopefully it’s the only fedup you achieve :grimacing: # Versioning For the versions available, see the [tags on this repo](https://github.com/rosscm/fedup/tags). # Shoutouts :sparkles:[**2020**](https://media.giphy.com/media/z9AUvhAEiXOqA/giphy.gif):sparkles: