% Generated by roxygen2: do not edit by hand % Please edit documentation in R/form_models.R \name{build_study} \alias{build_study} \title{Formulates the experimental models} \usage{ build_study(data, grp = NULL, adj.var = NULL, bio.var = NULL, tme = NULL, ind = NULL, sampling = c("static", "timecourse"), basis.df = 2, basis.type = c("ncs", "poly")) } \arguments{ \item{data}{\code{matrix}: gene expression data (rows are genes, columns are samples).} \item{grp}{\code{vector}: group assignement in the study (for K-class studies). Optional.} \item{adj.var}{\code{matrix}: adjustment variables. Optional.} \item{bio.var}{\code{matrix}: biological variables. Optional.} \item{tme}{\code{vector}: time variable in a time course study. Optional.} \item{ind}{\code{factor}: individual factor for repeated observations of the same individuals. Optional.} \item{sampling}{\code{string}: type of study. Either "static" or "timecourse". Default is "static".} \item{basis.df}{\code{numeric}: degrees of freedom of the basis for time course study. Default is 2.} \item{basis.type}{\code{string}: either "ncs" (natural cubic spline) or "ps" (polynomial spline) basis for time course study. Default is "ncs".} } \value{ \code{\linkS4class{deSet}} object } \description{ \code{build_study} generates the full and null models for users unfamiliar with building models in R. There are two types of experimental designs: static and time-course. For more details, refer to the vignette. } \examples{ # create ExpressionSet object from kidney dataset library(splines) data(kidney) age <- kidney$age sex <- kidney$sex kidexpr <- kidney$kidexpr # create deSet object from data de_obj <- build_study(data = kidexpr, adj.var = sex, tme = age, sampling = "timecourse", basis.df = 4) } \author{ John Storey, Andy Bass } \seealso{ \code{\linkS4class{deSet}}, \code{\link{build_models}} }