% Generated by roxygen2: do not edit by hand % Please edit documentation in R/AllGenerics.R, R/deSet-methods.R \docType{methods} \name{apply_snm} \alias{apply_snm} \alias{apply_snm,deSet-method} \title{Supervised normalization of data in edge} \usage{ apply_snm(object, int.var = NULL, ...) \S4method{apply_snm}{deSet}(object, int.var = NULL, ...) } \arguments{ \item{object}{\code{S4 object}: \code{\linkS4class{deSet}}} \item{int.var}{\code{data frame}: intensity-dependent effects (see \code{\link{snm}} for details)} \item{...}{Additional arguments for \code{\link{snm}}} } \value{ \code{apply_snm} returns a \code{\linkS4class{deSet}} object where assayData (the expression data) that has been passed to apply_snm is replaced with the normalized data that \code{\link{snm}} returns. Specifically, \code{exprs(object)} is replaced by \code{$norm.dat} from \code{\link{snm}}, where \code{object} is the \code{\link{deSet}} object. } \description{ Runs \code{snm} on a deSet object based on the null and full models in \code{\linkS4class{deSet}}. See \code{\link{snm}} for additional details on the algorithm. } \examples{ # simulate data library(snm) singleChannel <- sim.singleChannel(12345) data <- singleChannel$raw.data # create deSet object using build_models (can use ExpressionSet see manual) cov <- data.frame(grp = singleChannel$bio.var[,2]) full_model <- ~grp null_model <- ~1 # create deSet object using build_models de_obj <- build_models(data = data, cov = cov, full.model = full_model, null.model = null_model) # run snm using intensity-dependent adjustment variable de_snm <- apply_snm(de_obj, int.var = singleChannel$int.var, verbose = FALSE, num.iter = 1) } \author{ John Storey, Andrew Bass } \references{ Mechan BH, Nelson PS, Storey JD. Supervised normalization of microarrays. Bioinformatics 2010;26:1308-1315. } \seealso{ \code{\linkS4class{deSet}}, \code{\link{odp}} and \code{\link{lrt}} }