Browse code

Merge branch 'collab'

* collab:
fixing vignettes dir
fixing vignettes dir
removing old vignettes
removing old vignettes
Adding GGdata to suggests
Fixed vignette for genotyping + association; Moved oligoClasses back to Depends b/c final users do need access to calls()/confs() when using crlmm()

git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/crlmm@64350 bc3139a8-67e5-0310-9ffc-ced21a209358

Rob Scharp authored on 23/03/2012 17:35:35
Showing 1 changed files
1 1
new file mode 100644
... ...
@@ -0,0 +1,86 @@
1
+%\VignetteIndexEntry{crlmm Vignette - Genotyping}
2
+%\VignetteDepends{crlmm, hapmapsnp6, genomewidesnp6Crlmm}
3
+%\VignetteKeywords{genotype, crlmm, SNP 5, SNP 6}
4
+%\VignettePackage{crlmm}
5
+\documentclass{article}
6
+
7
+\newcommand{\Rfunction}[1]{{\texttt{#1}}}
8
+\newcommand{\Rmethod}[1]{{\texttt{#1}}}
9
+\newcommand{\Rcode}[1]{{\texttt{#1}}}
10
+\newcommand{\Robject}[1]{{\texttt{#1}}}
11
+\newcommand{\Rpackage}[1]{{\textsf{#1}}}
12
+\newcommand{\Rclass}[1]{{\textit{#1}}}
13
+\newcommand{\oligo}{\Rpackage{oligo }}
14
+
15
+\begin{document}
16
+\title{Genotyping with the \Rpackage{crlmm} Package}
17
+\date{March, 2009}
18
+\author{Benilton Carvalho}
19
+\maketitle
20
+
21
+<<setup, echo=FALSE, results=hide>>=
22
+options(width=60)
23
+options(continue=" ")
24
+options(prompt="R> ")
25
+@ 
26
+
27
+\section{Quick intro to \Rpackage{crlmm}}
28
+
29
+The \Rpackage{crlmm} package contains a new implementation for the
30
+CRLMM algorithm (Carvalho et. al. 2007). Our focus is on efficient
31
+genotyping of SNP 5.0 and 6.0 Affymetrix arrays, although extensions
32
+of the method are under development for similar platforms.
33
+
34
+This implementation, compared to the previous one (in
35
+\Rpackage{oligo}), offers improved confidence scores, quality scores
36
+for SNP's and batches, higher accuracy on different datasets and
37
+better performance.
38
+
39
+Additionally, this package does not use the pd.genomewidesnp packages
40
+created via pdInfoBuilder for \Rpackage{oligo}. Instead, it uses
41
+different annotation packages (\Rpackage{genomewidesnp.5} and
42
+\Rpackage{genomewidesnp.6}), which use simple R objects to store only
43
+the information needed for genotyping. This allowed us to improve the
44
+speed of the method, as SQL queries are no longer performed here.
45
+
46
+It is also our priority to make the package simple to use. Below we
47
+demonstrate how to get genotype calls with the 'new' CRLMM. We use 3
48
+samples on SNP 5.0 made available via the \Rpackage{hapmapsnp5}
49
+package.
50
+
51
+<<crlmm>>=
52
+require(oligoClasses)
53
+library(crlmm)
54
+library(hapmapsnp6)
55
+path <- system.file("celFiles", package="hapmapsnp6")
56
+celFiles <- list.celfiles(path, full.names=TRUE)
57
+system.time(crlmmResult <- crlmm(celFiles, verbose=FALSE))
58
+@ 
59
+
60
+The \Robject{crlmmResult} is a \Rclass{SnpSet} (see Biobase) object.
61
+\begin{itemize}
62
+\item \Robject{calls}: genotype calls (1 - AA; 2 - AB; 3 - BB);
63
+\item \Robject{confs}: confidence scores, which can be translated to probabilities by using:
64
+  \[ 1-2^-(\mbox{confs}/1000), \] although we prefer this
65
+  representation as it saves a significant amount of memory;
66
+\item \Robject{SNPQC}: SNP quality score;
67
+%%\item \Robject{batchQC}: Batch quality score;
68
+\item \Robject{SNR}: Signal-to-noise ratio.
69
+\end{itemize}
70
+
71
+<<out>>=
72
+calls(crlmmResult)[1:10,]
73
+confs(crlmmResult)[1:10,]
74
+crlmmResult[["SNR"]]
75
+@ 
76
+
77
+\section{Details}
78
+
79
+This document was written using:
80
+
81
+<<>>=
82
+sessionInfo()
83
+@ 
84
+
85
+
86
+\end{document}