setMethod("show", "CNSetLM", function(object){ callNextMethod(object) cat("lM: ", length(lM(object)), " elements \n") print(names(lM(object))) }) setMethod("[", "CNSetLM", function(x, i, j, ..., drop=FALSE){ x <- callNextMethod(x, i, j, ..., drop=drop) if(!missing(i)){ if(class(lM(x)) == "ffdf"){ lM(x) <- lapply(physical(lM(x)), function(x, i){open(x); x[i, ]}, i=i) } else { lM(x) <- lapply(lM(x), function(x, i) x[i, , drop=FALSE], i=i) } } x }) setMethod("lM", "CNSetLM", function(object) object@lM) setReplaceMethod("lM", c("CNSetLM", "list_or_ffdf"), function(object, value){ object@lM <- value object }) setAs("SnpSuperSet", "CNSetLM", function(from, to){ stopifnot("batch" %in% varLabels(from)) cnSet <- new("CNSetLM", alleleA=A(from), alleleB=B(from), call=snpCall(from), callProbability=snpCallProbability(from), CA=initializeBigMatrix("CA", nrow(from), ncol(from)), CB=initializeBigMatrix("CB", nrow(from), ncol(from)), annotation=annotation(from), featureData=featureData(from), experimentData=experimentData(from), phenoData=phenoData(from)) lM(cnSet) <- initializeParamObject(list(featureNames(cnSet), unique(from$batch))) return(cnSet) }) setMethod("computeCopynumber", "CNSet", function(object, MIN.OBS, DF.PRIOR, bias.adj, prior.prob, seed, verbose, GT.CONF.THR, PHI.THR, nHOM.THR, MIN.NU, MIN.PHI, THR.NU.PHI, thresholdCopynumber){ ## to do the bias adjustment, initial estimates of the parameters are needed ## The initial estimates are gotten by running computeCopynumber with cnOptions[["bias.adj"]]=FALSE cnOptions <- list( MIN.OBS=MIN.OBS, DF.PRIOR=DF.PRIOR, bias.adj=bias.adj, prior.prob=prior.prob, seed=seed, verbose=verbose, GT.CONF.THR=GT.CONF.THR, PHI.THR=PHI.THR, nHOM.THR=nHOM.THR, MIN.NU=MIN.NU, MIN.PHI=MIN.PHI, THR.NU.PHI=THR.NU.PHI, thresholdCopynumber=thresholdCopynumber) bias.adj <- cnOptions[["bias.adj"]] if(bias.adj & all(is.na(CA(object)))){ cnOptions[["bias.adj"]] <- FALSE } object <- computeCopynumber.CNSet(object, cnOptions) if(bias.adj & !cnOptions[["bias.adj"]]){ ## Do a second iteration with bias adjustment cnOptions[["bias.adj"]] <- TRUE object <- computeCopynumber.CNSet(object, cnOptions) } object }) setMethod("copyNumber", "CNSet", function(object){ I <- isSnp(object) CA <- CA(object) CB <- CB(object) CN <- CA + CB ##For nonpolymorphic probes, CA is the total copy number CN[!I, ] <- CA(object)[!I, ] CN }) setMethod("ellipse", "CNSet", function(x, copynumber, batch, ...){ ellipse.CNSet(x, copynumber, batch, ...) }) ##setMethod("ellipse", "CNSet", function(x, copynumber, ...){ ellipse.CNSet <- function(x, copynumber, batch, ...){ if(nrow(x) > 1) stop("only 1 snp at a time") ##batch <- unique(x$batch) if(missing(batch)){ stop("must specify batch") } if(length(batch) > 1) stop("batch variable not unique") nuA <- getParam(x, "nuA", batch) nuB <- getParam(x, "nuB", batch) phiA <- getParam(x, "phiA", batch) phiB <- getParam(x, "phiB", batch) tau2A <- getParam(x, "tau2A", batch) tau2B <- getParam(x, "tau2B", batch) sig2A <- getParam(x, "sig2A", batch) sig2B <- getParam(x, "sig2B", batch) corrA.BB <- getParam(x, "corrA.BB", batch) corrB.AA <- getParam(x, "corrB.AA", batch) corr <- getParam(x, "corr", batch) for(CN in copynumber){ for(CA in 0:CN){ CB <- CN-CA A.scale <- sqrt(tau2A*(CA==0) + sig2A*(CA > 0)) B.scale <- sqrt(tau2B*(CB==0) + sig2B*(CB > 0)) scale <- c(A.scale, B.scale) if(CA == 0 & CB > 0) rho <- corrA.BB if(CA > 0 & CB == 0) rho <- corrB.AA if(CA > 0 & CB > 0) rho <- corr if(CA == 0 & CB == 0) rho <- 0 lines(ellipse(x=rho, centre=c(log2(nuA+CA*phiA), log2(nuB+CB*phiB)), scale=scale), ...) } } }