Name Mode Size
R 040000
data 040000
man 040000
tests 040000
vignettes 040000
DESCRIPTION 100644 2 kb
LICENSE 100644 0 kb
LICENSE.md 100644 1 kb
NAMESPACE 100644 2 kb
NEWS.md 100644 0 kb
README.Rmd 100644 6 kb
README.md 100644 9 kb
README.md
<!-- README.md is generated from README.Rmd. Please edit that file --> # dinoR <!-- badges: start --> <!-- badges: end --> The goal of dinoR is to facilitate differential NOMe-seq data analysis. ## Installation You can install the development version of dinoR from [GitHub](https://github.com/) with: ``` r BiocManager::install("xxxmichixxx/dinoR") ``` then we can load dinoR and other necessary packages: ``` r suppressPackageStartupMessages({ library(dinoR) library(ggplot2) library(dplyr) library(SummarizedExperiment) }) ``` ### Load the NOMe-seq data for Adnp Knock-Out and WT mouse ES cells (two replicates each) We use [biscuit](https://huishenlab.github.io/biscuit/) to map 300bp paired-end reads to the genome, [UMI-tools](https://github.com/CGATOxford/UMI-tools) to remove duplicated UMIs, and the [fetch-NOMe package](https://github.com/fmi-basel/gpeters-fetchNOMe) to get the protection from GCH methylation calls for each read pair (fragment) overlapping a region of interest (ROI). The ROIs provided to fetchNOMe should all be centered around a transcription factor motif. Note that we use protection from methylation calls (0 = methylated, 1 = not methylated). We then use the R package [NOMeConverteR](https://github.com/fmi-basel/gbuehler-NOMeConverteR) to convert the resulting tibble into a ranged summarized experiment object. This represents an efficient way of sharing NOMe-seq data. ``` r NomeData <- readRDS(system.file("extdata", "NOMeSeqData.rds", package = "dinoR")) NomeData #> class: RangedSummarizedExperiment #> dim: 219 4 #> metadata(0): #> assays(5): nFragsFetched nFragsNonUnique nFragsBisFailed nFragsAnalyzed #> reads #> rownames(219): Adnp_chr8_47978653_47979275 #> Adnp_chr6_119394879_119395501 ... Rest_chr4_140283342_140283964 #> Rest_chr7_64704080_64704702 #> rowData names(1): motif #> colnames(4): AdnpKO_1 AdnpKO_2 WT_1 WT_2 #> colData names(2): samples group ``` The reads assay contains GPos objects with the GCH methylation data in two sparse logical matrices, one for protection from methylation , and one for methylation. ``` r assays(NomeData)[["reads"]][1,1] #> [[1]] #> UnstitchedGPos object with 623 positions and 2 metadata columns: #> seqnames pos strand | protection methylation #> <Rle> <integer> <Rle> | <lgCMatrix> <lgCMatrix> #> [1] chr8 47978653 + | FALSE:FALSE:FALSE:... FALSE:FALSE:FALSE:... #> [2] chr8 47978654 + | FALSE:FALSE:FALSE:... FALSE:FALSE:FALSE:... #> [3] chr8 47978655 + | FALSE:FALSE:FALSE:... FALSE:FALSE:FALSE:... #> [4] chr8 47978656 + | FALSE:FALSE:FALSE:... FALSE:FALSE:FALSE:... #> [5] chr8 47978657 + | FALSE:FALSE:FALSE:... FALSE:FALSE:FALSE:... #> ... ... ... ... . ... ... #> [619] chr8 47979271 + | FALSE:FALSE:FALSE:... FALSE:FALSE:FALSE:... #> [620] chr8 47979272 + | FALSE:FALSE:FALSE:... FALSE:FALSE:FALSE:... #> [621] chr8 47979273 + | FALSE:FALSE:FALSE:... FALSE:FALSE:FALSE:... #> [622] chr8 47979274 + | FALSE:FALSE:FALSE:... FALSE:FALSE:FALSE:... #> [623] chr8 47979275 + | FALSE:FALSE:FALSE:... FALSE:FALSE:FALSE:... #> ------- #> seqinfo: 53 sequences from an unspecified genome; no seqlengths ``` ## Meta plots across ROIs with common TF motifs in the center We generate metaplots, grouping our ROIs into those that have Rest, Ctcf, or Adnp bound to the motifs in their center. We use 2 samples from WT mouse ES cells, and two samples from Adnp KO mouse ES cells. We exclude any ROI - sample combinations which contain less than 10 reads (nr=10). ``` r avePlotData <- metaPlots(NomeData=NomeData,nr=10,ROIgroup = "motif") #plot average plots ggplot(avePlotData, aes(x=position,y=protection)) + geom_point(alpha=0.5) + geom_line(aes(x=position,y=loess),col="darkblue",lwd=2) + theme_classic() + facet_grid(rows = vars(type),cols= vars(sample), scales = "free") + ylim(c(0,100)) + geom_hline(yintercept = c(10,20,30,40,50,60,70,80,90), alpha=0.5,color="grey",linetype="dashed") ``` <img src="man/figures/README-unnamed-chunk-2-1.png" width="100%" /> We can already see that while the NOMe footprints around Rest and Ctcf bound motifs don’t change, there are clear differences between WT and Adnp KO cells around the Adnp bound motifs. ## Determine fragment counts for five chromatin patterns: TF, open, upNuc, downNuc, Nuc To quantify the differences visible in above meta plots, we adopted and slightly modified the approch of Sönmezer et al., 2021. We classify each fragment according to five types of footprints: transcription factor bound (TF), open chromatin, and nucleosome (we distinguish also upstream positioned nucleosome (upNuc), downstream positioned nucleosome (downNuc), and all other nucleosome (Nuc) footprints). To do this we use three windows (-50:-25, -8:8, 25:50) around the motif center (which should correspond to the ROI center of the provided ROIs). Then we count the number of fragments in each sample-ROI combination supporting each footprint category. <figure> <img src="vignettes/NOMe_patterns.png" alt="NOMe patterns" /> <figcaption aria-hidden="true">NOMe patterns</figcaption> </figure> ``` r NomeData <- footprintCalc(NomeData) NomeData <- footprintQuant(NomeData) NomeData #> class: RangedSummarizedExperiment #> dim: 219 4 #> metadata(0): #> assays(12): nFragsFetched nFragsNonUnique ... downNuc all #> rownames(219): Adnp_chr8_47978653_47979275 #> Adnp_chr6_119394879_119395501 ... Rest_chr4_140283342_140283964 #> Rest_chr7_64704080_64704702 #> rowData names(1): motif #> colnames(4): AdnpKO_1 AdnpKO_2 WT_1 WT_2 #> colData names(2): samples group ``` Note that if a fragment does not have methylation protection data in all three windows needed for classification, the fragment will not be used. Next we can test for differential abundance of footprints between Adnp KO and WT samples. ## Calculate differential NOMe-seq footprint abundance between Adnp KO and WT We use edgeR to check for differences in abundance between wild type and Adnp KO samples for each footprint type fragment count compared to the total fragment counts. Library sizes for TMM normalization are calculated on the total fragment counts. ``` r res <- diNOMeTest(NomeData,WTsamples = c("WT_1","WT_2"), KOsamples = c("AdnpKO_1","AdnpKO_2")) res #> # A tibble: 1,040 × 10 #> logFC logCPM F PValue FDR contrasts ROI motif logadjPval #> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <chr> <dbl> #> 1 1.69 10.9 17.5 0.0000305 0.00635 open_vs_all Adnp_chr4… Adnp 2.20 #> 2 1.53 10.4 9.22 0.00242 0.197 open_vs_all Adnp_chr6… Adnp 0.706 #> 3 1.22 9.34 8.83 0.00300 0.197 open_vs_all Adnp_chr8… Adnp 0.706 #> 4 -1.46 10.5 8.14 0.00437 0.197 open_vs_all Ctcf_chr2… Adnp 0.706 #> 5 1.05 10.6 8.00 0.00473 0.197 open_vs_all Adnp_chr1… Adnp 0.706 #> 6 1.13 10.2 6.75 0.00946 0.328 open_vs_all Adnp_chr1… Adnp 0.484 #> 7 1.00 10.8 4.97 0.0259 0.612 open_vs_all Adnp_chr4… Adnp 0.213 #> 8 -1.12 10.9 4.82 0.0282 0.612 open_vs_all Ctcf_chr7… Adnp 0.213 #> 9 0.566 9.86 4.72 0.0299 0.612 open_vs_all Adnp_chr2… Adnp 0.213 #> 10 -1.00 9.62 4.65 0.0312 0.612 open_vs_all Rest_chr7… Adnp 0.213 #> # ℹ 1,030 more rows #> # ℹ 1 more variable: regulated <chr> ``` We can then simply plot the number of regulated ROIs within each ROI type… ``` r res %>% group_by(contrasts,motif,regulated) %>% summarize(n=n()) %>% ggplot(aes(x=motif,y=n,fill=regulated)) + geom_bar(stat="identity") + facet_grid(~contrasts) + theme_bw() + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) + scale_fill_manual(values=c("orange","grey","blue3")) #> `summarise()` has grouped output by 'contrasts', 'motif'. You can override #> using the `.groups` argument. ``` <img src="man/figures/README-nregulated-1.png" width="100%" /> …or display the results in MA plots. ``` r ggplot(res,aes(y=logFC,x=logCPM,col=regulated)) + geom_point() + facet_grid(~contrasts) + theme_bw() + scale_color_manual(values=c("orange","grey","blue3")) ``` <img src="man/figures/README-MAplot-1.png" width="100%" /> ## Calculate the percentage of fragments in each footprint type and plot a (clustered) heatmap comparing percentages in WT and Adnp KO ``` r footprint_percentages <- footprintPerc(NomeData) fpPercHeatmap(footprint_percentages) ``` <img src="man/figures/README-percentages-1.png" width="100%" /> ## Compare the footprint percentages and significance testing results for Adnp KO and WT ``` r compareFootprints(footprint_percentages,res,WTsamples = c("WT_1","WT_2"), KOsamples = c("AdnpKO_1","AdnpKO_2"),plotcols = c("#f03b20", "#a8ddb5", "#bdbdbd")) ``` <img src="man/figures/README-comparison-1.png" width="100%" /> We can see that in Adnp KO samples, transcription factor footprints significantly increase around Adnp motifs, while nucleosome footprints decrease.