Browse code

replace BiocInstaller biocLite mentions with BiocManager

LiNk-NY authored on 30/08/2018 17:48:05
Showing 1 changed files
... ...
@@ -18,8 +18,9 @@ of tools for gene expression analysis.
18 18
 
19 19
 To install the Bioconductor release version, open R and type:
20 20
 ```R
21
-source("http://bioconductor.org/biocLite.R")
22
-biocLite("edge")
21
+if (!requireNamespace("BiocManager", quietly=TRUE))
22
+    install.packages("BiocManager")
23
+BiocManager::install("edge")
23 24
 ```
24 25
 
25 26
 To install the development version, open R and type:
Browse code

Update to edge 2.1.1.

git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/edge@109554 bc3139a8-67e5-0310-9ffc-ced21a209358

John D Storey authored on 13/10/2015 01:16:14
Showing 1 changed files
... ...
@@ -1,3 +1,4 @@
1
+<a href="http://www.bioconductor.org/packages/release/bioc/html/edge.html#since"><img border="0" src="http://www.bioconductor.org/shields/years-in-bioc/edge.svg" title="How long since the package was first in a released Bioconductor version (or is it in devel only)."></a> <a href="http://bioconductor.org/packages/stats/bioc/edge.html"><img border="0" src="http://www.bioconductor.org/shields/downloads/edge.svg" title="Percentile (top 5/20/50% or 'available') of downloads over last 6 full months. Comparison is done across all package categories (software, annotation, experiment)."></a> <a href="https://support.bioconductor.org/t/edge/"><img border="0" src="http://www.bioconductor.org/shields/posts/edge.svg" title="Support site activity, last 6 months: tagged questions/avg. answers per question/avg. comments per question/accepted answers, or 0 if no tagged posts."></a> <a href="http://www.bioconductor.org/packages/release/bioc/html/edge.html#svn_source"><img border="0" src="http://www.bioconductor.org/shields/commits/bioc/edge.svg" title="average Subversion commits (to the devel branch) per month for the last 6 months"></a>
1 2
 edge: Extraction of Differential Gene Expression
2 3
 ====
3 4
 
Browse code

Improvements to the documentation.

git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/edge@102555 bc3139a8-67e5-0310-9ffc-ced21a209358

John D Storey authored on 16/04/2015 03:12:02
Showing 1 changed files
... ...
@@ -1,4 +1,4 @@
1
-edge: Extraction of Differential Expression Analysis
1
+edge: Extraction of Differential Gene Expression
2 2
 ====
3 3
 
4 4
 Introduction
... ...
@@ -15,12 +15,17 @@ of tools for gene expression analysis.
15 15
 
16 16
 ### Installation and Documentation
17 17
 
18
-To install, open R and type:
18
+To install the Bioconductor release version, open R and type:
19
+```R
20
+source("http://bioconductor.org/biocLite.R")
21
+biocLite("edge")
22
+```
23
+
24
+To install the development version, open R and type:
19 25
 ```R
20 26
 install.packages("devtools")
21 27
 library("devtools")
22
-install_github("jdstorey/qvalue", build_vignettes = TRUE)
23
-install_github("jdstorey/edge", build_vignettes = TRUE)
28
+install_github(c("jdstorey/qvalue","jdstorey/edge"), build_vignettes = TRUE)
24 29
 ```
25 30
 
26 31
 Instructions on using edge can be viewed by typing:
... ...
@@ -75,7 +80,7 @@ edge_obj <- build_models(data = kidexpr, cov = cov, null.model = null_model, ful
75 80
 
76 81
 The `cov` is a data frame of covariates, the `null.model` is the null model and the `full.model` is the alternative model. The input `cov` is a data frame with the column names the same as the variables in the alternative and null models. Once the models have been generated, it is often useful to normalize the gene expression matrix using `apply_snm` and/or adjust for unmodelled variables using `apply_sva`.
77 82
 ```R
78
-edge_norm <- apply_snm(edge_obj)
83
+edge_norm <- apply_snm(edge_obj, int.var=1:ncol(exprs(edge_obj)), diagnose=FALSE)
79 84
 edge_sva <- apply_sva(edge_norm)
80 85
 
81 86
 ```
Browse code

add packages to the repository

edge/ pwOmics/ EMDomics/



git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/edge@102444 bc3139a8-67e5-0310-9ffc-ced21a209358

Sonali Arora authored on 14/04/2015 17:06:48
Showing 1 changed files
1 1
new file mode 100644
... ...
@@ -0,0 +1,101 @@
1
+edge: Extraction of Differential Expression Analysis
2
+====
3
+
4
+Introduction
5
+------
6
+The edge package implements methods for carrying out differential
7
+expression analyses of genome-wide gene expression studies. Significance
8
+testing using the optimal discovery procedure and generalized likelihood
9
+ratio tests (equivalent to F-tests and t-tests) are implemented for general study
10
+designs. Special functions are available to facilitate the analysis of
11
+common study designs, including time course experiments. Other packages
12
+such as [snm](http://www.bioconductor.org/packages/release/bioc/html/snm.html), [sva](http://www.bioconductor.org/packages/release/bioc/html/sva.html), and [qvalue](https://github.com/jdstorey/qvalue) are integrated in edge to provide a wide range
13
+of tools for gene expression analysis.
14
+
15
+
16
+### Installation and Documentation
17
+
18
+To install, open R and type:
19
+```R
20
+install.packages("devtools")
21
+library("devtools")
22
+install_github("jdstorey/qvalue", build_vignettes = TRUE)
23
+install_github("jdstorey/edge", build_vignettes = TRUE)
24
+```
25
+
26
+Instructions on using edge can be viewed by typing:
27
+```R
28
+library("edge")
29
+browseVignettes("edge")
30
+```
31
+
32
+### Main functions
33
+* `build_models`
34
+* `build_study`
35
+* `odp`
36
+* `lrt`
37
+* `fit_models`
38
+* `kl_clust`
39
+* `apply_sva`
40
+* `apply_snm`
41
+* `apply_qvalue`
42
+
43
+### Quick start guide
44
+
45
+To get started, first load the kidney dataset included in the package:
46
+```R
47
+library(edge)
48
+data(kidney)
49
+names(kidney)
50
+```
51
+The kidney study is interested in determining differentially expressed genes with respect to age in kidney tissue. The `age` variable is the age of the subjects and the `sex` variable is whether the subjects were male or female. The expression values for the genes are contained in the `kidexpr` variable.
52
+```R
53
+kidexpr <- kidney$kidexpr
54
+age <- kidney$age
55
+sex <- kidney$sex
56
+```
57
+
58
+Once the data has been loaded, the user has two options to create the experimental models: `build_models` or `build_study`. If the experiment models are unknown to the user, `build_study` can be used to create the models:
59
+```R
60
+edge_obj <- build_study(data = kidexpr, adj.var = sex, tme = age, sampling = "timecourse")
61
+full_model <- fullModel(edge_obj)
62
+null_model <- nullModel(edge_obj)
63
+```
64
+
65
+The variable `sampling` describes the type of experiment performed, `adj.var` is the adjustment variable and `tme` is the time variable in the study. If the experiment is more complex then type `?build_study` for additional arguments.
66
+
67
+If the alternative and null models are known to the user then `build_models` can be used to make a deSet object:
68
+```R
69
+library(splines)
70
+cov <- data.frame(sex = sex, age = age)
71
+null_model <- ~sex
72
+full_model <- ~sex + ns(age, df=4)
73
+edge_obj <- build_models(data = kidexpr, cov = cov, null.model = null_model, full.model = full_model)
74
+```
75
+
76
+The `cov` is a data frame of covariates, the `null.model` is the null model and the `full.model` is the alternative model. The input `cov` is a data frame with the column names the same as the variables in the alternative and null models. Once the models have been generated, it is often useful to normalize the gene expression matrix using `apply_snm` and/or adjust for unmodelled variables using `apply_sva`.
77
+```R
78
+edge_norm <- apply_snm(edge_obj)
79
+edge_sva <- apply_sva(edge_norm)
80
+
81
+```
82
+
83
+The `odp` or `lrt` function can be used on `edge_sva` to implement either the optimal discovery procedure or the likelihood ratio test, respectively:
84
+```R
85
+# optimal discovery procedure
86
+edge_odp <- odp(edge_sva, bs.its = 30, verbose=FALSE)
87
+# likelihood ratio test
88
+edge_lrt <- lrt(edge_sva)
89
+```
90
+
91
+To access the proportional of null p-values estimate, p-values, q-values and local false discovery rates for each gene, use the function `qvalueObj`:
92
+```R
93
+qval_obj <- qvalueObj(edge_odp)
94
+qvals <- qval_obj$qvalues
95
+pvals <- qval_obj$pvalues
96
+lfdr <- qval_obj$lfdr
97
+pi0 <- qval_obj$pi0
98
+```
99
+
100
+See the vignette for more detailed explanations of the edge package.
101
+