git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/branches/RELEASE_3_2/madman/Rpacks/edge@112240 bc3139a8-67e5-0310-9ffc-ced21a209358
... | ... |
@@ -2,19 +2,20 @@ Package: edge |
2 | 2 |
Type: Package |
3 | 3 |
Title: Extraction of Differential Gene Expression |
4 | 4 |
Date: 2015-04-15 |
5 |
-Version: 2.2.0 |
|
5 |
+Version: 2.2.1 |
|
6 | 6 |
Author: John D. Storey, Jeffrey T. Leek and Andrew J. Bass |
7 |
-Maintainer: John D. Storey <jstorey@princeton.edu>, Andrew J. Bass <ajbass@princeton.edu> |
|
7 |
+Maintainer: John D. Storey <jstorey@princeton.edu>, Andrew J. Bass |
|
8 |
+ <ajbass@princeton.edu> |
|
8 | 9 |
biocViews: MultipleComparison, DifferentialExpression, TimeCourse, |
9 | 10 |
Regression, GeneExpression, DataImport |
10 | 11 |
Description: The edge package implements methods for carrying out differential |
11 |
- expression analyses of genome-wide gene expression studies. Significance |
|
12 |
- testing using the optimal discovery procedure and generalized likelihood |
|
13 |
- ratio tests (equivalent to F-tests and t-tests) are implemented for general study |
|
14 |
- designs. Special functions are available to facilitate the analysis of |
|
15 |
- common study designs, including time course experiments. Other packages |
|
16 |
- such as snm, sva, and qvalue are integrated in edge to provide a wide range |
|
17 |
- of tools for gene expression analysis. |
|
12 |
+ expression analyses of genome-wide gene expression studies. Significance testing |
|
13 |
+ using the optimal discovery procedure and generalized likelihood ratio tests |
|
14 |
+ (equivalent to F-tests and t-tests) are implemented for general study designs. |
|
15 |
+ Special functions are available to facilitate the analysis of common study |
|
16 |
+ designs, including time course experiments. Other packages such as snm, sva, |
|
17 |
+ and qvalue are integrated in edge to provide a wide range of tools for gene |
|
18 |
+ expression analysis. |
|
18 | 19 |
VignetteBuilder: knitr |
19 | 20 |
Imports: |
20 | 21 |
methods, |
... | ... |
@@ -37,3 +38,4 @@ BugReports: https://github.com/jdstorey/edge/issues |
37 | 38 |
LazyData: true |
38 | 39 |
License: MIT + file LICENSE |
39 | 40 |
NeedsCompilation: yes |
41 |
+RoxygenNote: 5.0.1 |
... | ... |
@@ -1,4 +1,4 @@ |
1 |
-# Generated by roxygen2 (4.1.1): do not edit by hand |
|
1 |
+# Generated by roxygen2: do not edit by hand |
|
2 | 2 |
|
3 | 3 |
export("fullMatrix<-") |
4 | 4 |
export("fullModel<-") |
... | ... |
@@ -35,11 +35,11 @@ exportMethods(nullModel) |
35 | 35 |
exportMethods(sType) |
36 | 36 |
import(Biobase) |
37 | 37 |
import(MASS) |
38 |
+import(jackstraw) |
|
38 | 39 |
import(methods) |
39 | 40 |
import(qvalue) |
40 | 41 |
import(snm) |
41 | 42 |
import(splines) |
42 | 43 |
import(sva) |
43 |
-import(jackstraw) |
|
44 | 44 |
useDynLib(edge,kldistance) |
45 | 45 |
useDynLib(edge,odpScoreCluster) |
... | ... |
@@ -526,7 +526,7 @@ setGeneric("apply_snm", function(object, int.var=NULL, ...) |
526 | 526 |
#' their principal components (PCs). |
527 | 527 |
#' |
528 | 528 |
#' @param object \code{S4 object}: \code{\linkS4class{deSet}} |
529 |
-#' @param PC a numeric vector of principal components of interest. Choose a subset of r significant PCs to be used. |
|
529 |
+#' @param r1 a numeric vector of principal components of interest. Choose a subset of r significant PCs to be used. |
|
530 | 530 |
#' @param r a number (a positive integer) of significant principal components. |
531 | 531 |
#' @param s a number (a positive integer) of synthetic null variables. Out of m variables, s variables are independently permuted. |
532 | 532 |
#' @param B a number (a positive integer) of resampling iterations. There will be a total of s*B null statistics. |
... | ... |
@@ -546,11 +546,11 @@ setGeneric("apply_snm", function(object, int.var=NULL, ...) |
546 | 546 |
#' varibles and their r PCs. |
547 | 547 |
#' |
548 | 548 |
#' You could specify a subset of significant PCs |
549 |
-#' that you are interested in (PC). If PC is given, then this function computes |
|
549 |
+#' that you are interested in r1. If PC is given, then this function computes |
|
550 | 550 |
#' statistical significance of association between m variables and PC, while |
551 | 551 |
#' adjusting for other PCs (i.e., significant PCs that are not your interest). |
552 | 552 |
#' For example, if you want to identify variables associated with 1st and 2nd |
553 |
-#' PCs, when your data contains three significant PCs, set r=3 and PC=c(1,2). |
|
553 |
+#' PCs, when your data contains three significant PCs, set r=3 and r1=c(1,2). |
|
554 | 554 |
#' |
555 | 555 |
#' Please take a careful look at your data and use appropriate graphical and |
556 | 556 |
#' statistical criteria to determine a number of significant PCs, r. The number |
... | ... |
@@ -596,17 +596,17 @@ setGeneric("apply_snm", function(object, int.var=NULL, ...) |
596 | 596 |
#' de_obj <- build_models(data = kidexpr, cov = cov, null.model = null_model, |
597 | 597 |
#' full.model = full_model) |
598 | 598 |
#' ## apply the jackstraw |
599 |
-#' out = apply_jackstraw(de_obj, PC=1, r=1) |
|
599 |
+#' out = apply_jackstraw(de_obj, r1=1, r=1) |
|
600 | 600 |
#' ## Use optional arguments |
601 | 601 |
#' ## For example, set s and B for a balance between speed of the algorithm and accuracy of p-values |
602 |
-#' ## out = apply_jackstraw(dat, PC=1, r=1, s=10, B=1000, seed=5678) |
|
602 |
+#' ## out = apply_jackstraw(dat, r1=1, r=1, s=10, B=1000, seed=5678) |
|
603 | 603 |
#' |
604 | 604 |
#' @seealso \code{\link{permutationPA}} |
605 | 605 |
#' |
606 | 606 |
#' @author Neo Christopher Chung \email{nc@@princeton.edu} |
607 | 607 |
#' @import jackstraw |
608 | 608 |
#' @export |
609 |
-setGeneric("apply_jackstraw", function(object, PC = NULL, r = NULL, s = NULL, B = NULL, |
|
609 |
+setGeneric("apply_jackstraw", function(object, r1 = NULL, r = NULL, s = NULL, B = NULL, |
|
610 | 610 |
covariate = NULL, verbose = TRUE, seed = NULL) |
611 | 611 |
standardGeneric("apply_jackstraw")) |
612 | 612 |
|
... | ... |
@@ -348,10 +348,10 @@ setMethod("apply_snm", |
348 | 348 |
#' @rdname apply_jackstraw |
349 | 349 |
setMethod("apply_jackstraw", |
350 | 350 |
signature = signature(object="deSet"), |
351 |
- function(object, PC = NULL, r = NULL, s = NULL, B = NULL, |
|
351 |
+ function(object, r1 = NULL, r = NULL, s = NULL, B = NULL, |
|
352 | 352 |
covariate = NULL, verbose = TRUE, seed = NULL) { |
353 | 353 |
dat <- exprs(object) |
354 |
- js <- jackstraw::jackstraw(dat, PC = PC, r = r, s = s, B = B, |
|
354 |
+ js <- jackstraw::jackstraw.PCA(dat, r1 = r1, r = r, s = s, B = B, |
|
355 | 355 |
covariate = covariate, verbose = verbose, seed = seed) |
356 | 356 |
return(js) |
357 | 357 |
}) |
... | ... |
@@ -1,4 +1,4 @@ |
1 |
-% Generated by roxygen2 (4.1.1): do not edit by hand |
|
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 | 2 |
% Please edit documentation in R/AllGenerics.R, R/deSet-methods.R |
3 | 3 |
\docType{methods} |
4 | 4 |
\name{apply_jackstraw} |
... | ... |
@@ -6,16 +6,16 @@ |
6 | 6 |
\alias{apply_jackstraw,deSet-method} |
7 | 7 |
\title{Non-Parametric Jackstraw for Principal Component Analysis (PCA)} |
8 | 8 |
\usage{ |
9 |
-apply_jackstraw(object, PC = NULL, r = NULL, s = NULL, B = NULL, |
|
9 |
+apply_jackstraw(object, r1 = NULL, r = NULL, s = NULL, B = NULL, |
|
10 | 10 |
covariate = NULL, verbose = TRUE, seed = NULL) |
11 | 11 |
|
12 |
-\S4method{apply_jackstraw}{deSet}(object, PC = NULL, r = NULL, s = NULL, |
|
12 |
+\S4method{apply_jackstraw}{deSet}(object, r1 = NULL, r = NULL, s = NULL, |
|
13 | 13 |
B = NULL, covariate = NULL, verbose = TRUE, seed = NULL) |
14 | 14 |
} |
15 | 15 |
\arguments{ |
16 | 16 |
\item{object}{\code{S4 object}: \code{\linkS4class{deSet}}} |
17 | 17 |
|
18 |
-\item{PC}{a numeric vector of principal components of interest. Choose a subset of r significant PCs to be used.} |
|
18 |
+\item{r1}{a numeric vector of principal components of interest. Choose a subset of r significant PCs to be used.} |
|
19 | 19 |
|
20 | 20 |
\item{r}{a number (a positive integer) of significant principal components.} |
21 | 21 |
|
... | ... |
@@ -55,11 +55,11 @@ r significant PCs, this function tests for linear association between m |
55 | 55 |
varibles and their r PCs. |
56 | 56 |
|
57 | 57 |
You could specify a subset of significant PCs |
58 |
-that you are interested in (PC). If PC is given, then this function computes |
|
58 |
+that you are interested in r1. If PC is given, then this function computes |
|
59 | 59 |
statistical significance of association between m variables and PC, while |
60 | 60 |
adjusting for other PCs (i.e., significant PCs that are not your interest). |
61 | 61 |
For example, if you want to identify variables associated with 1st and 2nd |
62 |
-PCs, when your data contains three significant PCs, set r=3 and PC=c(1,2). |
|
62 |
+PCs, when your data contains three significant PCs, set r=3 and r1=c(1,2). |
|
63 | 63 |
|
64 | 64 |
Please take a careful look at your data and use appropriate graphical and |
65 | 65 |
statistical criteria to determine a number of significant PCs, r. The number |
... | ... |
@@ -84,10 +84,11 @@ full_model <- ~sex + ns(age, df = 4) |
84 | 84 |
de_obj <- build_models(data = kidexpr, cov = cov, null.model = null_model, |
85 | 85 |
full.model = full_model) |
86 | 86 |
## apply the jackstraw |
87 |
-out = apply_jackstraw(de_obj, PC=1, r=1) |
|
87 |
+out = apply_jackstraw(de_obj, r1=1, r=1) |
|
88 | 88 |
## Use optional arguments |
89 | 89 |
## For example, set s and B for a balance between speed of the algorithm and accuracy of p-values |
90 |
-## out = apply_jackstraw(dat, PC=1, r=1, s=10, B=1000, seed=5678) |
|
90 |
+## out = apply_jackstraw(dat, r1=1, r=1, s=10, B=1000, seed=5678) |
|
91 |
+ |
|
91 | 92 |
} |
92 | 93 |
\author{ |
93 | 94 |
Neo Christopher Chung \email{nc@princeton.edu} |
... | ... |
@@ -1,4 +1,4 @@ |
1 |
-% Generated by roxygen2 (4.1.1): do not edit by hand |
|
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 | 2 |
% Please edit documentation in R/AllGenerics.R, R/deSet-methods.R |
3 | 3 |
\docType{methods} |
4 | 4 |
\name{apply_qvalue} |
... | ... |
@@ -44,6 +44,7 @@ de_lrt <- lrt(de_obj) |
44 | 44 |
de_lrt <- apply_qvalue(de_lrt, fdr.level = 0.05, |
45 | 45 |
pi0.method = "bootstrap", adj=1.2) |
46 | 46 |
summary(de_lrt) |
47 |
+ |
|
47 | 48 |
} |
48 | 49 |
\author{ |
49 | 50 |
John Storey, Andrew Bass |
... | ... |
@@ -1,4 +1,4 @@ |
1 |
-% Generated by roxygen2 (4.1.1): do not edit by hand |
|
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 | 2 |
% Please edit documentation in R/AllGenerics.R, R/deSet-methods.R |
3 | 3 |
\docType{methods} |
4 | 4 |
\name{apply_snm} |
... | ... |
@@ -13,15 +13,15 @@ apply_snm(object, int.var = NULL, ...) |
13 | 13 |
\arguments{ |
14 | 14 |
\item{object}{\code{S4 object}: \code{\linkS4class{deSet}}} |
15 | 15 |
|
16 |
-\item{int.var}{\code{data frame}: intensity-dependent effects (see |
|
16 |
+\item{int.var}{\code{data frame}: intensity-dependent effects (see |
|
17 | 17 |
\code{\link{snm}} for details)} |
18 | 18 |
|
19 | 19 |
\item{...}{Additional arguments for \code{\link{snm}}} |
20 | 20 |
} |
21 | 21 |
\value{ |
22 |
-\code{apply_snm} returns a \code{\linkS4class{deSet}} object where |
|
22 |
+\code{apply_snm} returns a \code{\linkS4class{deSet}} object where |
|
23 | 23 |
assayData (the expression data) that has been passed to apply_snm is replaced |
24 |
-with the normalized data that \code{\link{snm}} returns. Specifically, |
|
24 |
+with the normalized data that \code{\link{snm}} returns. Specifically, |
|
25 | 25 |
\code{exprs(object)} is replaced by \code{$norm.dat} from \code{\link{snm}}, |
26 | 26 |
where \code{object} is the \code{\link{deSet}} object. |
27 | 27 |
} |
... | ... |
@@ -48,6 +48,7 @@ null.model = null_model) |
48 | 48 |
# run snm using intensity-dependent adjustment variable |
49 | 49 |
de_snm <- apply_snm(de_obj, int.var = singleChannel$int.var, |
50 | 50 |
verbose = FALSE, num.iter = 1) |
51 |
+ |
|
51 | 52 |
} |
52 | 53 |
\author{ |
53 | 54 |
John Storey, Andrew Bass |
... | ... |
@@ -1,4 +1,4 @@ |
1 |
-% Generated by roxygen2 (4.1.1): do not edit by hand |
|
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 | 2 |
% Please edit documentation in R/AllGenerics.R, R/deSet-methods.R |
3 | 3 |
\docType{methods} |
4 | 4 |
\name{apply_sva} |
... | ... |
@@ -16,7 +16,7 @@ apply_sva(object, ...) |
16 | 16 |
\item{...}{Additional arguments for \code{\link{sva}}} |
17 | 17 |
} |
18 | 18 |
\value{ |
19 |
-\code{\linkS4class{deSet}} object where the surrogate variables |
|
19 |
+\code{\linkS4class{deSet}} object where the surrogate variables |
|
20 | 20 |
estimated by \code{\link{sva}} are added to the full model and null model |
21 | 21 |
matrices. |
22 | 22 |
} |
... | ... |
@@ -1,4 +1,4 @@ |
1 |
-% Generated by roxygen2 (4.1.1): do not edit by hand |
|
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 | 2 |
% Please edit documentation in R/AllGenerics.R, R/getMethods.R |
3 | 3 |
\docType{methods} |
4 | 4 |
\name{betaCoef} |
... | ... |
@@ -43,6 +43,7 @@ de_fit <- fit_models(de_obj) |
43 | 43 |
|
44 | 44 |
# extract beta coefficients |
45 | 45 |
beta <- betaCoef(de_fit) |
46 |
+ |
|
46 | 47 |
} |
47 | 48 |
\author{ |
48 | 49 |
John Storey, Andrew Bass |
... | ... |
@@ -1,4 +1,4 @@ |
1 |
-% Generated by roxygen2 (4.1.1): do not edit by hand |
|
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 | 2 |
% Please edit documentation in R/form_models.R |
3 | 3 |
\name{build_study} |
4 | 4 |
\alias{build_study} |
... | ... |
@@ -12,7 +12,7 @@ build_study(data, grp = NULL, adj.var = NULL, bio.var = NULL, |
12 | 12 |
\item{data}{\code{matrix}: gene expression data (rows are genes, columns are |
13 | 13 |
samples).} |
14 | 14 |
|
15 |
-\item{grp}{\code{vector}: group assignement in the study (for K-class |
|
15 |
+\item{grp}{\code{vector}: group assignement in the study (for K-class |
|
16 | 16 |
studies). Optional.} |
17 | 17 |
|
18 | 18 |
\item{adj.var}{\code{matrix}: adjustment variables. Optional.} |
... | ... |
@@ -24,10 +24,10 @@ studies). Optional.} |
24 | 24 |
\item{ind}{\code{factor}: individual factor for repeated observations of the |
25 | 25 |
same individuals. Optional.} |
26 | 26 |
|
27 |
-\item{sampling}{\code{string}: type of study. Either "static" or |
|
27 |
+\item{sampling}{\code{string}: type of study. Either "static" or |
|
28 | 28 |
"timecourse". Default is "static".} |
29 | 29 |
|
30 |
-\item{basis.df}{\code{numeric}: degrees of freedom of the basis for time |
|
30 |
+\item{basis.df}{\code{numeric}: degrees of freedom of the basis for time |
|
31 | 31 |
course study. Default is 2.} |
32 | 32 |
|
33 | 33 |
\item{basis.type}{\code{string}: either "ncs" (natural cubic spline) or "ps" |
... | ... |
@@ -1,4 +1,4 @@ |
1 |
-% Generated by roxygen2 (4.1.1): do not edit by hand |
|
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 | 2 |
% Please edit documentation in R/AllClasses.R |
3 | 3 |
\docType{class} |
4 | 4 |
\name{deSet-class} |
... | ... |
@@ -8,7 +8,7 @@ |
8 | 8 |
The \code{deSet} class extends the \code{\link{ExpressionSet}} class. |
9 | 9 |
While the \code{ExpressionSet} class contains information about the |
10 | 10 |
experiment, the \code{deSet} class contains both experimental information and |
11 |
-additional information relevant for differential expression analysis, |
|
11 |
+additional information relevant for differential expression analysis, |
|
12 | 12 |
explained below in Slots. |
13 | 13 |
} |
14 | 14 |
\section{Slots}{ |
... | ... |
@@ -1,4 +1,4 @@ |
1 |
-% Generated by roxygen2 (4.1.1): do not edit by hand |
|
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 | 2 |
% Please edit documentation in R/AllGenerics.R, R/getMethods.R |
3 | 3 |
\docType{methods} |
4 | 4 |
\name{fitFull} |
... | ... |
@@ -42,6 +42,7 @@ de_fit <- fit_models(de_obj) |
42 | 42 |
|
43 | 43 |
# extract fitted values for full model |
44 | 44 |
fitted_full <- fitFull(de_fit) |
45 |
+ |
|
45 | 46 |
} |
46 | 47 |
\author{ |
47 | 48 |
John Storey, Andrew Bass |
... | ... |
@@ -1,4 +1,4 @@ |
1 |
-% Generated by roxygen2 (4.1.1): do not edit by hand |
|
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 | 2 |
% Please edit documentation in R/AllGenerics.R, R/getMethods.R |
3 | 3 |
\docType{methods} |
4 | 4 |
\name{fitNull} |
... | ... |
@@ -42,6 +42,7 @@ de_fit <- fit_models(de_obj) |
42 | 42 |
|
43 | 43 |
# extract fitted values from null model |
44 | 44 |
fitted_null <- fitNull(de_fit) |
45 |
+ |
|
45 | 46 |
} |
46 | 47 |
\author{ |
47 | 48 |
John Storey, Andrew Bass |
... | ... |
@@ -1,4 +1,4 @@ |
1 |
-% Generated by roxygen2 (4.1.1): do not edit by hand |
|
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 | 2 |
% Please edit documentation in R/AllGenerics.R, R/deSet-methods.R |
3 | 3 |
\docType{methods} |
4 | 4 |
\name{fit_models} |
... | ... |
@@ -28,7 +28,7 @@ squares method. Model fits can be either statistic type "odp" (optimal |
28 | 28 |
discovery procedure) or "lrt" (likelihood ratio test). |
29 | 29 |
} |
30 | 30 |
\details{ |
31 |
-If "odp" method is implemented then the null model is removed from the full |
|
31 |
+If "odp" method is implemented then the null model is removed from the full |
|
32 | 32 |
model (see Storey 2007). Otherwise, the statistic type has no affect on the |
33 | 33 |
model fit. |
34 | 34 |
} |
... | ... |
@@ -62,6 +62,7 @@ fit_odp <- fit_models(de_obj, stat.type = "odp") # odp method |
62 | 62 |
|
63 | 63 |
# summarize object |
64 | 64 |
summary(fit_odp) |
65 |
+ |
|
65 | 66 |
} |
66 | 67 |
\author{ |
67 | 68 |
John Storey |
... | ... |
@@ -1,4 +1,4 @@ |
1 |
-% Generated by roxygen2 (4.1.1): do not edit by hand |
|
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 | 2 |
% Please edit documentation in R/AllGenerics.R, R/getMethods.R, R/setMethods.R |
3 | 3 |
\docType{methods} |
4 | 4 |
\name{fullModel} |
... | ... |
@@ -50,6 +50,8 @@ mod_full <- fullModel(de_obj) |
50 | 50 |
|
51 | 51 |
# change the full model in the experiment |
52 | 52 |
fullModel(de_obj) <- ~sex + ns(age, df = 2) |
53 |
+ |
|
54 |
+ |
|
53 | 55 |
} |
54 | 56 |
\author{ |
55 | 57 |
John Storey, Andrew Bass |
... | ... |
@@ -1,4 +1,4 @@ |
1 |
-% Generated by roxygen2 (4.1.1): do not edit by hand |
|
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 | 2 |
% Please edit documentation in R/AllGenerics.R, R/getMethods.R, R/setMethods.R |
3 | 3 |
\docType{methods} |
4 | 4 |
\name{individual} |
... | ... |
@@ -20,8 +20,8 @@ individual(object) <- value |
20 | 20 |
\item{object}{\code{\linkS4class{deSet}}} |
21 | 21 |
|
22 | 22 |
\item{value}{\code{factor}: Identifies which samples correspond to which |
23 |
- individuals. Important if the same individuals are sampled multiple times |
|
24 |
- in a longitudinal fashion.} |
|
23 |
+individuals. Important if the same individuals are sampled multiple times |
|
24 |
+in a longitudinal fashion.} |
|
25 | 25 |
} |
26 | 26 |
\value{ |
27 | 27 |
\code{individual} returns information regarding dinstinct individuals |
... | ... |
@@ -57,6 +57,7 @@ individual = ind) |
57 | 57 |
|
58 | 58 |
# extract out the individuals factor |
59 | 59 |
ind_exp <- individual(de_obj) |
60 |
+ |
|
60 | 61 |
} |
61 | 62 |
\author{ |
62 | 63 |
John Storey, Andrew Bass |
... | ... |
@@ -1,4 +1,4 @@ |
1 |
-% Generated by roxygen2 (4.1.1): do not edit by hand |
|
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 | 2 |
% Please edit documentation in R/edge.R |
3 | 3 |
\docType{data} |
4 | 4 |
\name{kidney} |
... | ... |
@@ -26,8 +26,8 @@ obtained per individual, and the age and sex of each individual were |
26 | 26 |
recorded. |
27 | 27 |
} |
28 | 28 |
\note{ |
29 |
-These data are a random subset of 500 probe-sets from the total number of |
|
30 |
-probe-sets in the original data set. To download the full data set, go to |
|
29 |
+These data are a random subset of 500 probe-sets from the total number of |
|
30 |
+probe-sets in the original data set. To download the full data set, go to |
|
31 | 31 |
\url{http://genomine.org/edge/}. The \code{age} and \code{sex} are contained |
32 | 32 |
in \code{kidcov} data frame. |
33 | 33 |
} |
... | ... |
@@ -1,4 +1,4 @@ |
1 |
-% Generated by roxygen2 (4.1.1): do not edit by hand |
|
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 | 2 |
% Please edit documentation in R/AllGenerics.R, R/deSet-methods.R |
3 | 3 |
\docType{methods} |
4 | 4 |
\name{kl_clust} |
... | ... |
@@ -44,7 +44,7 @@ exact results but mODP has the advantage of being computationally |
44 | 44 |
faster. |
45 | 45 |
} |
46 | 46 |
\note{ |
47 |
-The results are generally insensitive to the number of modules after a |
|
47 |
+The results are generally insensitive to the number of modules after a |
|
48 | 48 |
certain threshold of about n.mods>=50 in our experience. It is recommended |
49 | 49 |
that users experiment with the number of modules. If the number of modules |
50 | 50 |
is equal to the number of genes then the original ODP is implemented. |
... | ... |
@@ -75,6 +75,7 @@ de_clust <- kl_clust(de_obj, n.mods = 10) |
75 | 75 |
# input a deFit object |
76 | 76 |
de_fit <- fit_models(de_obj, stat.type = "odp") |
77 | 77 |
de_clust <- kl_clust(de_obj, de.fit = de_fit) |
78 |
+ |
|
78 | 79 |
} |
79 | 80 |
\author{ |
80 | 81 |
John Storey, Jeffrey Leek |
... | ... |
@@ -1,4 +1,4 @@ |
1 |
-% Generated by roxygen2 (4.1.1): do not edit by hand |
|
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 | 2 |
% Please edit documentation in R/AllGenerics.R, R/deSet-methods.R |
3 | 3 |
\docType{methods} |
4 | 4 |
\name{lrt} |
... | ... |
@@ -90,6 +90,7 @@ de_lrt <- lrt(de_obj, de.fit = de_fit) |
90 | 90 |
|
91 | 91 |
# summarize object |
92 | 92 |
summary(de_lrt) |
93 |
+ |
|
93 | 94 |
} |
94 | 95 |
\author{ |
95 | 96 |
John Storey, Andrew Bass |
... | ... |
@@ -1,4 +1,4 @@ |
1 |
-% Generated by roxygen2 (4.1.1): do not edit by hand |
|
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 | 2 |
% Please edit documentation in R/AllGenerics.R, R/getMethods.R, R/setMethods.R |
3 | 3 |
\docType{methods} |
4 | 4 |
\name{nullMatrix} |
... | ... |
@@ -48,6 +48,7 @@ full.model = full_model) |
48 | 48 |
|
49 | 49 |
# extract the null model as a matrix |
50 | 50 |
mat_null <- nullMatrix(de_obj) |
51 |
+ |
|
51 | 52 |
} |
52 | 53 |
\author{ |
53 | 54 |
John Storey, Andrew Bass |
... | ... |
@@ -1,4 +1,4 @@ |
1 |
-% Generated by roxygen2 (4.1.1): do not edit by hand |
|
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 | 2 |
% Please edit documentation in R/AllGenerics.R, R/deSet-methods.R |
3 | 3 |
\docType{methods} |
4 | 4 |
\name{odp} |
... | ... |
@@ -91,6 +91,7 @@ bs.its = 30) |
91 | 91 |
|
92 | 92 |
# summarize object |
93 | 93 |
summary(de_odp) |
94 |
+ |
|
94 | 95 |
} |
95 | 96 |
\author{ |
96 | 97 |
John Storey, Jeffrey Leek, Andrew Bass |
... | ... |
@@ -1,4 +1,4 @@ |
1 |
-% Generated by roxygen2 (4.1.1): do not edit by hand |
|
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 | 2 |
% Please edit documentation in R/AllGenerics.R, R/getMethods.R, R/setMethods.R |
3 | 3 |
\docType{methods} |
4 | 4 |
\name{qvalueObj} |
... | ... |
@@ -56,6 +56,7 @@ qval_obj <- qvalueObj(de_odp) |
56 | 56 |
pvals <- qval_obj$pvalues |
57 | 57 |
qval_new <- qvalue(pvals, pfdr = TRUE, fdr.level = 0.1) |
58 | 58 |
qvalueObj(de_odp) <- qval_new |
59 |
+ |
|
59 | 60 |
} |
60 | 61 |
\author{ |
61 | 62 |
John Storey, Andrew Bass |
... | ... |
@@ -1,4 +1,4 @@ |
1 |
-% Generated by roxygen2 (4.1.1): do not edit by hand |
|
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 | 2 |
% Please edit documentation in R/AllGenerics.R, R/getMethods.R |
3 | 3 |
\docType{methods} |
4 | 4 |
\name{resFull} |
... | ... |
@@ -42,6 +42,7 @@ de_fit <- fit_models(de_obj) |
42 | 42 |
|
43 | 43 |
# extract out the full residuals from the model fit |
44 | 44 |
res_full <- resFull(de_fit) |
45 |
+ |
|
45 | 46 |
} |
46 | 47 |
\author{ |
47 | 48 |
John Storey, Andrew Bass |
... | ... |
@@ -1,4 +1,4 @@ |
1 |
-% Generated by roxygen2 (4.1.1): do not edit by hand |
|
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 | 2 |
% Please edit documentation in R/AllGenerics.R, R/getMethods.R |
3 | 3 |
\docType{methods} |
4 | 4 |
\name{sType} |
... | ... |
@@ -43,6 +43,7 @@ de_fit <- fit_models(de_obj) |
43 | 43 |
|
44 | 44 |
# extract the statistic type of model fits |
45 | 45 |
stat_type <- sType(de_fit) |
46 |
+ |
|
46 | 47 |
} |
47 | 48 |
\author{ |
48 | 49 |
John Storey, Andrew Bass |