#' @title #' Extraction of Differential Gene Expression #' #' @description #' The edge package implements methods for carrying out differential #' expression analyses of genome-wide gene expression studies. Significance #' testing using the optimal discovery procedure and generalized likelihood #' ratio tests (equivalent to F-tests and t-tests) are implemented for general study #' designs. Special functions are available to facilitate the analysis of #' common study designs, including time course experiments. Other packages #' such as snm, sva, and qvalue are integrated in edge to provide a wide range #' of tools for gene expression analysis. #' #' @examples #' \dontrun{ #' browseVignettes("edge") #' } #' @name edge #' @author John Storey, Jeffrey Leek, Andrew Bass #' @docType package #' @import Biobase methods splines sva snm qvalue MASS #' @useDynLib edge odpScoreCluster kldistance NULL #' @title Gene expression dataset from Calvano et al. (2005) Nature #' #' @description #' The data provide gene expression measurements in an endotoxin study where #' four subjects were given endotoxin and four subjects were given a placebo. #' Blood samples were collected and leukocytes were isolated from the samples #' before infusion and at times 2, 4, 6, 9, 24 hours. #' #' @usage data(endotoxin) #' @format #' \itemize{ #' \item endoexpr: A 500 rows by 46 columns data frame containing expression #' values. #' \item class: A vector of length 46 containing information about which #' individuals were given endotoxin. #' \item ind: A vector of length 46 providing indexing measurements for each #' individual in the experiment. #' \item time: A vector of length 46 indicating time measurements. #' } #' #' @note #' The data is a random subset of 500 genes from the full dataset. To #' download the full data set, go to \url{http://genomine.org/edge/}. #' #' @references #' Storey JD, Xiao W, Leek JT, Tompkins RG, and Davis RW. (2005) Significance #' analysis of time course microarray experiments. PNAS, 102: 12837-12842. \cr #' \url{http://www.pnas.org/content/100/16/9440.full} #' #' @examples #' library(splines) #' # import data #' data(endotoxin) #' ind <- endotoxin$ind #' class <- endotoxin$class #' time <- endotoxin$time #' endoexpr <- endotoxin$endoexpr #' cov <- data.frame(individual = ind, time = time, class = class) #' #' # formulate null and full models in experiement #' # note: interaction term is a way of taking into account group effects #' mNull <- ~ns(time, df=4, intercept = FALSE) + class #' mFull <- ~ns(time, df=4, intercept = FALSE) + #' ns(time, df=4, intercept = FALSE):class + class #' #' # create deSet object #' de_obj <- build_models(endoexpr, cov = cov, full.model = mFull, #' null.model = mNull, ind = ind) #' #' # Perform ODP/lrt statistic to determine significant genes in study #' de_odp <- odp(de_obj, bs.its = 10) #' de_lrt <- lrt(de_obj, nullDistn = "bootstrap", bs.its = 10) #' #' # summarize significance results #' summary(de_odp) #' @name endotoxin #' @return endotoxin dataset #' @docType data #' @keywords datasets NULL #' @title Gene expression dataset from Rodwell et al. (2004) #' #' @usage #' data(kidney) #' #' @description #' Gene expression measurements from kidney samples were obtained from 72 #' human subjects ranging in age from 27 to 92 years. Only one array was #' obtained per individual, and the age and sex of each individual were #' recorded. #' #' @format #' \itemize{ #' \item kidcov: A 133 rows by 6 columns data frame detailing the study #' design. #' \item kidexpr: A 500 rows by 133 columns matrix of gene expression values, #' where each row corresponds to a different probe-set and each column to a #' different tissue sample. #' \item age: A vector of length 133 giving the age of each sample. #' \item sex: A vector of length 133 giving the sex of each sample. #' } #' @note #' These data are a random subset of 500 probe-sets from the total number of #' probe-sets in the original data set. To download the full data set, go to #' \url{http://genomine.org/edge/}. The \code{age} and \code{sex} are contained #' in \code{kidcov} data frame. #' #' @references #' Storey JD, Xiao W, Leek JT, Tompkins RG, and Davis RW. (2005) Significance #' analysis of time course microarray experiments. PNAS, 102: 12837-12842. \cr #' \url{http://www.pnas.org/content/100/16/9440.full} #' #' @examples #' # import data #' data(kidney) #' sex <- kidney$sex #' age <- kidney$age #' kidexpr <- kidney$kidexpr #' #' # create model #' de_obj <- build_study(data = kidexpr, adj.var = sex, tme = age, #' sampling = "timecourse", basis.df = 4) #' #' # use the ODP/lrt method to determine significant genes #' de_odp <- odp(de_obj, bs.its=10) #' de_lrt <- lrt(de_obj, nullDistn = "bootstrap", bs.its = 10) #' #' # summarize significance results #' summary(de_odp) #' @name kidney #' @return kidney dataset #' @docType data #' @keywords datasets NULL #' @title Gene expression dataset from Idaghdour et al. (2008) #' #' @usage #' data(gibson) #' #' @description #' The data provide gene expression measurements in peripheral blood leukocyte #' samples from three Moroccan groups leading distinct ways of life: #' desert nomadic (DESERT), mountain agrarian (VILLAGE), and coastal urban #' (AGADIR). #' #' @format #' \itemize{ #' \item batch: Batches in experiment. #' \item location: Environment/lifestyle of Moroccan Amazigh groups. #' \item gender: Sex of individuals. #' \item gibexpr: A 500 rows by 46 columns matrix of gene expression values. #' } #' #' @note #' These data are a random subset of 500 genes from the total number of genes #' in the original data set. To download the full data set, go to #' \url{http://genomine.org/de/}. #' #' @references #' Idaghdour Y, Storey JD, Jadallah S, and Gibson G. (2008) A genome-wide gene #' expression signature of lifestyle in peripheral blood of Moroccan Amazighs. #' PLoS Genetics, 4: e1000052. #' #' @examples #' # import #' data(gibson) #' batch <- gibson$batch #' gender <- gibson$gender #' location <- gibson$location #' gibexpr <- gibson$gibexpr #' cov <- data.frame(Batch = batch, Gender = gender, #' Location = location) #' #' # create deSet for experiment- static experiment #' mNull <- ~Gender + Batch #' mFull <- ~Gender + Batch + Location #' #' # create deSet object #' de_obj <- build_models(gibexpr, cov = cov, full.model = mFull, #' null.model = mNull) #' #' # Perform ODP/lrt statistic to determine significant genes in study #' de_odp <- odp(de_obj, bs.its = 10) #' de_lrt <- lrt(de_obj, nullDistn = "bootstrap", bs.its = 10) #' #' # summarize significance results #' summary(de_odp) #' @name gibson #' @return gibson dataset #' @docType data #' @keywords datasets NULL