Ns and corr return an array with dimension: features x genotype x batch
medians and mads return an array with dimension: features x allele x genotype x batch
git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/crlmm@48964 bc3139a8-67e5-0310-9ffc-ced21a209358
... | ... |
@@ -76,7 +76,7 @@ export(crlmm, |
76 | 76 |
export(constructIlluminaCNSet) |
77 | 77 |
export(totalCopynumber) |
78 | 78 |
export(cnrma, cnrma2) |
79 |
-exportMethods(A, B, nuA, nuB, phiA, phiB, corr, tau2, Ns) |
|
79 |
+exportMethods(A, B, nuA, nuB, phiA, phiB, corr, tau2, Ns, medians, mads) |
|
80 | 80 |
export(genotypeSummary, |
81 | 81 |
shrinkSummary, |
82 | 82 |
estimateCnParameters) |
... | ... |
@@ -1,99 +1,198 @@ |
1 | 1 |
setMethod("Ns", signature(object="AssayData"), |
2 |
- function(object, genotype, batchname){ |
|
3 |
- if(missing(batchname) & length(sampleNames(object)) > 1) |
|
4 |
- stop("must supply batchname") |
|
5 |
- if(!missing(batchname)){ |
|
6 |
- stopifnot(batchname %in% batchNames(object)) |
|
7 |
- j <- match(batchname, sampleNames(object)) |
|
8 |
- } else j <- 1 |
|
9 |
- if(missing(genotype)){ |
|
10 |
- res <- cbind(assayDataElement(object, "N.AA")[, j], |
|
11 |
- assayDataElement(object, "N.AB")[, j], |
|
12 |
- assayDataElement(object, "N.BB")[, j]) |
|
13 |
- return(res) |
|
14 |
- } else{ |
|
15 |
- getValue <- function(genotype){ |
|
16 |
- switch(genotype, |
|
17 |
- AA="N.AA", |
|
18 |
- AB="N.AB", |
|
19 |
- BB="N.BB", |
|
20 |
- stop("allele must be 'AA', 'AB', or 'BB'")) |
|
21 |
- } |
|
22 |
- val <- getValue(genotype) |
|
23 |
- return(assayDataElement(object, val)[, j]) |
|
2 |
+ function(object, i, j, ...){ |
|
3 |
+ if(!missing(j)){ |
|
4 |
+ batchnames <- unique(as.character(batch(object)[j])) |
|
5 |
+ } else batchnames <- batchNames(object) |
|
6 |
+ nc <- length(batchnames) |
|
7 |
+ if(!missing(i)) nr <- length(i) else nr <- nrow(object) |
|
8 |
+ res <- array(NA, dim=c(nr, 3, nc)) |
|
9 |
+ dimnames(res)[[2]] <- c("AA", "AB", "BB") |
|
10 |
+ dimnames(res)[[3]] <- batchnames |
|
11 |
+ if(missing(i) & missing(j)){ |
|
12 |
+ N.AA <- as.matrix(assayDataElement(object, "N.AA")) |
|
13 |
+ N.AB <- as.matrix(assayDataElement(object, "N.AB")) |
|
14 |
+ N.BB <- as.matrix(assayDataElement(object, "N.BB")) |
|
15 |
+ } |
|
16 |
+ if(missing(i) & !missing(j)){ |
|
17 |
+ J <- match(batchnames, batchNames(object)) |
|
18 |
+ stopifnot(length(J) > 0 & !all(is.na(J))) |
|
19 |
+ N.AA <- as.matrix(assayDataElement(object, "N.AA"))[, J, ...] |
|
20 |
+ N.AB <- as.matrix(assayDataElement(object, "N.AB"))[, J, ...] |
|
21 |
+ N.BB <- as.matrix(assayDataElement(object, "N.BB"))[, J, ...] |
|
24 | 22 |
} |
23 |
+ if(!missing(i) & !missing(j)){ |
|
24 |
+ J <- match(batchnames, batchNames(object)) |
|
25 |
+ stopifnot(length(J) > 0 & !all(is.na(J))) |
|
26 |
+ N.AA <- as.matrix(assayDataElement(object, "N.AA"))[i, J, ...] |
|
27 |
+ N.AB <- as.matrix(assayDataElement(object, "N.AB"))[i, J, ...] |
|
28 |
+ N.BB <- as.matrix(assayDataElement(object, "N.BB"))[i, J, ...] |
|
29 |
+ } |
|
30 |
+ if(!missing(i) & missing(j)){ |
|
31 |
+ N.AA <- as.matrix(assayDataElement(object, "N.AA"))[i, , ...] |
|
32 |
+ N.AB <- as.matrix(assayDataElement(object, "N.AB"))[i, , ...] |
|
33 |
+ N.BB <- as.matrix(assayDataElement(object, "N.BB"))[i, , ...] |
|
34 |
+ } |
|
35 |
+ res[, "AA", ] <- N.AA |
|
36 |
+ res[, "AB", ] <- N.AB |
|
37 |
+ res[, "BB", ] <- N.BB |
|
38 |
+ return(res) |
|
25 | 39 |
}) |
26 | 40 |
setMethod("corr", signature(object="AssayData"), |
27 |
- function(object, genotype, batchname){ |
|
28 |
- if(missing(batchname) & length(sampleNames(object)) > 1) |
|
29 |
- stop("must supply batchname") |
|
30 |
- if(!missing(batchname)){ |
|
31 |
- stopifnot(batchname %in% batchNames(object)) |
|
32 |
- j <- match(batchname, sampleNames(object)) |
|
33 |
- } else j <- 1 |
|
34 |
- if(missing(genotype)){ |
|
35 |
- res <- cbind(assayDataElement(object, "corrAA")[, j], |
|
36 |
- assayDataElement(object, "corrAB")[, j], |
|
37 |
- assayDataElement(object, "corrBB")[, j]) |
|
38 |
- return(res) |
|
39 |
- } else{ |
|
40 |
- getValue <- function(genotype){ |
|
41 |
- switch(genotype, |
|
42 |
- AA="corrAA", |
|
43 |
- AB="corrAB", |
|
44 |
- BB="corrBB", |
|
45 |
- stop("allele must be 'AA', 'AB', or 'BB'")) |
|
46 |
- } |
|
47 |
- val <- getValue(genotype) |
|
48 |
- return(assayDataElement(object, val)[, j]) |
|
41 |
+ function(object, i, j, ...){ |
|
42 |
+ if(!missing(j)){ |
|
43 |
+ batchnames <- unique(as.character(batch(object)[j])) |
|
44 |
+ } else batchnames <- batchNames(object) |
|
45 |
+ nc <- length(batchnames) |
|
46 |
+ if(!missing(i)) nr <- length(i) else nr <- nrow(object) |
|
47 |
+ res <- array(NA, dim=c(nr, 3, nc)) |
|
48 |
+ dimnames(res)[[2]] <- c("AA", "AB", "BB") |
|
49 |
+ dimnames(res)[[3]] <- batchnames |
|
50 |
+ if(missing(i) & missing(j)){ |
|
51 |
+ corrAA <- as.matrix(assayDataElement(object, "corrAA")) |
|
52 |
+ corrAB <- as.matrix(assayDataElement(object, "corrAB")) |
|
53 |
+ corrBB <- as.matrix(assayDataElement(object, "corrBB")) |
|
54 |
+ } |
|
55 |
+ if(missing(i) & !missing(j)){ |
|
56 |
+ J <- match(batchnames, batchNames(object)) |
|
57 |
+ stopifnot(length(J) > 0 & !all(is.na(J))) |
|
58 |
+ corrAA <- as.matrix(assayDataElement(object, "corrAA"))[, J, ...] |
|
59 |
+ corrAB <- as.matrix(assayDataElement(object, "corrAB"))[, J, ...] |
|
60 |
+ corrBB <- as.matrix(assayDataElement(object, "corrBB"))[, J, ...] |
|
61 |
+ } |
|
62 |
+ if(!missing(i) & !missing(j)){ |
|
63 |
+ J <- match(batchnames, batchNames(object)) |
|
64 |
+ stopifnot(length(J) > 0 & !all(is.na(J))) |
|
65 |
+ corrAA <- as.matrix(assayDataElement(object, "corrAA"))[i, J, ...] |
|
66 |
+ corrAB <- as.matrix(assayDataElement(object, "corrAB"))[i, J, ...] |
|
67 |
+ corrBB <- as.matrix(assayDataElement(object, "corrBB"))[i, J, ...] |
|
49 | 68 |
} |
69 |
+ if(!missing(i) & missing(j)){ |
|
70 |
+ corrAA <- as.matrix(assayDataElement(object, "corrAA"))[i, , ...] |
|
71 |
+ corrAB <- as.matrix(assayDataElement(object, "corrAB"))[i, , ...] |
|
72 |
+ corrBB <- as.matrix(assayDataElement(object, "corrBB"))[i, , ...] |
|
73 |
+ } |
|
74 |
+ res[, "AA", ] <- corrAA |
|
75 |
+ res[, "AB", ] <- corrAB |
|
76 |
+ res[, "BB", ] <- corrBB |
|
77 |
+ return(res) |
|
50 | 78 |
}) |
51 | 79 |
|
52 | 80 |
setMethod("medians", signature(object="AssayData"), |
53 |
- function(object, allele, batchname){ |
|
54 |
- stopifnot(!missing(allele)) |
|
55 |
- if(missing(batchname) & length(sampleNames(object)) > 1) |
|
56 |
- stop("must supply batchname") |
|
57 |
- if(!missing(batchname)){ |
|
58 |
- stopifnot(batchname %in% batchNames(object)) |
|
59 |
- j <- match(batchname, sampleNames(object)) |
|
60 |
- } else j <- 1 |
|
61 |
- getMedians <- function(allele){ |
|
62 |
- switch(allele, |
|
63 |
- A=cbind(assayDataElement(object, "medianA.AA")[, j], |
|
64 |
- assayDataElement(object, "medianA.AB")[, j], |
|
65 |
- assayDataElement(object, "medianA.BB")[, j]), |
|
66 |
- B=cbind(assayDataElement(object, "medianB.AA")[, j], |
|
67 |
- assayDataElement(object, "medianB.AB")[, j], |
|
68 |
- assayDataElement(object, "medianB.BB")[, j]), |
|
69 |
- stop("allele must be 'A' or 'B'") |
|
70 |
- ) |
|
81 |
+ function(object, i, j, ...){ |
|
82 |
+ if(!missing(j)){ |
|
83 |
+ batchnames <- unique(as.character(batch(object)[j])) |
|
84 |
+ } else batchnames <- batchNames(object) |
|
85 |
+ nc <- length(batchnames) |
|
86 |
+ if(!missing(i)) nr <- length(i) else nr <- nrow(object) |
|
87 |
+ res <- array(NA, dim=c(nr, 2, 3, nc)) |
|
88 |
+ dimnames(res)[[2]] <- c("A", "B") |
|
89 |
+ dimnames(res)[[3]] <- c("AA", "AB", "BB") |
|
90 |
+ dimnames(res)[[4]] <- batchnames |
|
91 |
+ if(missing(i) & missing(j)){ |
|
92 |
+ medianA.AA <- as.matrix(assayDataElement(object, "medianA.AA")) |
|
93 |
+ medianA.AB <- as.matrix(assayDataElement(object, "medianA.AB")) |
|
94 |
+ medianA.BB <- as.matrix(assayDataElement(object, "medianA.BB")) |
|
95 |
+ medianB.AA <- as.matrix(assayDataElement(object, "medianB.AA")) |
|
96 |
+ medianB.AB <- as.matrix(assayDataElement(object, "medianB.AB")) |
|
97 |
+ medianB.BB <- as.matrix(assayDataElement(object, "medianB.BB")) |
|
98 |
+ } |
|
99 |
+ if(missing(i) & !missing(j)){ |
|
100 |
+ J <- match(batchnames, batchNames(object)) |
|
101 |
+ stopifnot(length(J) > 0 & !all(is.na(J))) |
|
102 |
+ medianA.AA <- as.matrix(assayDataElement(object, "medianA.AA"))[, J, ...] |
|
103 |
+ medianA.AB <- as.matrix(assayDataElement(object, "medianA.AB"))[, J, ...] |
|
104 |
+ medianA.BB <- as.matrix(assayDataElement(object, "medianA.BB"))[, J, ...] |
|
105 |
+ medianB.AA <- as.matrix(assayDataElement(object, "medianB.AA"))[, J, ...] |
|
106 |
+ medianB.AB <- as.matrix(assayDataElement(object, "medianB.AB"))[, J, ...] |
|
107 |
+ medianB.BB <- as.matrix(assayDataElement(object, "medianB.BB"))[, J, ...] |
|
108 |
+ |
|
109 |
+ } |
|
110 |
+ if(!missing(i) & !missing(j)){ |
|
111 |
+ J <- match(batchnames, batchNames(object)) |
|
112 |
+ stopifnot(length(J) > 0 & !all(is.na(J))) |
|
113 |
+ medianA.AA <- as.matrix(assayDataElement(object, "medianA.AA"))[i, J, ...] |
|
114 |
+ medianA.AB <- as.matrix(assayDataElement(object, "medianA.AB"))[i, J, ...] |
|
115 |
+ medianA.BB <- as.matrix(assayDataElement(object, "medianA.BB"))[i, J, ...] |
|
116 |
+ medianB.AA <- as.matrix(assayDataElement(object, "medianB.AA"))[i, J, ...] |
|
117 |
+ medianB.AB <- as.matrix(assayDataElement(object, "medianB.AB"))[i, J, ...] |
|
118 |
+ medianB.BB <- as.matrix(assayDataElement(object, "medianB.BB"))[i, J, ...] |
|
119 |
+ } |
|
120 |
+ if(!missing(i) & missing(j)){ |
|
121 |
+ medianA.AA <- as.matrix(assayDataElement(object, "medianA.AA"))[i, ...] |
|
122 |
+ medianA.AB <- as.matrix(assayDataElement(object, "medianA.AB"))[i, ...] |
|
123 |
+ medianA.BB <- as.matrix(assayDataElement(object, "medianA.BB"))[i, ...] |
|
124 |
+ medianB.AA <- as.matrix(assayDataElement(object, "medianB.AA"))[i, ...] |
|
125 |
+ medianB.AB <- as.matrix(assayDataElement(object, "medianB.AB"))[i, ...] |
|
126 |
+ medianB.BB <- as.matrix(assayDataElement(object, "medianB.BB"))[i, ...] |
|
71 | 127 |
} |
72 |
- getMedians(allele) |
|
128 |
+ res[, "A", "AA", ] <- medianA.AA |
|
129 |
+ res[, "A", "AB", ] <- medianA.AB |
|
130 |
+ res[, "A", "BB", ] <- medianA.BB |
|
131 |
+ res[, "B", "AA", ] <- medianB.AA |
|
132 |
+ res[, "B", "AB", ] <- medianB.AB |
|
133 |
+ res[, "B", "BB", ] <- medianB.BB |
|
134 |
+ return(res) |
|
73 | 135 |
}) |
74 |
-setMethod("mads", signature(object="AssayData"), |
|
75 |
- function(object, allele, batchname){ |
|
76 |
- stopifnot(!missing(allele)) |
|
77 |
- if(missing(batchname) & length(sampleNames(object)) > 1) |
|
78 |
- stop("must supply batchname") |
|
79 |
- if(!missing(batchname)){ |
|
80 |
- stopifnot(batchname %in% batchNames(object)) |
|
81 |
- j <- match(batchname, sampleNames(object)) |
|
82 |
- } else j <- 1 |
|
83 |
- getMads <- function(allele){ |
|
84 |
- switch(allele, |
|
85 |
- A=cbind(assayDataElement(object, "madA.AA")[, j], |
|
86 |
- assayDataElement(object, "madA.AB")[, j], |
|
87 |
- assayDataElement(object, "madA.BB")[, j]), |
|
88 |
- B=cbind(assayDataElement(object, "madB.AA")[, j], |
|
89 |
- assayDataElement(object, "madB.AB")[, j], |
|
90 |
- assayDataElement(object, "madB.BB")[, j]), |
|
91 |
- stop("allele must be 'A' or 'B'") |
|
92 |
- ) |
|
136 |
+ |
|
137 |
+setMethod("medians", signature(object="AssayData"), |
|
138 |
+ function(object, i, j, ...){ |
|
139 |
+ if(!missing(j)){ |
|
140 |
+ batchnames <- unique(as.character(batch(object)[j])) |
|
141 |
+ } else batchnames <- batchNames(object) |
|
142 |
+ nc <- length(batchnames) |
|
143 |
+ if(!missing(i)) nr <- length(i) else nr <- nrow(object) |
|
144 |
+ res <- array(NA, dim=c(nr, 2, 3, nc)) |
|
145 |
+ dimnames(res)[[2]] <- c("A", "B") |
|
146 |
+ dimnames(res)[[3]] <- c("AA", "AB", "BB") |
|
147 |
+ dimnames(res)[[4]] <- batchnames |
|
148 |
+ if(missing(i) & missing(j)){ |
|
149 |
+ madA.AA <- as.matrix(assayDataElement(object, "madA.AA")) |
|
150 |
+ madA.AB <- as.matrix(assayDataElement(object, "madA.AB")) |
|
151 |
+ madA.BB <- as.matrix(assayDataElement(object, "madA.BB")) |
|
152 |
+ madB.AA <- as.matrix(assayDataElement(object, "madB.AA")) |
|
153 |
+ madB.AB <- as.matrix(assayDataElement(object, "madB.AB")) |
|
154 |
+ madB.BB <- as.matrix(assayDataElement(object, "madB.BB")) |
|
93 | 155 |
} |
94 |
- getMads(allele) |
|
156 |
+ if(missing(i) & !missing(j)){ |
|
157 |
+ J <- match(batchnames, batchNames(object)) |
|
158 |
+ stopifnot(length(J) > 0 & !all(is.na(J))) |
|
159 |
+ madA.AA <- as.matrix(assayDataElement(object, "madA.AA"))[, J, ...] |
|
160 |
+ madA.AB <- as.matrix(assayDataElement(object, "madA.AB"))[, J, ...] |
|
161 |
+ madA.BB <- as.matrix(assayDataElement(object, "madA.BB"))[, J, ...] |
|
162 |
+ madB.AA <- as.matrix(assayDataElement(object, "madB.AA"))[, J, ...] |
|
163 |
+ madB.AB <- as.matrix(assayDataElement(object, "madB.AB"))[, J, ...] |
|
164 |
+ madB.BB <- as.matrix(assayDataElement(object, "madB.BB"))[, J, ...] |
|
165 |
+ |
|
166 |
+ } |
|
167 |
+ if(!missing(i) & !missing(j)){ |
|
168 |
+ J <- match(batchnames, batchNames(object)) |
|
169 |
+ stopifnot(length(J) > 0 & !all(is.na(J))) |
|
170 |
+ madA.AA <- as.matrix(assayDataElement(object, "madA.AA"))[i, J, ...] |
|
171 |
+ madA.AB <- as.matrix(assayDataElement(object, "madA.AB"))[i, J, ...] |
|
172 |
+ madA.BB <- as.matrix(assayDataElement(object, "madA.BB"))[i, J, ...] |
|
173 |
+ madB.AA <- as.matrix(assayDataElement(object, "madB.AA"))[i, J, ...] |
|
174 |
+ madB.AB <- as.matrix(assayDataElement(object, "madB.AB"))[i, J, ...] |
|
175 |
+ madB.BB <- as.matrix(assayDataElement(object, "madB.BB"))[i, J, ...] |
|
176 |
+ } |
|
177 |
+ if(!missing(i) & missing(j)){ |
|
178 |
+ madA.AA <- as.matrix(assayDataElement(object, "madA.AA"))[i, ...] |
|
179 |
+ madA.AB <- as.matrix(assayDataElement(object, "madA.AB"))[i, ...] |
|
180 |
+ madA.BB <- as.matrix(assayDataElement(object, "madA.BB"))[i, ...] |
|
181 |
+ madB.AA <- as.matrix(assayDataElement(object, "madB.AA"))[i, ...] |
|
182 |
+ madB.AB <- as.matrix(assayDataElement(object, "madB.AB"))[i, ...] |
|
183 |
+ madB.BB <- as.matrix(assayDataElement(object, "madB.BB"))[i, ...] |
|
184 |
+ } |
|
185 |
+ res[, "A", "AA", ] <- madA.AA |
|
186 |
+ res[, "A", "AB", ] <- madA.AB |
|
187 |
+ res[, "A", "BB", ] <- madA.BB |
|
188 |
+ res[, "B", "AA", ] <- madB.AA |
|
189 |
+ res[, "B", "AB", ] <- madB.AB |
|
190 |
+ res[, "B", "BB", ] <- madB.BB |
|
191 |
+ return(res) |
|
95 | 192 |
}) |
96 | 193 |
|
194 |
+ |
|
195 |
+ |
|
97 | 196 |
setMethod("tau2", signature(object="AssayData"), |
98 | 197 |
function(object, allele, batchname){ |
99 | 198 |
stopifnot(!missing(allele)) |
... | ... |
@@ -421,24 +421,22 @@ setMethod("CB", signature=signature(object="CNSet"), |
421 | 421 |
return(cb) |
422 | 422 |
}) |
423 | 423 |
|
424 |
-##totalCopynumber <- function(object, ...){ |
|
425 | 424 |
setMethod("totalCopynumber", signature=signature(object="CNSet"), |
426 | 425 |
function(object, ...){ |
427 |
- message("copy number at nonpolymorphic probes is not currently available") |
|
428 |
- ca <- CA(object, ...) |
|
429 |
- cb <- CB(object, ...) |
|
430 |
- is.snp <- isSnp(object) |
|
431 |
- dotArgs <- list(...) |
|
432 |
- if("i" %in% names(dotArgs)){ |
|
433 |
- i <- dotArgs[["i"]] |
|
434 |
- np.index <- which(!is.snp[i]) |
|
435 |
- if(length(np.index) > 0) cb[np.index, ] <- 0 |
|
436 |
- } else { |
|
437 |
- np.index <- which(!is.snp) |
|
438 |
- if(length(np.index) > 0) cb[np.index, ] <- 0 |
|
439 |
- } |
|
440 |
- return(ca+cb) |
|
441 |
-}) |
|
426 |
+ ca <- CA(object, ...) |
|
427 |
+ cb <- CB(object, ...) |
|
428 |
+ is.snp <- isSnp(object) |
|
429 |
+ dotArgs <- list(...) |
|
430 |
+ if("i" %in% names(dotArgs)){ |
|
431 |
+ i <- dotArgs[["i"]] |
|
432 |
+ np.index <- which(!is.snp[i]) |
|
433 |
+ if(length(np.index) > 0) cb[np.index, ] <- 0 |
|
434 |
+ } else { |
|
435 |
+ np.index <- which(!is.snp) |
|
436 |
+ if(length(np.index) > 0) cb[np.index, ] <- 0 |
|
437 |
+ } |
|
438 |
+ return(ca+cb) |
|
439 |
+ }) |
|
442 | 440 |
|
443 | 441 |
setReplaceMethod("snpCall", c("CNSet", "ff_or_matrix"), |
444 | 442 |
function(object, ..., value){ |
... | ... |
@@ -10,7 +10,7 @@ |
10 | 10 |
crlmmCopynumber(object, MIN.SAMPLES=10, SNRMin = 5, MIN.OBS = 1, |
11 | 11 |
DF.PRIOR = 50, bias.adj = FALSE, |
12 | 12 |
prior.prob = rep(1/4, 4), seed = 1, verbose = TRUE, |
13 |
- GT.CONF.THR = 0.95, PHI.THR = 2^6, MIN.NU = 2^3, MIN.PHI = 2^3, |
|
13 |
+ GT.CONF.THR = 0.95, MIN.NU = 2^3, MIN.PHI = 2^3, |
|
14 | 14 |
THR.NU.PHI = TRUE, type=c("SNP", "NP", "X.SNP", "X.NP")) |
15 | 15 |
} |
16 | 16 |
|
... | ... |
@@ -36,7 +36,7 @@ library(ff) |
36 | 36 |
path <- system.file("extdata", package="crlmm") |
37 | 37 |
ldPath(path) |
38 | 38 |
data(sample.CNSetLMff) |
39 |
-cnSet <- as(sample.CNSetLMff, "CNSet") |
|
39 |
+cnSetff <- as(sample.CNSetLMff, "CNSet") |
|
40 | 40 |
all(isCurrent(cnSet)) |
41 | 41 |
|
42 | 42 |
## a bigger object with multiple batches |
... | ... |
@@ -91,18 +91,12 @@ nu(cnSet, "A")[1:5, ] |
91 | 91 |
nu(cnSet, "B")[1:5, ] |
92 | 92 |
## the slope |
93 | 93 |
phi(cnSet, "A")[1:5, ] |
94 |
-## the variance for CN > 0 (log2-scale) |
|
95 |
-sigma2(cnSet, "A")[1:5, ] |
|
96 |
-sigma2(cnSet, "B")[1:5, ] |
|
97 |
-## background variance (log2-scale) |
|
98 |
-tau2(cnSet, "A")[1:5, ] |
|
99 |
-tau2(cnSet, "B")[1:5, ] |
|
100 | 94 |
## correlation within genotype cluster AA |
101 |
-corr(cnSet, "AA")[1:5, ] |
|
102 |
-## correlation within genotype cluster AB |
|
103 |
-corr(cnSet, "AB")[1:5, ] |
|
104 |
-## correlation within genotype cluster BB |
|
105 |
-corr(cnSet, "BB")[1:5, ] |
|
95 |
+##corr(cnSet, "AA")[1:5, ] |
|
96 |
+#### correlation within genotype cluster AB |
|
97 |
+##corr(cnSet, "AB")[1:5, ] |
|
98 |
+#### correlation within genotype cluster BB |
|
99 |
+##corr(cnSet, "BB")[1:5, ] |
|
106 | 100 |
## -------------------------------------------------- |
107 | 101 |
|
108 | 102 |
## -------------------------------------------------- |