1
|
1
|
deleted file mode 100644
|
...
|
...
|
@@ -1,107 +0,0 @@
|
1
|
|
-% Generated by roxygen2: do not edit by hand
|
2
|
|
-% Please edit documentation in R/AllGenerics.R, R/deSet-methods.R
|
3
|
|
-\docType{methods}
|
4
|
|
-\name{apply_jackstraw}
|
5
|
|
-\alias{apply_jackstraw}
|
6
|
|
-\alias{apply_jackstraw,deSet-method}
|
7
|
|
-\title{Non-Parametric Jackstraw for Principal Component Analysis (PCA)}
|
8
|
|
-\usage{
|
9
|
|
-apply_jackstraw(object, r1 = NULL, r = NULL, s = NULL, B = NULL,
|
10
|
|
- covariate = NULL, verbose = TRUE, seed = NULL)
|
11
|
|
-
|
12
|
|
-\S4method{apply_jackstraw}{deSet}(object, r1 = NULL, r = NULL, s = NULL,
|
13
|
|
- B = NULL, covariate = NULL, verbose = TRUE, seed = NULL)
|
14
|
|
-}
|
15
|
|
-\arguments{
|
16
|
|
-\item{object}{\code{S4 object}: \code{\linkS4class{deSet}}}
|
17
|
|
-
|
18
|
|
-\item{r1}{a numeric vector of principal components of interest. Choose a subset of r significant PCs to be used.}
|
19
|
|
-
|
20
|
|
-\item{r}{a number (a positive integer) of significant principal components.}
|
21
|
|
-
|
22
|
|
-\item{s}{a number (a positive integer) of synthetic null variables. Out of m variables, s variables are independently permuted.}
|
23
|
|
-
|
24
|
|
-\item{B}{a number (a positive integer) of resampling iterations. There will be a total of s*B null statistics.}
|
25
|
|
-
|
26
|
|
-\item{covariate}{a data matrix of covariates with corresponding n observations.}
|
27
|
|
-
|
28
|
|
-\item{verbose}{a logical indicator as to whether to print the progress.}
|
29
|
|
-
|
30
|
|
-\item{seed}{a seed for the random number generator.}
|
31
|
|
-}
|
32
|
|
-\value{
|
33
|
|
-\code{apply_jackstraw} returns a \code{list} containing the following
|
34
|
|
-slots:
|
35
|
|
-\itemize{
|
36
|
|
-\item{\code{p.value} the m p-values of association tests between variables
|
37
|
|
-and their principal components}
|
38
|
|
-\item{\code{obs.stat} the observed F-test statistics}
|
39
|
|
-\item{\code{null.stat} the s*B null F-test statistics}
|
40
|
|
-}
|
41
|
|
-}
|
42
|
|
-\description{
|
43
|
|
-Estimates statistical significance of association between variables and
|
44
|
|
-their principal components (PCs).
|
45
|
|
-}
|
46
|
|
-\details{
|
47
|
|
-This function computes m p-values of linear association between m variables
|
48
|
|
-and their PCs. Its resampling strategy accounts for the over-fitting
|
49
|
|
-characteristics due to direct computation of PCs from the observed data
|
50
|
|
-and protects against an anti-conservative bias.
|
51
|
|
-
|
52
|
|
-Provide the \code{\linkS4class{deSet}},
|
53
|
|
-with m variables as rows and n observations as columns. Given that there are
|
54
|
|
-r significant PCs, this function tests for linear association between m
|
55
|
|
-varibles and their r PCs.
|
56
|
|
-
|
57
|
|
-You could specify a subset of significant PCs
|
58
|
|
-that you are interested in r1. If PC is given, then this function computes
|
59
|
|
-statistical significance of association between m variables and PC, while
|
60
|
|
-adjusting for other PCs (i.e., significant PCs that are not your interest).
|
61
|
|
-For example, if you want to identify variables associated with 1st and 2nd
|
62
|
|
-PCs, when your data contains three significant PCs, set r=3 and r1=c(1,2).
|
63
|
|
-
|
64
|
|
-Please take a careful look at your data and use appropriate graphical and
|
65
|
|
-statistical criteria to determine a number of significant PCs, r. The number
|
66
|
|
-of significant PCs depends on the data structure and the context. In a case
|
67
|
|
-when you fail to specify r, it will be estimated from a permutation test
|
68
|
|
-(Buja and Eyuboglu, 1992) using a function \code{\link{permutationPA}}.
|
69
|
|
-
|
70
|
|
-If s is not supplied, s is set to about 10% of m variables. If B is not
|
71
|
|
-supplied, B is set to m*10/s.
|
72
|
|
-}
|
73
|
|
-\examples{
|
74
|
|
-library(splines)
|
75
|
|
-data(kidney)
|
76
|
|
-age <- kidney$age
|
77
|
|
-sex <- kidney$sex
|
78
|
|
-kidexpr <- kidney$kidexpr
|
79
|
|
-cov <- data.frame(sex = sex, age = age)
|
80
|
|
-# create models
|
81
|
|
-null_model <- ~sex
|
82
|
|
-full_model <- ~sex + ns(age, df = 4)
|
83
|
|
-# create deSet object from data
|
84
|
|
-de_obj <- build_models(data = kidexpr, cov = cov, null.model = null_model,
|
85
|
|
- full.model = full_model)
|
86
|
|
-## apply the jackstraw
|
87
|
|
-out = apply_jackstraw(de_obj, r1=1, r=1)
|
88
|
|
-## Use optional arguments
|
89
|
|
-## For example, set s and B for a balance between speed of the algorithm and accuracy of p-values
|
90
|
|
-## out = apply_jackstraw(dat, r1=1, r=1, s=10, B=1000, seed=5678)
|
91
|
|
-
|
92
|
|
-}
|
93
|
|
-\author{
|
94
|
|
-Neo Christopher Chung \email{nc@princeton.edu}
|
95
|
|
-}
|
96
|
|
-\references{
|
97
|
|
-Chung and Storey (2013) Statistical Significance of
|
98
|
|
-Variables Driving Systematic Variation in
|
99
|
|
-High-Dimensional Data. arXiv:1308.6013 [stat.ME]
|
100
|
|
-\url{http://arxiv.org/abs/1308.6013}
|
101
|
|
-
|
102
|
|
-More information available at \url{http://ncc.name/}
|
103
|
|
-}
|
104
|
|
-\seealso{
|
105
|
|
-\code{\link{permutationPA}}
|
106
|
|
-}
|
107
|
|
-
|