git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/crlmm@53580 bc3139a8-67e5-0310-9ffc-ced21a209358
1 | 1 |
deleted file mode 100644 |
... | ... |
@@ -1,136 +0,0 @@ |
1 |
-\name{sample.CNSetLM} |
|
2 |
-\alias{sample.CNSetLM} |
|
3 |
-\docType{data} |
|
4 |
-\title{ |
|
5 |
- Dataset of class 'CNSetLM' |
|
6 |
-} |
|
7 |
-\description{ |
|
8 |
- |
|
9 |
- The data for 2119 polymorphic and nonpolymorphic markers on |
|
10 |
- chromosome 1 for the CEPH and Yoruban HapMap samples. |
|
11 |
- |
|
12 |
-} |
|
13 |
-\usage{data(sample.CNSetLM)} |
|
14 |
-\format{ |
|
15 |
- |
|
16 |
- This class has been deprecated. See example below for how to |
|
17 |
- update an existing 'CNSetLM' object to class 'CNSet'. |
|
18 |
- |
|
19 |
- The data illustrates the \code{CNSetLM-class}, with |
|
20 |
- \code{assayData} containing the quantile-normalized |
|
21 |
- intensities for the A and B alleles, genotype calls and |
|
22 |
- confidence scores (call and callProbability), and |
|
23 |
- allele-specific copy number (CA and CB). The parameters from |
|
24 |
- the linear model are stored in the lM slot. |
|
25 |
- |
|
26 |
-} |
|
27 |
-\examples{ |
|
28 |
-## class CNSetLM has been deprecated |
|
29 |
-data(sample.CNSetLM) |
|
30 |
-## update to class CNSet |
|
31 |
-cnSet <- as(sample.CNSetLM, "CNSet") |
|
32 |
-all(isCurrent(cnSet)) ## is the cnSet object current? |
|
33 |
-##subsetting |
|
34 |
-cnSet2 <- cnSet[, 1:5] |
|
35 |
-stopifnot(batchNames(cnSet2) == "C") |
|
36 |
-\dontrun{ |
|
37 |
- ## updating class CNSetLM using ff objects |
|
38 |
- ## a bigger object with multiple batches |
|
39 |
- if(require(ff)){ |
|
40 |
- outdir <- "/amber1/scratch/rscharpf/jss/hapmap2" |
|
41 |
- load(file.path(outdir, "container.rda")) |
|
42 |
- container <- object; rm(object); gc() |
|
43 |
- container2 <- as(container, "CNSet") |
|
44 |
- all(isCurrent(container2)) |
|
45 |
- ## test replacement methods, subset methods |
|
46 |
- table(batch(container2)) |
|
47 |
- ##generates warning ... would need open, close in the '[' method |
|
48 |
- invisible(open(nuA(container2))) |
|
49 |
- xx <- nu(container2, "A")[1:5, ] |
|
50 |
- nuA(container2)[1:5, ] <- xx |
|
51 |
- invisible(close(nuA(container2))) |
|
52 |
- } |
|
53 |
-} |
|
54 |
-## -------------------------------------------------- |
|
55 |
-## accessors for the feature-level info |
|
56 |
-## -------------------------------------------------- |
|
57 |
-chromosome(cnSet)[1:5] |
|
58 |
-position(cnSet)[1:5] |
|
59 |
-isSnp(cnSet)[1:5] |
|
60 |
-## 980 nonpolymorphic markers and 1139 polymoprhic markers |
|
61 |
-table(isSnp(cnSet)) |
|
62 |
-## -------------------------------------------------- |
|
63 |
-## sample-level statistics computed by crlmm |
|
64 |
-## -------------------------------------------------- |
|
65 |
-varLabels(cnSet) |
|
66 |
-## accessors for sample-level statistics |
|
67 |
-## The signal to noise ratio (SNR) |
|
68 |
-cnSet$SNR[1:5] |
|
69 |
-## the skew |
|
70 |
-cnSet$SKW[1:5] |
|
71 |
-## the gender (gender is imputed unless specified in the call to crlmm) |
|
72 |
-table(cnSet$gender) ## 1=male, 2=female |
|
73 |
-## -------------------------------------------------- |
|
74 |
-## -------------------------------------------------- |
|
75 |
-## |
|
76 |
-## accessors for parameters estimated from the linear model for copy |
|
77 |
-## number (note that the parameters have dimension R x C, where R |
|
78 |
-## corresponds to the number of features and C corresponds to the |
|
79 |
-## number of batches) |
|
80 |
-## -------------------------------------------------- estimate of |
|
81 |
-## background |
|
82 |
-dim(nu(cnSet, "A")) |
|
83 |
-## background for the A allele in the 2 batches for the |
|
84 |
-## first 5 markers |
|
85 |
-nu(cnSet, "A")[1:5, ] |
|
86 |
-## background for the B allele in the 2 batches for the |
|
87 |
-## first 5 markers |
|
88 |
-nu(cnSet, "B")[1:5, ] |
|
89 |
-## the slope |
|
90 |
-phi(cnSet, "A")[1:5, ] |
|
91 |
-## correlation within genotype cluster AA |
|
92 |
-##corr(cnSet, "AA")[1:5, ] |
|
93 |
-#### correlation within genotype cluster AB |
|
94 |
-##corr(cnSet, "AB")[1:5, ] |
|
95 |
-#### correlation within genotype cluster BB |
|
96 |
-##corr(cnSet, "BB")[1:5, ] |
|
97 |
-## -------------------------------------------------- |
|
98 |
- |
|
99 |
-## -------------------------------------------------- |
|
100 |
-## calculating allele-specific copy number |
|
101 |
-## -------------------------------------------------- |
|
102 |
-## copy number for allele A, first 5 markers, first 2 samples |
|
103 |
-(ca <- CA(cnSet, i=1:5, j=1:2)) |
|
104 |
-## copy number for allele B, first 5 markers, first 2 samples |
|
105 |
-(cb <- CB(cnSet, i=1:5, j=1:2)) |
|
106 |
-## total copy number for first 5 markers, first 2 samples |
|
107 |
-(cn1 <- ca+cb) |
|
108 |
- |
|
109 |
-## total copy number at first 5 nonpolymorphic loci |
|
110 |
-index <- which(!isSnp(cnSet))[1:5] |
|
111 |
-cn2 <- CA(cnSet, i=index, j=1:2) |
|
112 |
-## note, cb is NA at nonpolymorphic loci |
|
113 |
-(cb <- CB(cnSet, i=index, j=1:2)) |
|
114 |
-## note, ca+cb will give NAs at nonpolymorphic loci |
|
115 |
-CA(cnSet, i=index, j=1:2) + cb |
|
116 |
-## A shortcut for total copy number |
|
117 |
-cn3 <- totalCopynumber(cnSet, i=1:5, j=1:2) |
|
118 |
-all.equal(cn3, cn1) |
|
119 |
-cn4 <- totalCopynumber(cnSet, i=index, j=1:2) |
|
120 |
-all.equal(cn4, cn2) |
|
121 |
- |
|
122 |
-## markers 1-5, all samples |
|
123 |
-cn5 <- totalCopynumber(cnSet, i=1:5) |
|
124 |
-## all markers, samples 1-5 |
|
125 |
-cn6 <- totalCopynumber(cnSet, j=1:5) |
|
126 |
- |
|
127 |
-## NOTE: subsetting the object before extracting copy number |
|
128 |
-## can be very inefficient when the data set is very large, |
|
129 |
-## particularly if using ff objects. IN particular, subsetting |
|
130 |
-## the CNSet object will subset all of the assay data elements |
|
131 |
-## and all of the elements in the LinearModelParameter slot |
|
132 |
-\dontrun{ |
|
133 |
- cnsubset <- cnSet[1:5, ] |
|
134 |
-} |
|
135 |
-} |
|
136 |
-\keyword{datasets} |
git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/crlmm@49136 bc3139a8-67e5-0310-9ffc-ced21a209358
... | ... |
@@ -30,7 +30,9 @@ data(sample.CNSetLM) |
30 | 30 |
## update to class CNSet |
31 | 31 |
cnSet <- as(sample.CNSetLM, "CNSet") |
32 | 32 |
all(isCurrent(cnSet)) ## is the cnSet object current? |
33 |
- |
|
33 |
+##subsetting |
|
34 |
+cnSet2 <- cnSet[, 1:5] |
|
35 |
+stopifnot(batchNames(cnSet2) == "C") |
|
34 | 36 |
\dontrun{ |
35 | 37 |
## updating class CNSetLM using ff objects |
36 | 38 |
## a bigger object with multiple batches |
git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/crlmm@48965 bc3139a8-67e5-0310-9ffc-ced21a209358
... | ... |
@@ -31,28 +31,23 @@ data(sample.CNSetLM) |
31 | 31 |
cnSet <- as(sample.CNSetLM, "CNSet") |
32 | 32 |
all(isCurrent(cnSet)) ## is the cnSet object current? |
33 | 33 |
|
34 |
-## updating class CNSetLM using ff objects |
|
35 |
-library(ff) |
|
36 |
-path <- system.file("extdata", package="crlmm") |
|
37 |
-ldPath(path) |
|
38 |
-data(sample.CNSetLMff) |
|
39 |
-cnSetff <- as(sample.CNSetLMff, "CNSet") |
|
40 |
-all(isCurrent(cnSet)) |
|
41 |
- |
|
42 |
-## a bigger object with multiple batches |
|
43 | 34 |
\dontrun{ |
44 |
- outdir <- "/amber1/scratch/rscharpf/jss/hapmap2" |
|
45 |
- load(file.path(outdir, "container.rda")) |
|
46 |
- container <- object; rm(object); gc() |
|
47 |
- container2 <- as(container, "CNSet") |
|
48 |
- all(isCurrent(container2)) |
|
49 |
- ## test replacement methods, subset methods |
|
50 |
- table(batch(container2)) |
|
51 |
- ##generates warning ... would need open, close in the '[' method |
|
52 |
- invisible(open(nuA(container2))) |
|
53 |
- xx <- nu(container2, "A")[1:5, ] |
|
54 |
- nuA(container2)[1:5, ] <- xx |
|
55 |
- invisible(close(nuA(container2))) |
|
35 |
+ ## updating class CNSetLM using ff objects |
|
36 |
+ ## a bigger object with multiple batches |
|
37 |
+ if(require(ff)){ |
|
38 |
+ outdir <- "/amber1/scratch/rscharpf/jss/hapmap2" |
|
39 |
+ load(file.path(outdir, "container.rda")) |
|
40 |
+ container <- object; rm(object); gc() |
|
41 |
+ container2 <- as(container, "CNSet") |
|
42 |
+ all(isCurrent(container2)) |
|
43 |
+ ## test replacement methods, subset methods |
|
44 |
+ table(batch(container2)) |
|
45 |
+ ##generates warning ... would need open, close in the '[' method |
|
46 |
+ invisible(open(nuA(container2))) |
|
47 |
+ xx <- nu(container2, "A")[1:5, ] |
|
48 |
+ nuA(container2)[1:5, ] <- xx |
|
49 |
+ invisible(close(nuA(container2))) |
|
50 |
+ } |
|
56 | 51 |
} |
57 | 52 |
## -------------------------------------------------- |
58 | 53 |
## accessors for the feature-level info |
Ns and corr return an array with dimension: features x genotype x batch
medians and mads return an array with dimension: features x allele x genotype x batch
git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/crlmm@48964 bc3139a8-67e5-0310-9ffc-ced21a209358
... | ... |
@@ -36,7 +36,7 @@ library(ff) |
36 | 36 |
path <- system.file("extdata", package="crlmm") |
37 | 37 |
ldPath(path) |
38 | 38 |
data(sample.CNSetLMff) |
39 |
-cnSet <- as(sample.CNSetLMff, "CNSet") |
|
39 |
+cnSetff <- as(sample.CNSetLMff, "CNSet") |
|
40 | 40 |
all(isCurrent(cnSet)) |
41 | 41 |
|
42 | 42 |
## a bigger object with multiple batches |
... | ... |
@@ -91,18 +91,12 @@ nu(cnSet, "A")[1:5, ] |
91 | 91 |
nu(cnSet, "B")[1:5, ] |
92 | 92 |
## the slope |
93 | 93 |
phi(cnSet, "A")[1:5, ] |
94 |
-## the variance for CN > 0 (log2-scale) |
|
95 |
-sigma2(cnSet, "A")[1:5, ] |
|
96 |
-sigma2(cnSet, "B")[1:5, ] |
|
97 |
-## background variance (log2-scale) |
|
98 |
-tau2(cnSet, "A")[1:5, ] |
|
99 |
-tau2(cnSet, "B")[1:5, ] |
|
100 | 94 |
## correlation within genotype cluster AA |
101 |
-corr(cnSet, "AA")[1:5, ] |
|
102 |
-## correlation within genotype cluster AB |
|
103 |
-corr(cnSet, "AB")[1:5, ] |
|
104 |
-## correlation within genotype cluster BB |
|
105 |
-corr(cnSet, "BB")[1:5, ] |
|
95 |
+##corr(cnSet, "AA")[1:5, ] |
|
96 |
+#### correlation within genotype cluster AB |
|
97 |
+##corr(cnSet, "AB")[1:5, ] |
|
98 |
+#### correlation within genotype cluster BB |
|
99 |
+##corr(cnSet, "BB")[1:5, ] |
|
106 | 100 |
## -------------------------------------------------- |
107 | 101 |
|
108 | 102 |
## -------------------------------------------------- |
git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/crlmm@48963 bc3139a8-67e5-0310-9ffc-ced21a209358
... | ... |
@@ -54,25 +54,6 @@ all(isCurrent(cnSet)) |
54 | 54 |
nuA(container2)[1:5, ] <- xx |
55 | 55 |
invisible(close(nuA(container2))) |
56 | 56 |
} |
57 |
- |
|
58 |
- |
|
59 |
- |
|
60 |
- |
|
61 |
-nms <- names(lM(sample.CNSetLMff)) |
|
62 |
-##names must be tau2A, tau2B, ... |
|
63 |
-nms2 <- sapply(nms, function(x) strsplit(x, "\\.1")[[1]][[1]], USE.NAMES=FALSE) |
|
64 |
-names(sample.CNSetLMff@lM) <- nms2 |
|
65 |
-cnSetff <- as(sample.CNSetLMff, "CNSet") |
|
66 |
-## try replacement method without warning |
|
67 |
-nuA(cnSetff)[1:10, ] <- matrix(1:10, 10, 1) |
|
68 |
- |
|
69 |
-## try subset method without warning |
|
70 |
- |
|
71 |
- |
|
72 |
- |
|
73 |
-## information on the features |
|
74 |
-fvarLabels(cnSet) |
|
75 |
-## |
|
76 | 57 |
## -------------------------------------------------- |
77 | 58 |
## accessors for the feature-level info |
78 | 59 |
## -------------------------------------------------- |
... | ... |
@@ -81,8 +62,6 @@ position(cnSet)[1:5] |
81 | 62 |
isSnp(cnSet)[1:5] |
82 | 63 |
## 980 nonpolymorphic markers and 1139 polymoprhic markers |
83 | 64 |
table(isSnp(cnSet)) |
84 |
-## -------------------------------------------------- |
|
85 |
- |
|
86 | 65 |
## -------------------------------------------------- |
87 | 66 |
## sample-level statistics computed by crlmm |
88 | 67 |
## -------------------------------------------------- |
... | ... |
@@ -95,16 +74,14 @@ cnSet$SKW[1:5] |
95 | 74 |
## the gender (gender is imputed unless specified in the call to crlmm) |
96 | 75 |
table(cnSet$gender) ## 1=male, 2=female |
97 | 76 |
## -------------------------------------------------- |
98 |
- |
|
99 |
- |
|
100 |
-## -------------------------------------------------- |
|
101 |
-## accessors for linear model parameters estimated from |
|
102 |
-## the linear model for copy number |
|
103 |
-## (note that the parameters have dimension R x C, where |
|
104 |
-## R corresponds to the number of features and C corresponds |
|
105 |
-## to the number of batches) |
|
106 | 77 |
## -------------------------------------------------- |
107 |
-## estimate of background |
|
78 |
+## |
|
79 |
+## accessors for parameters estimated from the linear model for copy |
|
80 |
+## number (note that the parameters have dimension R x C, where R |
|
81 |
+## corresponds to the number of features and C corresponds to the |
|
82 |
+## number of batches) |
|
83 |
+## -------------------------------------------------- estimate of |
|
84 |
+## background |
|
108 | 85 |
dim(nu(cnSet, "A")) |
109 | 86 |
## background for the A allele in the 2 batches for the |
110 | 87 |
## first 5 markers |
... | ... |
@@ -146,15 +123,15 @@ cn2 <- CA(cnSet, i=index, j=1:2) |
146 | 123 |
## note, ca+cb will give NAs at nonpolymorphic loci |
147 | 124 |
CA(cnSet, i=index, j=1:2) + cb |
148 | 125 |
## A shortcut for total copy number |
149 |
-cn3 <- totalCopyNumber(cnSet, i=1:5, j=1:2) |
|
126 |
+cn3 <- totalCopynumber(cnSet, i=1:5, j=1:2) |
|
150 | 127 |
all.equal(cn3, cn1) |
151 |
-cn4 <- totalCopyNumber(cnSet, i=index, j=1:2) |
|
128 |
+cn4 <- totalCopynumber(cnSet, i=index, j=1:2) |
|
152 | 129 |
all.equal(cn4, cn2) |
153 | 130 |
|
154 | 131 |
## markers 1-5, all samples |
155 |
-cn5 <- totalCopyNumber(cnSet, i=1:5) |
|
132 |
+cn5 <- totalCopynumber(cnSet, i=1:5) |
|
156 | 133 |
## all markers, samples 1-5 |
157 |
-cn6 <- totalCopyNumber(cnSet, j=1:5) |
|
134 |
+cn6 <- totalCopynumber(cnSet, j=1:5) |
|
158 | 135 |
|
159 | 136 |
## NOTE: subsetting the object before extracting copy number |
160 | 137 |
## can be very inefficient when the data set is very large, |
git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/crlmm@48962 bc3139a8-67e5-0310-9ffc-ced21a209358
... | ... |
@@ -31,13 +31,13 @@ data(sample.CNSetLM) |
31 | 31 |
cnSet <- as(sample.CNSetLM, "CNSet") |
32 | 32 |
all(isCurrent(cnSet)) ## is the cnSet object current? |
33 | 33 |
|
34 |
-library(crlmm) |
|
34 |
+## updating class CNSetLM using ff objects |
|
35 | 35 |
library(ff) |
36 |
-outdir <- "~/madman/Rpacks/crlmm/inst/extdata" |
|
37 |
-ldPath(outdir) |
|
36 |
+path <- system.file("extdata", package="crlmm") |
|
37 |
+ldPath(path) |
|
38 | 38 |
data(sample.CNSetLMff) |
39 |
-cnSetff <- as(sample.CNSetLMff, "CNSet") |
|
40 |
-all(isCurrent(cnSetff)) |
|
39 |
+cnSet <- as(sample.CNSetLMff, "CNSet") |
|
40 |
+all(isCurrent(cnSet)) |
|
41 | 41 |
|
42 | 42 |
## a bigger object with multiple batches |
43 | 43 |
\dontrun{ |
Added the following functions:
o summarizeMaleXGenotypes
- impute genotype 'A' and genotype 'B' location when unobserved
- shrink within genotype variances
o shrinkGenotypeSummaries
- impute unobserved genotype 'AA', 'AB' and 'BB' genotypes
- shrink within genotype variances
o summarizeSnps
- within genotype location and scale. Genotype frequencies
o summarizeNps
- location and scale at nonpolymorphic loci
o genotypeSummary
- wrapper for summarizeSnps and summarizeNps
Extensively edited the following functions:
o fit.lm1 - fit.lm4
(these functions only fit the linear model to the within/genotype location scale)
Requires oligoClasses 1.11.7
git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/crlmm@48959 bc3139a8-67e5-0310-9ffc-ced21a209358
... | ... |
@@ -41,18 +41,18 @@ all(isCurrent(cnSetff)) |
41 | 41 |
|
42 | 42 |
## a bigger object with multiple batches |
43 | 43 |
\dontrun{ |
44 |
-outdir <- "/amber1/scratch/rscharpf/jss/hapmap2" |
|
45 |
-load(file.path(outdir, "container.rda")) |
|
46 |
-container <- object; rm(object) |
|
47 |
-container2 <- as(container, "CNSet") |
|
48 |
-all(isCurrent(container2)) |
|
49 |
-## test replacement methods, subset methods |
|
50 |
-table(batch(container2)) |
|
51 |
-##generates warning ... would need open, close in the '[' method |
|
52 |
-invisible(open(nuA(container2))) |
|
53 |
-xx <- nu(container2, "A")[1:5, ] |
|
54 |
-nuA(container2)[1:5, ] <- xx |
|
55 |
-invisible(close(nuA(container2))) |
|
44 |
+ outdir <- "/amber1/scratch/rscharpf/jss/hapmap2" |
|
45 |
+ load(file.path(outdir, "container.rda")) |
|
46 |
+ container <- object; rm(object); gc() |
|
47 |
+ container2 <- as(container, "CNSet") |
|
48 |
+ all(isCurrent(container2)) |
|
49 |
+ ## test replacement methods, subset methods |
|
50 |
+ table(batch(container2)) |
|
51 |
+ ##generates warning ... would need open, close in the '[' method |
|
52 |
+ invisible(open(nuA(container2))) |
|
53 |
+ xx <- nu(container2, "A")[1:5, ] |
|
54 |
+ nuA(container2)[1:5, ] <- xx |
|
55 |
+ invisible(close(nuA(container2))) |
|
56 | 56 |
} |
57 | 57 |
|
58 | 58 |
|
git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/crlmm@48958 bc3139a8-67e5-0310-9ffc-ced21a209358
... | ... |
@@ -31,6 +31,45 @@ data(sample.CNSetLM) |
31 | 31 |
cnSet <- as(sample.CNSetLM, "CNSet") |
32 | 32 |
all(isCurrent(cnSet)) ## is the cnSet object current? |
33 | 33 |
|
34 |
+library(crlmm) |
|
35 |
+library(ff) |
|
36 |
+outdir <- "~/madman/Rpacks/crlmm/inst/extdata" |
|
37 |
+ldPath(outdir) |
|
38 |
+data(sample.CNSetLMff) |
|
39 |
+cnSetff <- as(sample.CNSetLMff, "CNSet") |
|
40 |
+all(isCurrent(cnSetff)) |
|
41 |
+ |
|
42 |
+## a bigger object with multiple batches |
|
43 |
+\dontrun{ |
|
44 |
+outdir <- "/amber1/scratch/rscharpf/jss/hapmap2" |
|
45 |
+load(file.path(outdir, "container.rda")) |
|
46 |
+container <- object; rm(object) |
|
47 |
+container2 <- as(container, "CNSet") |
|
48 |
+all(isCurrent(container2)) |
|
49 |
+## test replacement methods, subset methods |
|
50 |
+table(batch(container2)) |
|
51 |
+##generates warning ... would need open, close in the '[' method |
|
52 |
+invisible(open(nuA(container2))) |
|
53 |
+xx <- nu(container2, "A")[1:5, ] |
|
54 |
+nuA(container2)[1:5, ] <- xx |
|
55 |
+invisible(close(nuA(container2))) |
|
56 |
+} |
|
57 |
+ |
|
58 |
+ |
|
59 |
+ |
|
60 |
+ |
|
61 |
+nms <- names(lM(sample.CNSetLMff)) |
|
62 |
+##names must be tau2A, tau2B, ... |
|
63 |
+nms2 <- sapply(nms, function(x) strsplit(x, "\\.1")[[1]][[1]], USE.NAMES=FALSE) |
|
64 |
+names(sample.CNSetLMff@lM) <- nms2 |
|
65 |
+cnSetff <- as(sample.CNSetLMff, "CNSet") |
|
66 |
+## try replacement method without warning |
|
67 |
+nuA(cnSetff)[1:10, ] <- matrix(1:10, 10, 1) |
|
68 |
+ |
|
69 |
+## try subset method without warning |
|
70 |
+ |
|
71 |
+ |
|
72 |
+ |
|
34 | 73 |
## information on the features |
35 | 74 |
fvarLabels(cnSet) |
36 | 75 |
## |
git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/crlmm@48951 bc3139a8-67e5-0310-9ffc-ced21a209358
... | ... |
@@ -2,7 +2,7 @@ |
2 | 2 |
\alias{sample.CNSetLM} |
3 | 3 |
\docType{data} |
4 | 4 |
\title{ |
5 |
- Dataset of class 'CNSetLM' |
|
5 |
+ Dataset of class 'CNSetLM' |
|
6 | 6 |
} |
7 | 7 |
\description{ |
8 | 8 |
|
... | ... |
@@ -15,20 +15,115 @@ |
15 | 15 |
|
16 | 16 |
This class has been deprecated. See example below for how to |
17 | 17 |
update an existing 'CNSetLM' object to class 'CNSet'. |
18 |
- |
|
18 |
+ |
|
19 | 19 |
The data illustrates the \code{CNSetLM-class}, with |
20 | 20 |
\code{assayData} containing the quantile-normalized |
21 | 21 |
intensities for the A and B alleles, genotype calls and |
22 | 22 |
confidence scores (call and callProbability), and |
23 | 23 |
allele-specific copy number (CA and CB). The parameters from |
24 | 24 |
the linear model are stored in the lM slot. |
25 |
- |
|
25 |
+ |
|
26 | 26 |
} |
27 | 27 |
\examples{ |
28 | 28 |
## class CNSetLM has been deprecated |
29 | 29 |
data(sample.CNSetLM) |
30 | 30 |
## update to class CNSet |
31 | 31 |
cnSet <- as(sample.CNSetLM, "CNSet") |
32 |
-all(isCurrent(cnSet)) |
|
32 |
+all(isCurrent(cnSet)) ## is the cnSet object current? |
|
33 |
+ |
|
34 |
+## information on the features |
|
35 |
+fvarLabels(cnSet) |
|
36 |
+## |
|
37 |
+## -------------------------------------------------- |
|
38 |
+## accessors for the feature-level info |
|
39 |
+## -------------------------------------------------- |
|
40 |
+chromosome(cnSet)[1:5] |
|
41 |
+position(cnSet)[1:5] |
|
42 |
+isSnp(cnSet)[1:5] |
|
43 |
+## 980 nonpolymorphic markers and 1139 polymoprhic markers |
|
44 |
+table(isSnp(cnSet)) |
|
45 |
+## -------------------------------------------------- |
|
46 |
+ |
|
47 |
+## -------------------------------------------------- |
|
48 |
+## sample-level statistics computed by crlmm |
|
49 |
+## -------------------------------------------------- |
|
50 |
+varLabels(cnSet) |
|
51 |
+## accessors for sample-level statistics |
|
52 |
+## The signal to noise ratio (SNR) |
|
53 |
+cnSet$SNR[1:5] |
|
54 |
+## the skew |
|
55 |
+cnSet$SKW[1:5] |
|
56 |
+## the gender (gender is imputed unless specified in the call to crlmm) |
|
57 |
+table(cnSet$gender) ## 1=male, 2=female |
|
58 |
+## -------------------------------------------------- |
|
59 |
+ |
|
60 |
+ |
|
61 |
+## -------------------------------------------------- |
|
62 |
+## accessors for linear model parameters estimated from |
|
63 |
+## the linear model for copy number |
|
64 |
+## (note that the parameters have dimension R x C, where |
|
65 |
+## R corresponds to the number of features and C corresponds |
|
66 |
+## to the number of batches) |
|
67 |
+## -------------------------------------------------- |
|
68 |
+## estimate of background |
|
69 |
+dim(nu(cnSet, "A")) |
|
70 |
+## background for the A allele in the 2 batches for the |
|
71 |
+## first 5 markers |
|
72 |
+nu(cnSet, "A")[1:5, ] |
|
73 |
+## background for the B allele in the 2 batches for the |
|
74 |
+## first 5 markers |
|
75 |
+nu(cnSet, "B")[1:5, ] |
|
76 |
+## the slope |
|
77 |
+phi(cnSet, "A")[1:5, ] |
|
78 |
+## the variance for CN > 0 (log2-scale) |
|
79 |
+sigma2(cnSet, "A")[1:5, ] |
|
80 |
+sigma2(cnSet, "B")[1:5, ] |
|
81 |
+## background variance (log2-scale) |
|
82 |
+tau2(cnSet, "A")[1:5, ] |
|
83 |
+tau2(cnSet, "B")[1:5, ] |
|
84 |
+## correlation within genotype cluster AA |
|
85 |
+corr(cnSet, "AA")[1:5, ] |
|
86 |
+## correlation within genotype cluster AB |
|
87 |
+corr(cnSet, "AB")[1:5, ] |
|
88 |
+## correlation within genotype cluster BB |
|
89 |
+corr(cnSet, "BB")[1:5, ] |
|
90 |
+## -------------------------------------------------- |
|
91 |
+ |
|
92 |
+## -------------------------------------------------- |
|
93 |
+## calculating allele-specific copy number |
|
94 |
+## -------------------------------------------------- |
|
95 |
+## copy number for allele A, first 5 markers, first 2 samples |
|
96 |
+(ca <- CA(cnSet, i=1:5, j=1:2)) |
|
97 |
+## copy number for allele B, first 5 markers, first 2 samples |
|
98 |
+(cb <- CB(cnSet, i=1:5, j=1:2)) |
|
99 |
+## total copy number for first 5 markers, first 2 samples |
|
100 |
+(cn1 <- ca+cb) |
|
101 |
+ |
|
102 |
+## total copy number at first 5 nonpolymorphic loci |
|
103 |
+index <- which(!isSnp(cnSet))[1:5] |
|
104 |
+cn2 <- CA(cnSet, i=index, j=1:2) |
|
105 |
+## note, cb is NA at nonpolymorphic loci |
|
106 |
+(cb <- CB(cnSet, i=index, j=1:2)) |
|
107 |
+## note, ca+cb will give NAs at nonpolymorphic loci |
|
108 |
+CA(cnSet, i=index, j=1:2) + cb |
|
109 |
+## A shortcut for total copy number |
|
110 |
+cn3 <- totalCopyNumber(cnSet, i=1:5, j=1:2) |
|
111 |
+all.equal(cn3, cn1) |
|
112 |
+cn4 <- totalCopyNumber(cnSet, i=index, j=1:2) |
|
113 |
+all.equal(cn4, cn2) |
|
114 |
+ |
|
115 |
+## markers 1-5, all samples |
|
116 |
+cn5 <- totalCopyNumber(cnSet, i=1:5) |
|
117 |
+## all markers, samples 1-5 |
|
118 |
+cn6 <- totalCopyNumber(cnSet, j=1:5) |
|
119 |
+ |
|
120 |
+## NOTE: subsetting the object before extracting copy number |
|
121 |
+## can be very inefficient when the data set is very large, |
|
122 |
+## particularly if using ff objects. IN particular, subsetting |
|
123 |
+## the CNSet object will subset all of the assay data elements |
|
124 |
+## and all of the elements in the LinearModelParameter slot |
|
125 |
+\dontrun{ |
|
126 |
+ cnsubset <- cnSet[1:5, ] |
|
127 |
+} |
|
33 | 128 |
} |
34 | 129 |
\keyword{datasets} |
git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/crlmm@48950 bc3139a8-67e5-0310-9ffc-ced21a209358
... | ... |
@@ -13,6 +13,9 @@ |
13 | 13 |
\usage{data(sample.CNSetLM)} |
14 | 14 |
\format{ |
15 | 15 |
|
16 |
+ This class has been deprecated. See example below for how to |
|
17 |
+ update an existing 'CNSetLM' object to class 'CNSet'. |
|
18 |
+ |
|
16 | 19 |
The data illustrates the \code{CNSetLM-class}, with |
17 | 20 |
\code{assayData} containing the quantile-normalized |
18 | 21 |
intensities for the A and B alleles, genotype calls and |
... | ... |
@@ -22,6 +25,10 @@ |
22 | 25 |
|
23 | 26 |
} |
24 | 27 |
\examples{ |
28 |
+## class CNSetLM has been deprecated |
|
25 | 29 |
data(sample.CNSetLM) |
30 |
+## update to class CNSet |
|
31 |
+cnSet <- as(sample.CNSetLM, "CNSet") |
|
32 |
+all(isCurrent(cnSet)) |
|
26 | 33 |
} |
27 | 34 |
\keyword{datasets} |
Added a lot of generics for accessing and updating elements in the
LinearModelParameter class.
git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/crlmm@48949 bc3139a8-67e5-0310-9ffc-ced21a209358
... | ... |
@@ -13,7 +13,7 @@ |
13 | 13 |
\usage{data(sample.CNSetLM)} |
14 | 14 |
\format{ |
15 | 15 |
|
16 |
- The data illustrates the \code{\link{CNSetLM-class}}, with |
|
16 |
+ The data illustrates the \code{CNSetLM-class}, with |
|
17 | 17 |
\code{assayData} containing the quantile-normalized |
18 | 18 |
intensities for the A and B alleles, genotype calls and |
19 | 19 |
confidence scores (call and callProbability), and |
git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/crlmm@47121 bc3139a8-67e5-0310-9ffc-ced21a209358
1 | 1 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,27 @@ |
1 |
+\name{sample.CNSetLM} |
|
2 |
+\alias{sample.CNSetLM} |
|
3 |
+\docType{data} |
|
4 |
+\title{ |
|
5 |
+ Dataset of class 'CNSetLM' |
|
6 |
+} |
|
7 |
+\description{ |
|
8 |
+ |
|
9 |
+ The data for 2119 polymorphic and nonpolymorphic markers on |
|
10 |
+ chromosome 1 for the CEPH and Yoruban HapMap samples. |
|
11 |
+ |
|
12 |
+} |
|
13 |
+\usage{data(sample.CNSetLM)} |
|
14 |
+\format{ |
|
15 |
+ |
|
16 |
+ The data illustrates the \code{\link{CNSetLM-class}}, with |
|
17 |
+ \code{assayData} containing the quantile-normalized |
|
18 |
+ intensities for the A and B alleles, genotype calls and |
|
19 |
+ confidence scores (call and callProbability), and |
|
20 |
+ allele-specific copy number (CA and CB). The parameters from |
|
21 |
+ the linear model are stored in the lM slot. |
|
22 |
+ |
|
23 |
+} |
|
24 |
+\examples{ |
|
25 |
+data(sample.CNSetLM) |
|
26 |
+} |
|
27 |
+\keyword{datasets} |