Browse code

removed jackstraw file

Andrew Bass authored on 10/09/2022 22:44:35
Showing 1 changed files

1 1
deleted file mode 100644
... ...
@@ -1,107 +0,0 @@
1
-% Generated by roxygen2: do not edit by hand
2
-% Please edit documentation in R/AllGenerics.R, R/deSet-methods.R
3
-\docType{methods}
4
-\name{apply_jackstraw}
5
-\alias{apply_jackstraw}
6
-\alias{apply_jackstraw,deSet-method}
7
-\title{Non-Parametric Jackstraw for Principal Component Analysis (PCA)}
8
-\usage{
9
-apply_jackstraw(object, r1 = NULL, r = NULL, s = NULL, B = NULL,
10
-  covariate = NULL, verbose = TRUE, seed = NULL)
11
-
12
-\S4method{apply_jackstraw}{deSet}(object, r1 = NULL, r = NULL, s = NULL,
13
-  B = NULL, covariate = NULL, verbose = TRUE, seed = NULL)
14
-}
15
-\arguments{
16
-\item{object}{\code{S4 object}: \code{\linkS4class{deSet}}}
17
-
18
-\item{r1}{a numeric vector of principal components of interest. Choose a subset of r significant PCs to be used.}
19
-
20
-\item{r}{a number (a positive integer) of significant principal components.}
21
-
22
-\item{s}{a number (a positive integer) of synthetic null variables. Out of m variables, s variables are independently permuted.}
23
-
24
-\item{B}{a number (a positive integer) of resampling iterations. There will be a total of s*B null statistics.}
25
-
26
-\item{covariate}{a data matrix of covariates with corresponding n observations.}
27
-
28
-\item{verbose}{a logical indicator as to whether to print the progress.}
29
-
30
-\item{seed}{a seed for the random number generator.}
31
-}
32
-\value{
33
-\code{apply_jackstraw} returns a \code{list} containing the following
34
-slots:
35
-\itemize{
36
-\item{\code{p.value} the m p-values of association tests between variables
37
-and their principal components}
38
-\item{\code{obs.stat} the observed F-test statistics}
39
-\item{\code{null.stat} the s*B null F-test statistics}
40
-}
41
-}
42
-\description{
43
-Estimates statistical significance of association between variables and
44
-their principal components (PCs).
45
-}
46
-\details{
47
-This function computes m p-values of linear association between m variables
48
-and their PCs. Its resampling strategy accounts for the over-fitting
49
-characteristics due to direct computation of PCs from the observed data
50
-and protects against an anti-conservative bias.
51
-
52
-Provide the \code{\linkS4class{deSet}},
53
-with m variables as rows and n observations as columns. Given that there are
54
-r significant PCs, this function tests for linear association between m
55
-varibles and their r PCs.
56
-
57
-You could specify a subset of significant PCs
58
-that you are interested in r1. If PC is given, then this function computes
59
-statistical significance of association between m variables and PC, while
60
-adjusting for other PCs (i.e., significant PCs that are not your interest).
61
-For example, if you want to identify variables associated with 1st and 2nd
62
-PCs, when your data contains three significant PCs, set r=3 and r1=c(1,2). 
63
-
64
-Please take a careful look at your data and use appropriate graphical and
65
-statistical criteria to determine a number of significant PCs, r. The number
66
-of significant PCs depends on the data structure and the context. In a case
67
-when you fail to specify r, it will be estimated from a permutation test
68
-(Buja and Eyuboglu, 1992) using a function \code{\link{permutationPA}}.
69
-
70
-If s is not supplied, s is set to about 10% of m variables. If B is not
71
-supplied, B is set to m*10/s.
72
-}
73
-\examples{
74
-library(splines)
75
-data(kidney)
76
-age <- kidney$age
77
-sex <- kidney$sex
78
-kidexpr <- kidney$kidexpr
79
-cov <- data.frame(sex = sex, age = age)
80
-# create models
81
-null_model <- ~sex
82
-full_model <- ~sex + ns(age, df = 4)
83
-# create deSet object from data
84
-de_obj <- build_models(data = kidexpr, cov = cov, null.model = null_model,
85
-                      full.model = full_model)
86
-## apply the jackstraw
87
-out = apply_jackstraw(de_obj, r1=1, r=1)
88
-## Use optional arguments
89
-## For example, set s and B for a balance between speed of the algorithm and accuracy of p-values
90
-## out = apply_jackstraw(dat, r1=1, r=1, s=10, B=1000, seed=5678)
91
-
92
-}
93
-\author{
94
-Neo Christopher Chung \email{nc@princeton.edu}
95
-}
96
-\references{
97
-Chung and Storey (2013) Statistical Significance of
98
-Variables Driving Systematic Variation in
99
-High-Dimensional Data. arXiv:1308.6013 [stat.ME]
100
-\url{http://arxiv.org/abs/1308.6013}
101
-
102
-More information available at \url{http://ncc.name/}
103
-}
104
-\seealso{
105
-\code{\link{permutationPA}}
106
-}
107
-