Browse code

merged r112239 from trunk

git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/branches/RELEASE_3_2/madman/Rpacks/edge@112240 bc3139a8-67e5-0310-9ffc-ced21a209358

Andrew Bass authored on 06/01/2016 18:46:23
Showing 35 changed files

... ...
@@ -2,19 +2,20 @@ Package: edge
2 2
 Type: Package
3 3
 Title: Extraction of Differential Gene Expression
4 4
 Date: 2015-04-15
5
-Version: 2.2.0
5
+Version: 2.2.1
6 6
 Author: John D. Storey, Jeffrey T. Leek and Andrew J. Bass
7
-Maintainer: John D. Storey <jstorey@princeton.edu>, Andrew J. Bass <ajbass@princeton.edu>
7
+Maintainer: John D. Storey <jstorey@princeton.edu>, Andrew J. Bass
8
+    <ajbass@princeton.edu>
8 9
 biocViews: MultipleComparison, DifferentialExpression, TimeCourse,
9 10
     Regression, GeneExpression, DataImport
10 11
 Description: The edge package implements methods for carrying out differential
11
-    expression analyses of genome-wide gene expression studies. Significance
12
-    testing using the optimal discovery procedure and generalized likelihood
13
-    ratio tests (equivalent to F-tests and t-tests) are implemented for general study
14
-    designs. Special functions are available to facilitate the analysis of
15
-    common study designs, including time course experiments. Other packages
16
-    such as snm, sva, and qvalue are integrated in edge to provide a wide range
17
-    of tools for gene expression analysis.
12
+    expression analyses of genome-wide gene expression studies. Significance testing
13
+    using the optimal discovery procedure and generalized likelihood ratio tests
14
+    (equivalent to F-tests and t-tests) are implemented for general study designs.
15
+    Special functions are available to facilitate the analysis of common study
16
+    designs, including time course experiments. Other packages such as snm, sva,
17
+    and qvalue are integrated in edge to provide a wide range of tools for gene
18
+    expression analysis.
18 19
 VignetteBuilder: knitr
19 20
 Imports:
20 21
     methods,
... ...
@@ -37,3 +38,4 @@ BugReports: https://github.com/jdstorey/edge/issues
37 38
 LazyData: true
38 39
 License: MIT + file LICENSE
39 40
 NeedsCompilation: yes
41
+RoxygenNote: 5.0.1
... ...
@@ -1,4 +1,4 @@
1
-# Generated by roxygen2 (4.1.1): do not edit by hand
1
+# Generated by roxygen2: do not edit by hand
2 2
 
3 3
 export("fullMatrix<-")
4 4
 export("fullModel<-")
... ...
@@ -35,11 +35,11 @@ exportMethods(nullModel)
35 35
 exportMethods(sType)
36 36
 import(Biobase)
37 37
 import(MASS)
38
+import(jackstraw)
38 39
 import(methods)
39 40
 import(qvalue)
40 41
 import(snm)
41 42
 import(splines)
42 43
 import(sva)
43
-import(jackstraw)
44 44
 useDynLib(edge,kldistance)
45 45
 useDynLib(edge,odpScoreCluster)
... ...
@@ -526,7 +526,7 @@ setGeneric("apply_snm", function(object, int.var=NULL, ...)
526 526
 #' their principal components (PCs).
527 527
 #'
528 528
 #' @param object \code{S4 object}: \code{\linkS4class{deSet}}
529
-#' @param PC a numeric vector of principal components of interest. Choose a subset of r significant PCs to be used.
529
+#' @param r1 a numeric vector of principal components of interest. Choose a subset of r significant PCs to be used.
530 530
 #' @param r a number (a positive integer) of significant principal components.
531 531
 #' @param s a number (a positive integer) of synthetic null variables. Out of m variables, s variables are independently permuted.
532 532
 #' @param B a number (a positive integer) of resampling iterations. There will be a total of s*B null statistics.
... ...
@@ -546,11 +546,11 @@ setGeneric("apply_snm", function(object, int.var=NULL, ...)
546 546
 #' varibles and their r PCs.
547 547
 #'
548 548
 #' You could specify a subset of significant PCs
549
-#' that you are interested in (PC). If PC is given, then this function computes
549
+#' that you are interested in r1. If PC is given, then this function computes
550 550
 #' statistical significance of association between m variables and PC, while
551 551
 #' adjusting for other PCs (i.e., significant PCs that are not your interest).
552 552
 #' For example, if you want to identify variables associated with 1st and 2nd
553
-#' PCs, when your data contains three significant PCs, set r=3 and PC=c(1,2). 
553
+#' PCs, when your data contains three significant PCs, set r=3 and r1=c(1,2). 
554 554
 #' 
555 555
 #' Please take a careful look at your data and use appropriate graphical and
556 556
 #' statistical criteria to determine a number of significant PCs, r. The number
... ...
@@ -596,17 +596,17 @@ setGeneric("apply_snm", function(object, int.var=NULL, ...)
596 596
 #' de_obj <- build_models(data = kidexpr, cov = cov, null.model = null_model,
597 597
 #'                       full.model = full_model)
598 598
 #' ## apply the jackstraw
599
-#' out = apply_jackstraw(de_obj, PC=1, r=1)
599
+#' out = apply_jackstraw(de_obj, r1=1, r=1)
600 600
 #' ## Use optional arguments
601 601
 #' ## For example, set s and B for a balance between speed of the algorithm and accuracy of p-values
602
-#' ## out = apply_jackstraw(dat, PC=1, r=1, s=10, B=1000, seed=5678)
602
+#' ## out = apply_jackstraw(dat, r1=1, r=1, s=10, B=1000, seed=5678)
603 603
 #'
604 604
 #' @seealso \code{\link{permutationPA}}
605 605
 #'
606 606
 #' @author Neo Christopher Chung \email{nc@@princeton.edu}
607 607
 #' @import jackstraw
608 608
 #' @export
609
-setGeneric("apply_jackstraw", function(object, PC = NULL, r = NULL, s = NULL, B = NULL,
609
+setGeneric("apply_jackstraw", function(object, r1 = NULL, r = NULL, s = NULL, B = NULL,
610 610
                                        covariate = NULL, verbose = TRUE, seed = NULL)
611 611
   standardGeneric("apply_jackstraw"))
612 612
 
... ...
@@ -348,10 +348,10 @@ setMethod("apply_snm",
348 348
 #' @rdname apply_jackstraw
349 349
 setMethod("apply_jackstraw",
350 350
           signature = signature(object="deSet"),
351
-          function(object, PC = NULL, r = NULL, s = NULL, B = NULL,
351
+          function(object, r1 = NULL, r = NULL, s = NULL, B = NULL,
352 352
                    covariate = NULL, verbose = TRUE, seed = NULL) {
353 353
             dat <- exprs(object)
354
-            js <- jackstraw::jackstraw(dat, PC = PC, r = r, s = s, B = B,
354
+            js <- jackstraw::jackstraw.PCA(dat, r1 = r1, r = r, s = s, B = B,
355 355
                       covariate = covariate, verbose = verbose, seed = seed)
356 356
             return(js)
357 357
           })
... ...
@@ -1,4 +1,4 @@
1
-% Generated by roxygen2 (4.1.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/AllGenerics.R, R/deSet-methods.R
3 3
 \docType{methods}
4 4
 \name{apply_jackstraw}
... ...
@@ -6,16 +6,16 @@
6 6
 \alias{apply_jackstraw,deSet-method}
7 7
 \title{Non-Parametric Jackstraw for Principal Component Analysis (PCA)}
8 8
 \usage{
9
-apply_jackstraw(object, PC = NULL, r = NULL, s = NULL, B = NULL,
9
+apply_jackstraw(object, r1 = NULL, r = NULL, s = NULL, B = NULL,
10 10
   covariate = NULL, verbose = TRUE, seed = NULL)
11 11
 
12
-\S4method{apply_jackstraw}{deSet}(object, PC = NULL, r = NULL, s = NULL,
12
+\S4method{apply_jackstraw}{deSet}(object, r1 = NULL, r = NULL, s = NULL,
13 13
   B = NULL, covariate = NULL, verbose = TRUE, seed = NULL)
14 14
 }
15 15
 \arguments{
16 16
 \item{object}{\code{S4 object}: \code{\linkS4class{deSet}}}
17 17
 
18
-\item{PC}{a numeric vector of principal components of interest. Choose a subset of r significant PCs to be used.}
18
+\item{r1}{a numeric vector of principal components of interest. Choose a subset of r significant PCs to be used.}
19 19
 
20 20
 \item{r}{a number (a positive integer) of significant principal components.}
21 21
 
... ...
@@ -55,11 +55,11 @@ r significant PCs, this function tests for linear association between m
55 55
 varibles and their r PCs.
56 56
 
57 57
 You could specify a subset of significant PCs
58
-that you are interested in (PC). If PC is given, then this function computes
58
+that you are interested in r1. If PC is given, then this function computes
59 59
 statistical significance of association between m variables and PC, while
60 60
 adjusting for other PCs (i.e., significant PCs that are not your interest).
61 61
 For example, if you want to identify variables associated with 1st and 2nd
62
-PCs, when your data contains three significant PCs, set r=3 and PC=c(1,2).
62
+PCs, when your data contains three significant PCs, set r=3 and r1=c(1,2). 
63 63
 
64 64
 Please take a careful look at your data and use appropriate graphical and
65 65
 statistical criteria to determine a number of significant PCs, r. The number
... ...
@@ -84,10 +84,11 @@ full_model <- ~sex + ns(age, df = 4)
84 84
 de_obj <- build_models(data = kidexpr, cov = cov, null.model = null_model,
85 85
                       full.model = full_model)
86 86
 ## apply the jackstraw
87
-out = apply_jackstraw(de_obj, PC=1, r=1)
87
+out = apply_jackstraw(de_obj, r1=1, r=1)
88 88
 ## Use optional arguments
89 89
 ## For example, set s and B for a balance between speed of the algorithm and accuracy of p-values
90
-## out = apply_jackstraw(dat, PC=1, r=1, s=10, B=1000, seed=5678)
90
+## out = apply_jackstraw(dat, r1=1, r=1, s=10, B=1000, seed=5678)
91
+
91 92
 }
92 93
 \author{
93 94
 Neo Christopher Chung \email{nc@princeton.edu}
... ...
@@ -1,4 +1,4 @@
1
-% Generated by roxygen2 (4.1.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/AllGenerics.R, R/deSet-methods.R
3 3
 \docType{methods}
4 4
 \name{apply_qvalue}
... ...
@@ -44,6 +44,7 @@ de_lrt <- lrt(de_obj)
44 44
 de_lrt <- apply_qvalue(de_lrt, fdr.level = 0.05,
45 45
 pi0.method = "bootstrap", adj=1.2)
46 46
 summary(de_lrt)
47
+
47 48
 }
48 49
 \author{
49 50
 John Storey, Andrew Bass
... ...
@@ -1,4 +1,4 @@
1
-% Generated by roxygen2 (4.1.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/AllGenerics.R, R/deSet-methods.R
3 3
 \docType{methods}
4 4
 \name{apply_snm}
... ...
@@ -13,15 +13,15 @@ apply_snm(object, int.var = NULL, ...)
13 13
 \arguments{
14 14
 \item{object}{\code{S4 object}: \code{\linkS4class{deSet}}}
15 15
 
16
-\item{int.var}{\code{data frame}: intensity-dependent effects (see
16
+\item{int.var}{\code{data frame}: intensity-dependent effects (see 
17 17
 \code{\link{snm}} for details)}
18 18
 
19 19
 \item{...}{Additional arguments for \code{\link{snm}}}
20 20
 }
21 21
 \value{
22
-\code{apply_snm} returns a \code{\linkS4class{deSet}} object where
22
+\code{apply_snm} returns a \code{\linkS4class{deSet}} object where 
23 23
 assayData (the expression data) that has been passed to apply_snm is replaced
24
-with the normalized data that \code{\link{snm}} returns.  Specifically,
24
+with the normalized data that \code{\link{snm}} returns.  Specifically, 
25 25
 \code{exprs(object)} is replaced by \code{$norm.dat} from \code{\link{snm}},
26 26
 where \code{object} is the \code{\link{deSet}} object.
27 27
 }
... ...
@@ -48,6 +48,7 @@ null.model = null_model)
48 48
 # run snm using intensity-dependent adjustment variable
49 49
 de_snm <- apply_snm(de_obj, int.var = singleChannel$int.var,
50 50
 verbose = FALSE, num.iter = 1)
51
+
51 52
 }
52 53
 \author{
53 54
 John Storey, Andrew Bass
... ...
@@ -1,4 +1,4 @@
1
-% Generated by roxygen2 (4.1.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/AllGenerics.R, R/deSet-methods.R
3 3
 \docType{methods}
4 4
 \name{apply_sva}
... ...
@@ -16,7 +16,7 @@ apply_sva(object, ...)
16 16
 \item{...}{Additional arguments for \code{\link{sva}}}
17 17
 }
18 18
 \value{
19
-\code{\linkS4class{deSet}} object where the surrogate variables
19
+\code{\linkS4class{deSet}} object where the surrogate variables 
20 20
 estimated by \code{\link{sva}} are added to the full model and null model
21 21
 matrices.
22 22
 }
... ...
@@ -1,4 +1,4 @@
1
-% Generated by roxygen2 (4.1.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/AllGenerics.R, R/getMethods.R
3 3
 \docType{methods}
4 4
 \name{betaCoef}
... ...
@@ -43,6 +43,7 @@ de_fit <- fit_models(de_obj)
43 43
 
44 44
 # extract beta coefficients
45 45
 beta <- betaCoef(de_fit)
46
+
46 47
 }
47 48
 \author{
48 49
 John Storey, Andrew Bass
... ...
@@ -1,4 +1,4 @@
1
-% Generated by roxygen2 (4.1.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/form_models.R
3 3
 \name{build_models}
4 4
 \alias{build_models}
... ...
@@ -1,4 +1,4 @@
1
-% Generated by roxygen2 (4.1.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/form_models.R
3 3
 \name{build_study}
4 4
 \alias{build_study}
... ...
@@ -12,7 +12,7 @@ build_study(data, grp = NULL, adj.var = NULL, bio.var = NULL,
12 12
 \item{data}{\code{matrix}: gene expression data (rows are genes, columns are
13 13
 samples).}
14 14
 
15
-\item{grp}{\code{vector}: group assignement in the study (for K-class
15
+\item{grp}{\code{vector}: group assignement in the study (for K-class 
16 16
 studies). Optional.}
17 17
 
18 18
 \item{adj.var}{\code{matrix}: adjustment variables. Optional.}
... ...
@@ -24,10 +24,10 @@ studies). Optional.}
24 24
 \item{ind}{\code{factor}: individual factor for repeated observations of the
25 25
 same individuals. Optional.}
26 26
 
27
-\item{sampling}{\code{string}: type of study. Either "static" or
27
+\item{sampling}{\code{string}: type of study. Either "static" or 
28 28
 "timecourse". Default is "static".}
29 29
 
30
-\item{basis.df}{\code{numeric}: degrees of freedom of the basis for time
30
+\item{basis.df}{\code{numeric}: degrees of freedom of the basis for time 
31 31
 course study. Default is 2.}
32 32
 
33 33
 \item{basis.type}{\code{string}: either "ncs" (natural cubic spline) or "ps"
... ...
@@ -1,4 +1,4 @@
1
-% Generated by roxygen2 (4.1.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/AllClasses.R
3 3
 \docType{class}
4 4
 \name{deFit-class}
... ...
@@ -1,4 +1,4 @@
1
-% Generated by roxygen2 (4.1.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/AllClasses.R
3 3
 \docType{class}
4 4
 \name{deSet-class}
... ...
@@ -8,7 +8,7 @@
8 8
 The \code{deSet} class extends the \code{\link{ExpressionSet}} class.
9 9
 While the \code{ExpressionSet} class contains information about the
10 10
 experiment, the \code{deSet} class contains both experimental information and
11
-additional information relevant for differential expression analysis,
11
+additional information relevant for differential expression analysis, 
12 12
 explained below in Slots.
13 13
 }
14 14
 \section{Slots}{
... ...
@@ -1,4 +1,4 @@
1
-% Generated by roxygen2 (4.1.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/AllGenerics.R, R/ExpressionSet-methods.R
3 3
 \docType{methods}
4 4
 \name{deSet}
... ...
@@ -1,4 +1,4 @@
1
-% Generated by roxygen2 (4.1.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/edge.R
3 3
 \docType{package}
4 4
 \name{edge}
... ...
@@ -1,4 +1,4 @@
1
-% Generated by roxygen2 (4.1.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/edge.R
3 3
 \docType{data}
4 4
 \name{endotoxin}
... ...
@@ -1,4 +1,4 @@
1
-% Generated by roxygen2 (4.1.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/AllGenerics.R, R/getMethods.R
3 3
 \docType{methods}
4 4
 \name{fitFull}
... ...
@@ -42,6 +42,7 @@ de_fit <- fit_models(de_obj)
42 42
 
43 43
 # extract fitted values for full model
44 44
 fitted_full <- fitFull(de_fit)
45
+
45 46
 }
46 47
 \author{
47 48
 John Storey, Andrew Bass
... ...
@@ -1,4 +1,4 @@
1
-% Generated by roxygen2 (4.1.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/AllGenerics.R, R/getMethods.R
3 3
 \docType{methods}
4 4
 \name{fitNull}
... ...
@@ -42,6 +42,7 @@ de_fit <- fit_models(de_obj)
42 42
 
43 43
 # extract fitted values from null model
44 44
 fitted_null <- fitNull(de_fit)
45
+
45 46
 }
46 47
 \author{
47 48
 John Storey, Andrew Bass
... ...
@@ -1,4 +1,4 @@
1
-% Generated by roxygen2 (4.1.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/AllGenerics.R, R/deSet-methods.R
3 3
 \docType{methods}
4 4
 \name{fit_models}
... ...
@@ -28,7 +28,7 @@ squares method. Model fits can be either statistic type "odp" (optimal
28 28
 discovery procedure) or "lrt" (likelihood ratio test).
29 29
 }
30 30
 \details{
31
-If "odp" method is implemented then the null model is removed from the full
31
+If "odp" method is implemented then the null model is removed from the full 
32 32
 model (see Storey 2007).  Otherwise, the statistic type has no affect on the
33 33
 model fit.
34 34
 }
... ...
@@ -62,6 +62,7 @@ fit_odp <- fit_models(de_obj, stat.type = "odp") # odp method
62 62
 
63 63
 # summarize object
64 64
 summary(fit_odp)
65
+
65 66
 }
66 67
 \author{
67 68
 John Storey
... ...
@@ -1,4 +1,4 @@
1
-% Generated by roxygen2 (4.1.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/AllGenerics.R, R/getMethods.R, R/setMethods.R
3 3
 \docType{methods}
4 4
 \name{fullMatrix}
... ...
@@ -1,4 +1,4 @@
1
-% Generated by roxygen2 (4.1.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/AllGenerics.R, R/getMethods.R, R/setMethods.R
3 3
 \docType{methods}
4 4
 \name{fullModel}
... ...
@@ -50,6 +50,8 @@ mod_full <- fullModel(de_obj)
50 50
 
51 51
 # change the full model in the experiment
52 52
 fullModel(de_obj) <- ~sex + ns(age, df = 2)
53
+
54
+
53 55
 }
54 56
 \author{
55 57
 John Storey, Andrew Bass
... ...
@@ -1,4 +1,4 @@
1
-% Generated by roxygen2 (4.1.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/edge.R
3 3
 \docType{data}
4 4
 \name{gibson}
... ...
@@ -1,4 +1,4 @@
1
-% Generated by roxygen2 (4.1.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/AllGenerics.R, R/getMethods.R, R/setMethods.R
3 3
 \docType{methods}
4 4
 \name{individual}
... ...
@@ -20,8 +20,8 @@ individual(object) <- value
20 20
 \item{object}{\code{\linkS4class{deSet}}}
21 21
 
22 22
 \item{value}{\code{factor}: Identifies which samples correspond to which
23
-  individuals. Important if the same individuals are sampled multiple times
24
-  in a longitudinal fashion.}
23
+individuals. Important if the same individuals are sampled multiple times
24
+in a longitudinal fashion.}
25 25
 }
26 26
 \value{
27 27
 \code{individual} returns information regarding dinstinct individuals
... ...
@@ -57,6 +57,7 @@ individual = ind)
57 57
 
58 58
 # extract out the individuals factor
59 59
 ind_exp <- individual(de_obj)
60
+
60 61
 }
61 62
 \author{
62 63
 John Storey, Andrew Bass
... ...
@@ -1,4 +1,4 @@
1
-% Generated by roxygen2 (4.1.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/edge.R
3 3
 \docType{data}
4 4
 \name{kidney}
... ...
@@ -26,8 +26,8 @@ obtained per individual, and the age and sex of each individual were
26 26
 recorded.
27 27
 }
28 28
 \note{
29
-These data are a random subset of 500 probe-sets from the total number of
30
-probe-sets in the original data set. To download the full data set, go to
29
+These data are a random subset of 500 probe-sets from the total number of 
30
+probe-sets in the original data set. To download the full data set, go to 
31 31
 \url{http://genomine.org/edge/}. The \code{age} and \code{sex} are contained
32 32
 in \code{kidcov} data frame.
33 33
 }
... ...
@@ -1,4 +1,4 @@
1
-% Generated by roxygen2 (4.1.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/AllGenerics.R, R/deSet-methods.R
3 3
 \docType{methods}
4 4
 \name{kl_clust}
... ...
@@ -44,7 +44,7 @@ exact results but mODP has the advantage of being computationally
44 44
 faster.
45 45
 }
46 46
 \note{
47
-The results are generally insensitive to the number of modules after a
47
+The results are generally insensitive to the number of modules after a 
48 48
   certain threshold of about n.mods>=50 in our experience. It is recommended
49 49
   that users experiment with the number of modules. If the number of modules
50 50
   is equal to the number of genes then the original ODP is implemented.
... ...
@@ -75,6 +75,7 @@ de_clust <- kl_clust(de_obj, n.mods = 10)
75 75
 # input a deFit object
76 76
 de_fit <- fit_models(de_obj, stat.type = "odp")
77 77
 de_clust <- kl_clust(de_obj, de.fit = de_fit)
78
+
78 79
 }
79 80
 \author{
80 81
 John Storey, Jeffrey Leek
... ...
@@ -1,4 +1,4 @@
1
-% Generated by roxygen2 (4.1.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/AllGenerics.R, R/deSet-methods.R
3 3
 \docType{methods}
4 4
 \name{lrt}
... ...
@@ -90,6 +90,7 @@ de_lrt <- lrt(de_obj, de.fit = de_fit)
90 90
 
91 91
 # summarize object
92 92
 summary(de_lrt)
93
+
93 94
 }
94 95
 \author{
95 96
 John Storey, Andrew Bass
... ...
@@ -1,4 +1,4 @@
1
-% Generated by roxygen2 (4.1.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/AllGenerics.R, R/getMethods.R, R/setMethods.R
3 3
 \docType{methods}
4 4
 \name{nullMatrix}
... ...
@@ -48,6 +48,7 @@ full.model = full_model)
48 48
 
49 49
 # extract the null model as a matrix
50 50
 mat_null <- nullMatrix(de_obj)
51
+
51 52
 }
52 53
 \author{
53 54
 John Storey, Andrew Bass
... ...
@@ -1,4 +1,4 @@
1
-% Generated by roxygen2 (4.1.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/AllGenerics.R, R/getMethods.R, R/setMethods.R
3 3
 \docType{methods}
4 4
 \name{nullModel}
... ...
@@ -1,4 +1,4 @@
1
-% Generated by roxygen2 (4.1.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/AllGenerics.R, R/deSet-methods.R
3 3
 \docType{methods}
4 4
 \name{odp}
... ...
@@ -91,6 +91,7 @@ bs.its = 30)
91 91
 
92 92
 # summarize object
93 93
 summary(de_odp)
94
+
94 95
 }
95 96
 \author{
96 97
 John Storey, Jeffrey Leek, Andrew Bass
... ...
@@ -1,4 +1,4 @@
1
-% Generated by roxygen2 (4.1.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/AllGenerics.R, R/getMethods.R, R/setMethods.R
3 3
 \docType{methods}
4 4
 \name{qvalueObj}
... ...
@@ -56,6 +56,7 @@ qval_obj <- qvalueObj(de_odp)
56 56
 pvals <- qval_obj$pvalues
57 57
 qval_new <- qvalue(pvals, pfdr = TRUE, fdr.level = 0.1)
58 58
 qvalueObj(de_odp) <- qval_new
59
+
59 60
 }
60 61
 \author{
61 62
 John Storey, Andrew Bass
... ...
@@ -1,4 +1,4 @@
1
-% Generated by roxygen2 (4.1.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/AllGenerics.R, R/getMethods.R
3 3
 \docType{methods}
4 4
 \name{resFull}
... ...
@@ -42,6 +42,7 @@ de_fit <- fit_models(de_obj)
42 42
 
43 43
 # extract out the full residuals from the model fit
44 44
 res_full <- resFull(de_fit)
45
+
45 46
 }
46 47
 \author{
47 48
 John Storey, Andrew Bass
... ...
@@ -1,4 +1,4 @@
1
-% Generated by roxygen2 (4.1.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/AllGenerics.R, R/getMethods.R
3 3
 \docType{methods}
4 4
 \name{resNull}
... ...
@@ -1,4 +1,4 @@
1
-% Generated by roxygen2 (4.1.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/AllGenerics.R, R/getMethods.R
3 3
 \docType{methods}
4 4
 \name{sType}
... ...
@@ -43,6 +43,7 @@ de_fit <- fit_models(de_obj)
43 43
 
44 44
 # extract the statistic type of model fits
45 45
 stat_type <- sType(de_fit)
46
+
46 47
 }
47 48
 \author{
48 49
 John Storey, Andrew Bass
... ...
@@ -1,4 +1,4 @@
1
-% Generated by roxygen2 (4.1.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/AllGenerics.R, R/deFit-methods.R, R/deSet-methods.R
3 3
 \docType{methods}
4 4
 \name{show}
... ...
@@ -1,4 +1,4 @@
1
-% Generated by roxygen2 (4.1.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/AllGenerics.R, R/deFit-methods.R, R/deSet-methods.R
3 3
 \docType{methods}
4 4
 \name{summary}