Browse code

renaming project

Catherine Ross authored on 21/02/2021 05:36:05
Showing 27 changed files

... ...
@@ -2,7 +2,7 @@
2 2
 ^.*\.Rproj$
3 3
 ^\.Rproj\.user$
4 4
 ^\.github$
5
-^FEDUP-Ex.R$
5
+^fedup-Ex.R$
6 6
 ^data-raw$
7 7
 ^\.travis\.yml$
8 8
 ^README\.Rmd$
... ...
@@ -1,4 +1,4 @@
1
-Package: FEDUP
1
+Package: fedup
2 2
 Title: Fisher's Test for Enrichment and Depletion of User-Defined Pathways
3 3
 Version: 0.99.0
4 4
 Date: 2021-02-17
... ...
@@ -45,5 +45,5 @@ Encoding: UTF-8
45 45
 Language: en-US
46 46
 License: MIT + file LICENSE
47 47
 VignetteBuilder: knitr
48
-URL: https://github.com/rosscm/FEDUP
48
+URL: https://github.com/rosscm/fedup
49 49
 RoxygenNote: 7.1.1
... ...
@@ -5,9 +5,9 @@
5 5
 #'
6 6
 #' Raw data location
7 7
 #' system.file("extdata", "Human_Reactome_November_17_2020_symbol.gmt",
8
-#'     package="FEDUP")
8
+#'     package = "fedup")
9 9
 #' Script to prepare data
10
-#' system.file("data-raw", "pathwaysGMT.R", package="FEDUP")
10
+#' system.file("data-raw", "pathwaysGMT.R", package ="fedup")
11 11
 #'
12 12
 #' @format a named list of 1437 vectors
13 13
 "pathwaysGMT"
... ...
@@ -15,10 +15,10 @@
15 15
 #' Example list of yeast SAFE terms obtained from a XLSX file.
16 16
 #'
17 17
 #' Raw data location
18
-#' system.file("extdata", "SAFE_terms.xlsx", package="FEDUP")
18
+#' system.file("extdata", "SAFE_terms.xlsx", package = "fedup")
19 19
 #'
20 20
 #' Script to prepare data
21
-#' system.file("data-raw", "pathwaysXLSX.R", package="FEDUP")
21
+#' system.file("data-raw", "pathwaysXLSX.R", package = "fedup")
22 22
 #'
23 23
 #' @format a named list of 30 vectors
24 24
 "pathwaysXLSX"
... ...
@@ -26,10 +26,10 @@
26 26
 #' Example list of yeast SAFE terms obtained from a TXT file.
27 27
 #'
28 28
 #' Raw data location
29
-#' system.file("extdata", "SAFE_terms.txt", package="FEDUP")
29
+#' system.file("extdata", "SAFE_terms.txt", package = "fedup")
30 30
 #'
31 31
 #' Script to prepare data
32
-#' system.file("data-raw", "pathwaysTXT.R", package="FEDUP")
32
+#' system.file("data-raw", "pathwaysTXT.R", package = "fedup")
33 33
 #'
34 34
 #' @format a named list of 30 vectors
35 35
 "pathwaysTXT"
... ...
@@ -37,7 +37,7 @@
37 37
 #' Example vector of human genes to use as test set for enrichment.
38 38
 #'
39 39
 #' Script to prepare data
40
-#' system.file("data-raw", "genes.R", package="FEDUP")
40
+#' system.file("data-raw", "genes.R", package = "fedup")
41 41
 #'
42 42
 #' @format a character vector with 190 elements (gene IDs)
43 43
 "testGene"
... ...
@@ -45,7 +45,7 @@
45 45
 #' Example vector of human genes to use as background set for enrichment.
46 46
 #'
47 47
 #' Script to generate data
48
-#' system.file("data-raw", "genes.R", package="FEDUP")
48
+#' system.file("data-raw", "genes.R", package = "fedup")
49 49
 #'
50 50
 #' @format a character vector with 10208 elements (gene IDs)
51 51
 "backgroundGene"
... ...
@@ -118,6 +118,6 @@ runFedup <- function(testGene, backgroundGene, pathways) {
118 118
     res <- res[order(res$pvalue), ]
119 119
     res$qvalue <- p.adjust(res$pvalue, method = "BH")
120 120
 
121
-    message("You did it! FEDUP ran successfully, feeling pretty good huh?")
121
+    message("You did it! fedup ran successfully, feeling pretty good huh?")
122 122
     return(res)
123 123
 }
... ...
@@ -1,6 +1,6 @@
1 1
 #' Writes an enrichment dataset file for use in Cytoscape EnrichmentMap.
2 2
 #'
3
-#' @param df (data.frame) table with FEDUP enrichment results.
3
+#' @param df (data.frame) table with fedup enrichment results.
4 4
 #'  (see runFedup() for column descriptions)
5 5
 #' @param resultsFile (char) name of output results file.
6 6
 #' @return table of gene enrichment and depletion results formatted as a
... ...
@@ -32,14 +32,14 @@ writeFemap <- function(df, resultsFile) {
32 32
         select("pathway", "description", "pvalue", "qvalue", "status")
33 33
 
34 34
     fwrite(df_em, resultsFile, sep = "\t", col.names = TRUE, quote = FALSE)
35
-    message("Wrote out Cytoscape-formatted FEDUP results file to ", resultsFile)
35
+    message("Wrote out Cytoscape-formatted fedup results file to ", resultsFile)
36 36
 }
37 37
 
38 38
 #' Draws a network representation of overlaps among enriched and depleted
39 39
 #' pathways using EnrichmentMap (EM) in Cytoscape.
40 40
 #'
41 41
 #' @param gmtFile (char) path to GMT file (must be an absolute path).
42
-#' @param resultsFile (char) path to file with FEDUP results
42
+#' @param resultsFile (char) path to file with fedup results
43 43
 #'  (must be an absolute path).
44 44
 #' @param pvalue (numeric) pvalue cutoff. Pathways with a higher pvalue
45 45
 #'  will not be included in the EM (value between 0 and 1; default 1).
... ...
@@ -59,14 +59,14 @@ writeFemap <- function(df, resultsFile) {
59 59
 #' gmtFile <- tempfile("pathwaysGMT", fileext = ".gmt")
60 60
 #' fedupRes <- runFedup(testGene, backgroundGene, pathwaysGMT)
61 61
 #' resultsFile <- tempfile("fedupRes", fileext = ".txt")
62
-#' netFile <- tempfile("FEDUP_EM", fileext = ".png")
62
+#' netFile <- tempfile("fedup_EM", fileext = ".png")
63 63
 #' writePathways(pathwaysGMT, gmtFile)
64 64
 #' writeFemap(fedupRes, resultsFile)
65 65
 #' plotFemap(
66 66
 #'     gmtFile = gmtFile,
67 67
 #'     resultsFile = resultsFile,
68 68
 #'     qvalue = 0.05,
69
-#'     netName = "FEDUP_EM",
69
+#'     netName = "fedup_EM",
70 70
 #'     netFile = netFile
71 71
 #' )
72 72
 #' }
... ...
@@ -16,12 +16,12 @@
16 16
 #' @examples
17 17
 #' pathways <- readPathways(
18 18
 #'     system.file("extdata", "Human_Reactome_November_17_2020_symbol.gmt",
19
-#'         package = "FEDUP"
19
+#'         package = "fedup"
20 20
 #'     ),
21 21
 #'     minGene = 10, maxGene = 500
22 22
 #' )
23 23
 #' pathways <- readPathways(
24
-#'     system.file("extdata", "SAFE_terms.xlsx", package = "FEDUP"),
24
+#'     system.file("extdata", "SAFE_terms.xlsx", package = "fedup"),
25 25
 #'     header = TRUE, pathCol = "Enriched.GO.names", geneCol = "Gene.ID"
26 26
 #' )
27 27
 #' @importFrom openxlsx read.xlsx
... ...
@@ -1,6 +1,6 @@
1 1
 #' Visualizes pathway enrichment and depletion using ggplot.
2 2
 #'
3
-#' @param df (data.frame) table with FEDUP enrichment results to plot.
3
+#' @param df (data.frame) table with fedup enrichment results to plot.
4 4
 #' @param xVar (char) x-axis variable (must be a column value in \code{df}).
5 5
 #' @param yVar (char) y-axis variable (must be a column value in \code{df}).
6 6
 #' @param xLab (char) x-axis label (default \code{xVar} value).
... ...
@@ -11,15 +11,15 @@ knitr::opts_chunk$set(
11 11
 )
12 12
 ```
13 13
 
14
-# FEDUP
14
+# fedup
15 15
 
16
-[![Build Status](https://travis-ci.com/rosscm/FEDUP.svg?token=GNK3AGqE8dtKVRC56zpJ&branch=main)](https://travis-ci.com/rosscm/FEDUP)
17
-![R-CMD-check](https://github.com/rosscm/FEDUP/workflows/R-CMD-check/badge.svg)
18
-![R-CMD-check-bioc](https://github.com/rosscm/FEDUP/workflows/R-CMD-check-bioc/badge.svg)
19
-![test-coverage](https://github.com/rosscm/FEDUP/workflows/test-coverage/badge.svg)
20
-[![codecov](https://codecov.io/gh/rosscm/FEDUP/branch/main/graph/badge.svg?token=AVOAV1ILVL)](https://codecov.io/gh/rosscm/FEDUP)
16
+[![Build Status](https://travis-ci.com/rosscm/fedup.svg?token=GNK3AGqE8dtKVRC56zpJ&branch=main)](https://travis-ci.com/rosscm/fedup)
17
+![R-CMD-check](https://github.com/rosscm/fedup/workflows/R-CMD-check/badge.svg)
18
+![R-CMD-check-bioc](https://github.com/rosscm/fedup/workflows/R-CMD-check-bioc/badge.svg)
19
+![test-coverage](https://github.com/rosscm/fedup/workflows/test-coverage/badge.svg)
20
+[![codecov](https://codecov.io/gh/rosscm/fedup/branch/main/graph/badge.svg?token=AVOAV1ILVL)](https://codecov.io/gh/rosscm/fedup)
21 21
 
22
-`FEDUP` is an R package that tests for enrichment and depletion of user-defined
22
+`fedup` is an R package that tests for enrichment and depletion of user-defined
23 23
 pathways using a Fisher's exact test. The method is designed for versatile
24 24
 pathway annotation formats (eg. gmt, txt, xlsx) to allow the user to run
25 25
 pathway analysis on custom annotations. This package is also
... ...
@@ -38,10 +38,17 @@ that enhances the interpretability of the results.
38 38
 
39 39
 ## Installation
40 40
 
41
-Install `FEDUP` via devtools:
41
+Install `fedup` via devtools:
42 42
 
43 43
 ```{r, message = FALSE}
44
-devtools::install_github("rosscm/FEDUP", quiet = TRUE)
44
+devtools::install_github("rosscm/fedup", quiet = TRUE)
45
+```
46
+
47
+Load package:
48
+
49
+```{r}
50
+#library(fedup)
51
+load_all()
45 52
 ```
46 53
 
47 54
 # Running the package
... ...
@@ -56,7 +63,6 @@ to see strong **enrichment** for pathways related to muscle contraction and,
56 63
 **depletion** for pathways *not* associated with muscle contraction. Let's see!
57 64
 
58 65
 ```{r}
59
-library(FEDUP)
60 66
 data(testGene)
61 67
 data(backgroundGene)
62 68
 data(pathwaysGMT)
... ...
@@ -94,7 +100,7 @@ muscle contraction, such as `OLFACTORY SIGNALING PATHWAY` and
94 100
 Plot enriched and depleted pathways (qvalue < 0.05) in the form of a dot plot
95 101
 via the `plotDotPlot` function:
96 102
 
97
-```{r, FEDUP_dotplot, fig.width = 9, fig.height = 9.5}
103
+```{r, fedup_dotplot, fig.width = 9, fig.height = 9.5}
98 104
 fedupPlot <- fedupRes[which(fedupRes$qvalue < 0.05),]
99 105
 fedupPlot$log10qvalue <- -log10(fedupPlot$qvalue + 1e-10) # -log10(qvalue)
100 106
 fedupPlot$pathway <- gsub("\\%.*", "", fedupPlot$pathway) # clean names
... ...
@@ -146,21 +152,21 @@ writePathways(pathwaysGMT, gmtFile)
146 152
 Cytoscape is open right? If so, run these lines and let the `plotFemap`
147 153
 magic happen:
148 154
 
149
-```{r, FEDUP_EM}
150
-netFile <- tempfile("FEDUP_EM", fileext = ".png")
155
+```{r, fedup_EM}
156
+netFile <- tempfile("fedup_EM", fileext = ".png")
151 157
 plotFemap(
152 158
   gmtFile = gmtFile,
153 159
   resultsFile = resultsFile,
154 160
   qvalue = 0.05,
155
-  netName = "FEDUP_EM",
161
+  netName = "fedup_EM",
156 162
   netFile = netFile
157 163
 )
158 164
 ```
159 165
 
160
-![](man/figures/FEDUP_EM-1.png)
166
+![](man/figures/fedup_EM-1.png)
161 167
 
162 168
 After some manual rearrangement of the annotated pathway clusters, this is the
163
-resulting EnrichmentMap we get from our `FEDUP` results. Much better!
169
+resulting EnrichmentMap we get from our `fedup` results. Much better!
164 170
 
165 171
 This has effectively summarized the 76 pathways from our dot plot into 14 unique
166 172
 biological themes (including 4 unclustered pathways). We can now see clear
... ...
@@ -173,7 +179,7 @@ Try this out yourself! Hopefully it’s the only fedup you achieve
173 179
 # Versioning
174 180
 
175 181
 For the versions available, see the [tags on this
176
-repo](https://github.com/rosscm/FEDUP/tags).
182
+repo](https://github.com/rosscm/fedup/tags).
177 183
 
178 184
 # Shoutouts
179 185
 
... ...
@@ -1,22 +1,25 @@
1
+---
2
+output: github_document
3
+---
1 4
 
2
-# FEDUP
3 5
 
4
-[![Build
5
-Status](https://travis-ci.com/rosscm/FEDUP.svg?token=GNK3AGqE8dtKVRC56zpJ&branch=main)](https://travis-ci.com/rosscm/FEDUP)
6
-![R-CMD-check](https://github.com/rosscm/FEDUP/workflows/R-CMD-check/badge.svg)
7
-![R-CMD-check-bioc](https://github.com/rosscm/FEDUP/workflows/R-CMD-check-bioc/badge.svg)
8
-![test-coverage](https://github.com/rosscm/FEDUP/workflows/test-coverage/badge.svg)
9
-[![codecov](https://codecov.io/gh/rosscm/FEDUP/branch/main/graph/badge.svg?token=AVOAV1ILVL)](https://codecov.io/gh/rosscm/FEDUP)
10 6
 
11
-`FEDUP` is an R package that tests for enrichment and depletion of
12
-user-defined pathways using a Fisher’s exact test. The method is
13
-designed for versatile pathway annotation formats (eg. gmt, txt, xlsx)
14
-to allow the user to run pathway analysis on custom annotations. This
15
-package is also integrated with Cytoscape to provide network-based
16
-pathway visualization that enhances the interpretability of the results.
7
+# fedup
17 8
 
18
-# Getting started
9
+[![Build Status](https://travis-ci.com/rosscm/fedup.svg?token=GNK3AGqE8dtKVRC56zpJ&branch=main)](https://travis-ci.com/rosscm/fedup)
10
+![R-CMD-check](https://github.com/rosscm/fedup/workflows/R-CMD-check/badge.svg)
11
+![R-CMD-check-bioc](https://github.com/rosscm/fedup/workflows/R-CMD-check-bioc/badge.svg)
12
+![test-coverage](https://github.com/rosscm/fedup/workflows/test-coverage/badge.svg)
13
+[![codecov](https://codecov.io/gh/rosscm/fedup/branch/main/graph/badge.svg?token=AVOAV1ILVL)](https://codecov.io/gh/rosscm/fedup)
14
+
15
+`fedup` is an R package that tests for enrichment and depletion of user-defined
16
+pathways using a Fisher's exact test. The method is designed for versatile
17
+pathway annotation formats (eg. gmt, txt, xlsx) to allow the user to run
18
+pathway analysis on custom annotations. This package is also
19
+integrated with Cytoscape to provide network-based pathway visualization
20
+that enhances the interpretability of the results.
19 21
 
22
+# Getting started
20 23
 ## System prerequisites
21 24
 
22 25
 **R version** ≥ 4.1  
... ...
@@ -28,27 +31,35 @@ pathway visualization that enhances the interpretability of the results.
28 31
 
29 32
 ## Installation
30 33
 
31
-Install `FEDUP` via devtools:
34
+Install `fedup` via devtools:
32 35
 
33
-``` r
34
-devtools::install_github("rosscm/FEDUP", quiet = TRUE)
36
+
37
+```r
38
+devtools::install_github("rosscm/fedup", quiet = TRUE)
35 39
 ```
36 40
 
37
-# Running the package
41
+Load package:
38 42
 
43
+
44
+```r
45
+#library(fedup)
46
+load_all()
47
+#> Loading fedup
48
+```
49
+
50
+# Running the package
39 51
 ## Sample input
40 52
 
41 53
 Load test genes (`testGene`), background genes (`backgroudGene`), and
42 54
 pathways (`pathwaysGMT`):
43 55
 
44
-Note, the sample `testGene` object only consists of genes from the
45
-pathway `MUSCLE CONTRACTION%REACTOME DATABASE ID RELEASE 74%397014`. So
46
-we would expect to see strong **enrichment** for pathways related to
47
-muscle contraction and, **depletion** for pathways *not* associated with
48
-muscle contraction. Let’s see!
56
+Note, the sample `testGene` object only consists of genes from the pathway
57
+`MUSCLE CONTRACTION%REACTOME DATABASE ID RELEASE 74%397014`. So we would expect
58
+to see strong **enrichment** for pathways related to muscle contraction and,
59
+**depletion** for pathways *not* associated with muscle contraction. Let's see!
49 60
 
50
-``` r
51
-library(FEDUP)
61
+
62
+```r
52 63
 data(testGene)
53 64
 data(backgroundGene)
54 65
 data(pathwaysGMT)
... ...
@@ -56,7 +67,8 @@ data(pathwaysGMT)
56 67
 
57 68
 Take a look at the data structure:
58 69
 
59
-``` r
70
+
71
+```r
60 72
 str(testGene)
61 73
 #>  chr [1:190] "NKX2-5" "SCN4A" "ITGB5" "SCN4B" "PAK2" "GATA4" "AKAP9" ...
62 74
 str(backgroundGene)
... ...
@@ -73,18 +85,20 @@ str(head(pathwaysGMT))
73 85
 
74 86
 Now use `runFedup` on sample data:
75 87
 
76
-``` r
88
+
89
+```r
77 90
 fedupRes <- runFedup(testGene, backgroundGene, pathwaysGMT)
78 91
 #> Data input:
79 92
 #>  => 190 test genes
80 93
 #>  => 10208 background genes
81 94
 #>  => 1437 pathawys
82
-#> You did it! FEDUP ran successfully, feeling pretty good huh?
95
+#> You did it! fedup ran successfully, feeling pretty good huh?
83 96
 ```
84 97
 
85 98
 View output results table sorted by pvalue:
86 99
 
87
-``` r
100
+
101
+```r
88 102
 print(head(fedupRes[which(fedupRes$status == "Enriched"),]))
89 103
 #>                                                             pathway size
90 104
 #> 1:        MUSCLE CONTRACTION%REACTOME DATABASE ID RELEASE 74%397014  190
... ...
@@ -131,19 +145,19 @@ print(head(fedupRes[which(fedupRes$status == "Depleted"),]))
131 145
 #> 6: 0.17258203
132 146
 ```
133 147
 
134
-Here we see the strongest enrichment for the `MUSCLE CONTRACTION`
135
-pathway. Since our test set of genes are exclusively from this pathway,
136
-this is totally expected. We also see significant enrichment for other
137
-muscle contraction pathways, including `CARDIAC CONDUCTION` and
138
-`SMOOTH MUSCLE CONTRACTION`. Conversely, we see significant depletion
139
-for functions not associated with muscle contraction, such as
140
-`OLFACTORY SIGNALING PATHWAY` and
148
+Here we see the strongest enrichment for the `MUSCLE CONTRACTION` pathway.
149
+Since our test set of genes are exclusively from this pathway, this is totally
150
+expected. We also see significant enrichment for other muscle contraction
151
+pathways, including `CARDIAC CONDUCTION` and `SMOOTH MUSCLE CONTRACTION`.
152
+Conversely, we see significant depletion for functions not associated with
153
+muscle contraction, such as `OLFACTORY SIGNALING PATHWAY` and
141 154
 `AMINO ACID AND DERIVATIVE METABOLISM`. Nice!
142 155
 
143
-Plot enriched and depleted pathways (qvalue &lt; 0.05) in the form of a
144
-dot plot via the `plotDotPlot` function:
156
+Plot enriched and depleted pathways (qvalue < 0.05) in the form of a dot plot
157
+via the `plotDotPlot` function:
145 158
 
146
-``` r
159
+
160
+```r
147 161
 fedupPlot <- fedupRes[which(fedupRes$qvalue < 0.05),]
148 162
 fedupPlot$log10qvalue <- -log10(fedupPlot$qvalue + 1e-10) # -log10(qvalue)
149 163
 fedupPlot$pathway <- gsub("\\%.*", "", fedupPlot$pathway) # clean names
... ...
@@ -165,12 +179,11 @@ p <- p + # facet by status to separate enriched and depleted pathways
165 179
 print(p)
166 180
 ```
167 181
 
168
-<img src="man/figures/FEDUP_dotplot-1.png" width="100%" />
182
+<img src="man/figures/fedup_dotplot-1.png" title="plot of chunk fedup_dotplot" alt="plot of chunk fedup_dotplot" width="100%" />
169 183
 
170
-Look at all those chick… enrichments! This is a bit overwhelming, isn’t
171
-it? How do we interpret these 76 seemingly redundant pathways in a way
172
-that doesn’t hurt our tired brains even more? Oh I know, let’s use
173
-EnrichmentMap!
184
+Look at all those chick... enrichments! This is a bit overwhelming, isn't it?
185
+How do we interpret these 76 seemingly redundant pathways in a way that doesn't
186
+hurt our tired brains even more? Oh I know, let's use EnrichmentMap!
174 187
 
175 188
 First, make sure to have
176 189
 [Cytoscape](https://cytoscape.org/download.html) downloaded and and open
... ...
@@ -178,36 +191,38 @@ on your computer. You’ll also need to install the
178 191
 [EnrichmentMap](http://apps.cytoscape.org/apps/enrichmentmap) and
179 192
 [AutoAnnotate](http://apps.cytoscape.org/apps/autoannotate) apps.
180 193
 
181
-Then format results for compatibility with EnrichmentMap with
182
-`writeFemap`:
194
+Then format results for compatibility with EnrichmentMap with `writeFemap`:
195
+
183 196
 
184
-``` r
197
+```r
185 198
 resultsFile <- tempfile("fedupRes", fileext = ".txt")
186 199
 writeFemap(fedupRes, resultsFile)
187
-#> Wrote out Cytoscape-formatted FEDUP results file to /var/folders/mh/_0z2r5zj3k75yhtgm6l7xy3m0000gn/T//RtmpmEZRQI/fedupRes18391308b962e.txt
200
+#> Wrote out Cytoscape-formatted fedup results file to /var/folders/mh/_0z2r5zj3k75yhtgm6l7xy3m0000gn/T//RtmpKkUyBJ/fedupRes11041452f8f8f.txt
188 201
 ```
189 202
 
190 203
 Prepare a pathway annotation file (gmt format) from the pathway list you
191
-passed to `runFedup` using the `writePathways` function (you don’t need
192
-to run this function if your pathway annotations are already in gmt
193
-format, but it doesn’t hurt to make sure):
204
+passed to `runFedup` using the `writePathways` function (you don't need to run
205
+this function if your pathway annotations are already in gmt format, but it
206
+doesn't hurt to make sure):
194 207
 
195
-``` r
208
+
209
+```r
196 210
 gmtFile <- tempfile("pathwaysGMT", fileext = ".gmt")
197 211
 writePathways(pathwaysGMT, gmtFile)
198
-#> Wrote out pathway gmt file to /var/folders/mh/_0z2r5zj3k75yhtgm6l7xy3m0000gn/T//RtmpmEZRQI/pathwaysGMT1839144457fcd.gmt
212
+#> Wrote out pathway gmt file to /var/folders/mh/_0z2r5zj3k75yhtgm6l7xy3m0000gn/T//RtmpKkUyBJ/pathwaysGMT1104162f048f0.gmt
199 213
 ```
200 214
 
201 215
 Cytoscape is open right? If so, run these lines and let the `plotFemap`
202 216
 magic happen:
203 217
 
204
-``` r
205
-netFile <- tempfile("FEDUP_EM", fileext = ".png")
218
+
219
+```r
220
+netFile <- tempfile("fedup_EM", fileext = ".png")
206 221
 plotFemap(
207 222
   gmtFile = gmtFile,
208 223
   resultsFile = resultsFile,
209 224
   qvalue = 0.05,
210
-  netName = "FEDUP_EM",
225
+  netName = "fedup_EM",
211 226
   netFile = netFile
212 227
 )
213 228
 #> You are connected to Cytoscape!
... ...
@@ -215,22 +230,20 @@ plotFemap(
215 230
 #> Setting network chart data
216 231
 #> Annotating the network using AutoAnnotate
217 232
 #> Applying a force-directed network layout
218
-#> Drawing out network to /var/folders/mh/_0z2r5zj3k75yhtgm6l7xy3m0000gn/T//RtmpmEZRQI/FEDUP_EM1839132bab598.png
233
+#> Drawing out network to /var/folders/mh/_0z2r5zj3k75yhtgm6l7xy3m0000gn/T//RtmpKkUyBJ/fedup_EM110411a5eaa57.png
219 234
 #>                                                                                    file 
220
-#> "/var/folders/mh/_0z2r5zj3k75yhtgm6l7xy3m0000gn/T/RtmpmEZRQI/FEDUP_EM1839132bab598.png"
235
+#> "/var/folders/mh/_0z2r5zj3k75yhtgm6l7xy3m0000gn/T/RtmpKkUyBJ/fedup_EM110411a5eaa57.png"
221 236
 ```
222 237
 
223
-![](man/figures/FEDUP_EM-1.png)
238
+![](man/figures/fedup_EM-1.png)
224 239
 
225
-After some manual rearrangement of the annotated pathway clusters, this
226
-is the resulting EnrichmentMap we get from our `FEDUP` results. Much
227
-better!
240
+After some manual rearrangement of the annotated pathway clusters, this is the
241
+resulting EnrichmentMap we get from our `fedup` results. Much better!
228 242
 
229
-This has effectively summarized the 76 pathways from our dot plot into
230
-14 unique biological themes (including 4 unclustered pathways). We can
231
-now see clear themes in the data pertaining to muscle contraction, such
232
-as `NMDA receptor function`, `calcium homeostasis`, and
233
-`ATPase transport`.
243
+This has effectively summarized the 76 pathways from our dot plot into 14 unique
244
+biological themes (including 4 unclustered pathways). We can now see clear
245
+themes in the data pertaining to muscle contraction, such as `NMDA receptor
246
+function`, `calcium homeostasis`, and `ATPase transport`.
234 247
 
235 248
 Try this out yourself! Hopefully it’s the only fedup you achieve
236 249
 :grimacing:
... ...
@@ -238,7 +251,7 @@ Try this out yourself! Hopefully it’s the only fedup you achieve
238 251
 # Versioning
239 252
 
240 253
 For the versions available, see the [tags on this
241
-repo](https://github.com/rosscm/FEDUP/tags).
254
+repo](https://github.com/rosscm/fedup/tags).
242 255
 
243 256
 # Shoutouts
244 257
 
... ...
@@ -1,5 +1,5 @@
1 1
 ## code to prepare `testGene` and `backgroundGene` datasets goes here
2
-pathwayFile <- system.file("extdata", "Human_Reactome_November_17_2020_symbol.gmt", package = "FEDUP")
2
+pathwayFile <- system.file("extdata", "Human_Reactome_November_17_2020_symbol.gmt", package = "fedup")
3 3
 pathwaysGMT <- readPathways(pathwayFile, minGene = 10, maxGene = 500)
4 4
 
5 5
 testGene <- pathwaysGMT[[grep("397014", names(pathwaysGMT))]] # Reactome muscle contraction pathway
... ...
@@ -1,5 +1,5 @@
1 1
 ## code to prepare `pathwaysGMT` dataset goes here
2
-pathwayFile <- system.file("extdata", "Human_Reactome_November_17_2020_symbol.gmt", package = "FEDUP")
2
+pathwayFile <- system.file("extdata", "Human_Reactome_November_17_2020_symbol.gmt", package = "fedup")
3 3
 pathwaysGMT <- readPathways(pathwayFile, minGene = 10, maxGene = 500)
4 4
 names(pathwaysGMT) <- stringi::stri_trans_general(names(pathwaysGMT), "latin-ascii")
5 5
 usethis::use_data(pathwaysGMT, compress = "xz", version = 2, overwrite = TRUE)
... ...
@@ -1,7 +1,7 @@
1 1
 ## code to prepare `pathwaysXLSX` dataset goes here
2 2
 library(tibble)
3 3
 
4
-pathwayFile <- system.file("extdata", "SAFE_terms.txt", package = "FEDUP")
4
+pathwayFile <- system.file("extdata", "SAFE_terms.txt", package = "fedup")
5 5
 pathwaysTXT <- readPathways(
6 6
     pathwayFile,
7 7
     header = TRUE,
... ...
@@ -2,7 +2,7 @@
2 2
 library(openxlsx)
3 3
 library(tibble)
4 4
 
5
-pathwayFile <- system.file("extdata", "SAFE_terms.xlsx", package = "FEDUP")
5
+pathwayFile <- system.file("extdata", "SAFE_terms.xlsx", package = "fedup")
6 6
 pathwaysXLSX <- readPathways(
7 7
     pathwayFile,
8 8
     header = TRUE,
... ...
@@ -12,6 +12,6 @@ backgroundGene
12 12
 }
13 13
 \description{
14 14
 Script to generate data
15
-system.file("data-raw", "genes.R", package="FEDUP")
15
+system.file("data-raw", "genes.R", package = "fedup")
16 16
 }
17 17
 \keyword{datasets}
18 18
Binary files a/man/figures/FEDUP_dotplot-1.png and b/man/figures/FEDUP_dotplot-1.png differ
... ...
@@ -17,8 +17,8 @@ Raw GMT file is available from
17 17
 \details{
18 18
 Raw data location
19 19
 system.file("extdata", "Human_Reactome_November_17_2020_symbol.gmt",
20
-    package="FEDUP")
20
+    package = "fedup")
21 21
 Script to prepare data
22
-system.file("data-raw", "pathwaysGMT.R", package="FEDUP")
22
+system.file("data-raw", "pathwaysGMT.R", package ="fedup")
23 23
 }
24 24
 \keyword{datasets}
... ...
@@ -12,10 +12,10 @@ pathwaysTXT
12 12
 }
13 13
 \description{
14 14
 Raw data location
15
-system.file("extdata", "SAFE_terms.txt", package="FEDUP")
15
+system.file("extdata", "SAFE_terms.txt", package = "fedup")
16 16
 }
17 17
 \details{
18 18
 Script to prepare data
19
-system.file("data-raw", "pathwaysTXT.R", package="FEDUP")
19
+system.file("data-raw", "pathwaysTXT.R", package = "fedup")
20 20
 }
21 21
 \keyword{datasets}
... ...
@@ -12,10 +12,10 @@ pathwaysXLSX
12 12
 }
13 13
 \description{
14 14
 Raw data location
15
-system.file("extdata", "SAFE_terms.xlsx", package="FEDUP")
15
+system.file("extdata", "SAFE_terms.xlsx", package = "fedup")
16 16
 }
17 17
 \details{
18 18
 Script to prepare data
19
-system.file("data-raw", "pathwaysXLSX.R", package="FEDUP")
19
+system.file("data-raw", "pathwaysXLSX.R", package = "fedup")
20 20
 }
21 21
 \keyword{datasets}
... ...
@@ -19,7 +19,7 @@ plotDotPlot(
19 19
 )
20 20
 }
21 21
 \arguments{
22
-\item{df}{(data.frame) table with FEDUP enrichment results to plot.}
22
+\item{df}{(data.frame) table with fedup enrichment results to plot.}
23 23
 
24 24
 \item{xVar}{(char) x-axis variable (must be a column value in \code{df}).}
25 25
 
... ...
@@ -17,7 +17,7 @@ plotFemap(
17 17
 \arguments{
18 18
 \item{gmtFile}{(char) path to GMT file (must be an absolute path).}
19 19
 
20
-\item{resultsFile}{(char) path to file with FEDUP results
20
+\item{resultsFile}{(char) path to file with fedup results
21 21
 (must be an absolute path).}
22 22
 
23 23
 \item{pvalue}{(numeric) pvalue cutoff. Pathways with a higher pvalue
... ...
@@ -48,14 +48,14 @@ data(pathwaysGMT)
48 48
 gmtFile <- tempfile("pathwaysGMT", fileext = ".gmt")
49 49
 fedupRes <- runFedup(testGene, backgroundGene, pathwaysGMT)
50 50
 resultsFile <- tempfile("fedupRes", fileext = ".txt")
51
-netFile <- tempfile("FEDUP_EM", fileext = ".png")
51
+netFile <- tempfile("fedup_EM", fileext = ".png")
52 52
 writePathways(pathwaysGMT, gmtFile)
53 53
 writeFemap(fedupRes, resultsFile)
54 54
 plotFemap(
55 55
     gmtFile = gmtFile,
56 56
     resultsFile = resultsFile,
57 57
     qvalue = 0.05,
58
-    netName = "FEDUP_EM",
58
+    netName = "fedup_EM",
59 59
     netFile = netFile
60 60
 )
61 61
 }
... ...
@@ -42,12 +42,12 @@ Currently supports the following file format: gmt, txt, xlsx.
42 42
 \examples{
43 43
 pathways <- readPathways(
44 44
     system.file("extdata", "Human_Reactome_November_17_2020_symbol.gmt",
45
-        package = "FEDUP"
45
+        package = "fedup"
46 46
     ),
47 47
     minGene = 10, maxGene = 500
48 48
 )
49 49
 pathways <- readPathways(
50
-    system.file("extdata", "SAFE_terms.xlsx", package = "FEDUP"),
50
+    system.file("extdata", "SAFE_terms.xlsx", package = "fedup"),
51 51
     header = TRUE, pathCol = "Enriched.GO.names", geneCol = "Gene.ID"
52 52
 )
53 53
 }
... ...
@@ -12,6 +12,6 @@ testGene
12 12
 }
13 13
 \description{
14 14
 Script to prepare data
15
-system.file("data-raw", "genes.R", package="FEDUP")
15
+system.file("data-raw", "genes.R", package = "fedup")
16 16
 }
17 17
 \keyword{datasets}
... ...
@@ -7,7 +7,7 @@
7 7
 writeFemap(df, resultsFile)
8 8
 }
9 9
 \arguments{
10
-\item{df}{(data.frame) table with FEDUP enrichment results.
10
+\item{df}{(data.frame) table with fedup enrichment results.
11 11
 (see runFedup() for column descriptions)}
12 12
 
13 13
 \item{resultsFile}{(char) name of output results file.}
... ...
@@ -1,4 +1,4 @@
1 1
 library(testthat)
2
-library(FEDUP)
2
+library(fedup)
3 3
 
4
-test_check("FEDUP")
4
+test_check("fedup")
... ...
@@ -1,6 +1,6 @@
1 1
 context("Enrichment analysis")
2 2
 
3
-test_that("Test that FEDUP stops without proper inputs", {
3
+test_that("Test that fedup stops without proper inputs", {
4 4
     data(testGene)
5 5
     data(backgroundGene)
6 6
     data(pathwaysGMT)
... ...
@@ -13,7 +13,7 @@ test_that("Test that FEDUP stops without proper inputs", {
13 13
     expect_error(runFedup(backgroundGene, testGene, pathwaysGMT))
14 14
 })
15 15
 
16
-test_that("Test that FEDUP analysis works", {
16
+test_that("Test that fedup analysis works", {
17 17
     data(testGene)
18 18
     data(backgroundGene)
19 19
     data(pathwaysGMT)
... ...
@@ -4,7 +4,7 @@ test_that("Test that readPathways stops without proper inputs", {
4 4
     expect_error(readPathways("test.123.xls"))
5 5
     expect_error(readPathways("test.gmt.123"))
6 6
 
7
-    pathwayFile <- system.file("extdata", "SAFE_terms.xlsx", package = "FEDUP")
7
+    pathwayFile <- system.file("extdata", "SAFE_terms.xlsx", package = "fedup")
8 8
     expect_error(readPathways(
9 9
         pathwayFile,
10 10
         header = TRUE,
... ...
@@ -23,7 +23,7 @@ test_that("Test that readPathways stops without proper inputs", {
23 23
 })
24 24
 
25 25
 test_that("Test that readPathways works with GMT input", {
26
-    pathwayFile <- system.file("extdata", "Human_Reactome_November_17_2020_symbol.gmt", package = "FEDUP")
26
+    pathwayFile <- system.file("extdata", "Human_Reactome_November_17_2020_symbol.gmt", package = "fedup")
27 27
     s <- c("gmt", "txt", "xlsx")
28 28
     f <- sub(".*\\.", "", pathwayFile)
29 29
     expect_true(f %in% s)
... ...
@@ -35,7 +35,7 @@ test_that("Test that readPathways works with GMT input", {
35 35
 })
36 36
 
37 37
 test_that("Test that readPathways works with XLSX input", {
38
-    pathwayFile <- system.file("extdata", "SAFE_terms.xlsx", package = "FEDUP")
38
+    pathwayFile <- system.file("extdata", "SAFE_terms.xlsx", package = "fedup")
39 39
     s <- c("gmt", "txt", "xlsx")
40 40
     f <- sub(".*\\.", "", pathwayFile)
41 41
     expect_true(f %in% s)
... ...
@@ -50,7 +50,7 @@ test_that("Test that readPathways works with XLSX input", {
50 50
 })
51 51
 
52 52
 test_that("Test that readPathways works with TXT input", {
53
-    pathwayFile <- system.file("extdata", "SAFE_terms.txt", package = "FEDUP")
53
+    pathwayFile <- system.file("extdata", "SAFE_terms.txt", package = "fedup")
54 54
     s <- c("gmt", "txt", "xlsx")
55 55
     f <- sub(".*\\.", "", pathwayFile)
56 56
     expect_true(f %in% s)
... ...
@@ -1,5 +1,5 @@
1 1
 ---
2
-title: "Introduction to FEDUP"
2
+title: "Introduction to fedup"
3 3
 author: Catherine Ross
4 4
 output:
5 5
     rmdformats::html_clean:
... ...
@@ -8,7 +8,7 @@ output:
8 8
         thumbnails: false
9 9
         lightbox: true
10 10
 vignette: >
11
-    %\VignetteIndexEntry{Introduction to FEDUP}
11
+    %\VignetteIndexEntry{Introduction to fedup}
12 12
     %\VignetteEngine{knitr::rmarkdown}
13 13
     %\VignetteEncoding{UTF-8}
14 14
 ---
... ...
@@ -22,7 +22,7 @@ knitr::opts_chunk$set(
22 22
 )
23 23
 ```
24 24
 
25
-FEDUP is an R package that tests for enrichment and depletion of user-defined
25
+This is an R package that tests for enrichment and depletion of user-defined
26 26
 pathways using a Fisher's exact test. The method is designed for versatile
27 27
 pathway annotation formats (eg. gmt, txt, xlsx) to allow the user to run
28 28
 pathway analysis on custom annotations. This package is also
... ...
@@ -41,10 +41,17 @@ that enhances the interpretability of the results.
41 41
 
42 42
 ## Installation
43 43
 
44
-Install `FEDUP` via devtools:
44
+Install `fedup` via devtools:
45 45
 
46 46
 ```{r}
47
-devtools::install_github("rosscm/FEDUP", quiet = TRUE)
47
+devtools::install_github("rosscm/fedup", quiet = TRUE)
48
+```
49
+
50
+Load package:
51
+
52
+```{r}
53
+#library(fedup)
54
+devtools::load_all()
48 55
 ```
49 56
 
50 57
 # Running the package
... ...
@@ -59,7 +66,7 @@ to see strong **enrichment** for pathways related to muscle contraction and,
59 66
 **depletion** for pathways *not* associated with muscle contraction. Let's see!
60 67
 
61 68
 ```{r, message = FALSE}
62
-library(FEDUP)
69
+library(fedup)
63 70
 data(testGene)
64 71
 data(backgroundGene)
65 72
 data(pathwaysGMT)
... ...
@@ -97,7 +104,7 @@ muscle contraction, such as `OLFACTORY SIGNALING PATHWAY` and
97 104
 Plot enriched and depleted pathways (qvalue < 0.05) in the form of a dot plot
98 105
 via the `plotDotPlot` function:
99 106
 
100
-```{r, FEDUP_dotplot, fig.width = 9, fig.height = 9.5}
107
+```{r, fedup_dotplot, fig.width = 9, fig.height = 9.5}
101 108
 fedupPlot <- fedupRes[which(fedupRes$qvalue < 0.05),]
102 109
 fedupPlot$log10qvalue <- -log10(fedupPlot$qvalue + 1e-10) # -log10(qvalue)
103 110
 fedupPlot$pathway <- gsub("\\%.*", "", fedupPlot$pathway) # clean names
... ...
@@ -149,20 +156,20 @@ Cytoscape is open right? If so, run these lines and let the `plotFemap`
149 156
 magic happen:
150 157
 
151 158
 ```{r}
152
-#netFile <- tempfile("FEDUP_EM", fileext = ".png")
159
+#netFile <- tempfile("fedup_EM", fileext = ".png")
153 160
 #plotFemap(
154 161
 #  gmtFile = gmtFile,
155 162
 #  resultsFile = resultsFile,
156 163
 #  qvalue = 0.05,
157
-#  netName = "FEDUP_EM",
164
+#  netName = "fedup_EM",
158 165
 #  netFile = netFile
159 166
 #)
160 167
 ```
161 168
 
162
-![](figures/FEDUP_EM-1.png)
169
+![](figures/fedup_EM-1.png)
163 170
 
164 171
 After some manual rearrangement of the annotated pathway clusters, this is the
165
-resulting EnrichmentMap we get from our `FEDUP` results. Much better!
172
+resulting EnrichmentMap we get from our `fedup` results. Much better!
166 173
 
167 174
 This has effectively summarized the 76 pathways from our dot plot into 14 unique
168 175
 biological themes (including 4 unclustered pathways). We can now see clear
... ...
@@ -172,10 +179,10 @@ function`, `calcium homeostasis`, and `ATPase transport`.
172 179
 
173 180
 ## Manual input
174 181
 
175
-Supply `FEDUP` with your own custom pathway annotations, eg. from an excel file:
182
+Supply `fedup` with your own custom pathway annotations, eg. from an excel file:
176 183
 
177 184
 ```{r}
178
-pathwayFile <- system.file("extdata", "SAFE_terms.xlsx", package = "FEDUP")
185
+pathwayFile <- system.file("extdata", "SAFE_terms.xlsx", package = "fedup")
179 186
 ```
180 187
 
181 188
 Take a look at the raw data structure:
... ...
@@ -218,7 +225,7 @@ print(head(fedupRes[which(fedupRes$status == "Depleted"),]))
218 225
 
219 226
 Run through `plotDotPlot` to visualize:
220 227
 
221
-```{r, FEDUP_dotplot_manual, fig.width = 5, fig.height = 3.5}
228
+```{r, fedup_dotplot_manual, fig.width = 5, fig.height = 3.5}
222 229
 fedupPlot <- fedupRes[which(fedupRes$qvalue < 0.05),]
223 230
 fedupPlot$log10qvalue <- -log10(fedupPlot$qvalue + 1e-10) # log10(qvalue)
224 231
 fedupPlot$pathway <- gsub("\\%.*", "", fedupPlot$pathway) # clean names
... ...
@@ -243,4 +250,4 @@ print(p)
243 250
 # Versioning
244 251
 
245 252
 For the versions available, see the
246
-[tags on this repo](https://github.com/rosscm/FEDUP/tags).
253
+[tags on this repo](https://github.com/rosscm/fedup/tags).