% Generated by roxygen2: do not edit by hand % Please edit documentation in R/AllGenerics.R, R/deSet-methods.R \docType{methods} \name{fit_models} \alias{fit_models} \alias{fit_models,deSet-method} \title{Linear regression of the null and full models} \usage{ fit_models(object, stat.type = c("lrt", "odp"), weights = NULL) \S4method{fit_models}{deSet}(object, stat.type = c("lrt", "odp"), weights = NULL) } \arguments{ \item{object}{\code{S4 object}: \code{\linkS4class{deSet}}.} \item{stat.type}{\code{character}: type of statistic to be used. Either "lrt" or "odp". Default is "lrt".} \item{weights}{\code{matrix}: weights for each observation. Default is NULL.} } \value{ \code{\linkS4class{deFit}} object } \description{ \code{fit_models} fits a model matrix to each gene by using the least squares method. Model fits can be either statistic type "odp" (optimal discovery procedure) or "lrt" (likelihood ratio test). } \details{ If "odp" method is implemented then the null model is removed from the full model (see Storey 2007). Otherwise, the statistic type has no affect on the model fit. } \note{ \code{fit_models} does not have to be called by the user to use \code{\link{odp}}, \code{\link{lrt}} or \code{\link{kl_clust}} as it is an optional input and is implemented in the methods. The \code{\linkS4class{deFit}} object can be created by the user if a different statistical implementation is required. } \examples{ # import data library(splines) data(kidney) age <- kidney$age sex <- kidney$sex kidexpr <- kidney$kidexpr cov <- data.frame(sex = sex, age = age) # create models null_model <- ~sex full_model <- ~sex + ns(age, df = 4) # create deSet object from data de_obj <- build_models(data = kidexpr, cov = cov, null.model = null_model, full.model = full_model) # retrieve statistics from linear regression for each gene fit_lrt <- fit_models(de_obj, stat.type = "lrt") # lrt method fit_odp <- fit_models(de_obj, stat.type = "odp") # odp method # summarize object summary(fit_odp) } \author{ John Storey } \references{ Storey JD. (2007) The optimal discovery procedure: A new approach to simultaneous significance testing. Journal of the Royal Statistical Society, Series B, 69: 347-368. Storey JD, Dai JY, and Leek JT. (2007) The optimal discovery procedure for large-scale significance testing, with applications to comparative microarray experiments. Biostatistics, 8: 414-432. Storey JD, Xiao W, Leek JT, Tompkins RG, and Davis RW. (2005) Significance analysis of time course microarray experiments. Proceedings of the National Academy of Sciences, 102: 12837-12842. } \seealso{ \code{\linkS4class{deFit}}, \code{\link{odp}} and \code{\link{lrt}} }