Browse code

update sample.CNSet

git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/crlmm@53580 bc3139a8-67e5-0310-9ffc-ced21a209358

Rob Scharp authored on 10/03/2011 19:31:11
Showing 6 changed files

... ...
@@ -1,3 +1,4 @@
1
+.auto*
1 2
 test/*
2 3
 myCrlmmGT2.Rnw
3 4
 ffobjs*
4 5
new file mode 100644
5 6
Binary files /dev/null and b/data/sample.CNSet.rda differ
6 7
deleted file mode 100644
7 8
Binary files a/data/sample.CNSetLM.rda and /dev/null differ
... ...
@@ -77,10 +77,8 @@ log-scale the variance is rougly constant for CA, CB > 0).
77 77
 }
78 78
 
79 79
 \examples{
80
-data(sample.CNSetLM)
81
-## update to class CNSet
82
-cnSet <- as(sample.CNSetLM, "CNSet")
83
-## All NAs. Need to replace sample.CNSetLM with a HapMap example
80
+data(sample.CNSet)
81
+## All NAs. Need to replace sample.CNSet with a HapMap example
84 82
 Ns(cnSet, i=1:5, j=1:2)
85 83
 corr(cnSet, i=1:5, j=1:2)
86 84
 medians(cnSet, i=1:5, j=1:2)
... ...
@@ -78,10 +78,7 @@ rawCopynumber(object,...)
78 78
 
79 79
 \examples{
80 80
 ## Version 1.6* of crlmm used CNSetLM objects.
81
-data(sample.CNSetLM)
82
-
83
-## To update to class CNSet, use
84
-cnSet <- as(sample.CNSetLM, "CNSet")
81
+data(sample.CNSet)
85 82
 all(isCurrent(cnSet)) ## is the cnSet object current?
86 83
 
87 84
 ## --------------------------------------------------
88 85
similarity index 53%
89 86
rename from man/sample.CNSetLM.Rd
90 87
rename to man/sample.CNSet.Rd
... ...
@@ -1,63 +1,34 @@
1
-\name{sample.CNSetLM}
2
-\alias{sample.CNSetLM}
1
+\name{sample.CNSet}
2
+\alias{sample.CNSet}
3 3
 \docType{data}
4 4
 \title{
5
-	Dataset of class 'CNSetLM'
5
+	Object of class 'CNSet'
6 6
 }
7 7
 \description{
8 8
 
9
-	The data for 2119 polymorphic and nonpolymorphic markers on
10
-	chromosome 1 for the CEPH and Yoruban HapMap samples.
9
+	The data for the first 16 polymorphic markers in the HapMap analysis.
11 10
 
12 11
 }
13
-\usage{data(sample.CNSetLM)}
12
+\details{
13
+  This object was created from the copynumber vignette in inst/scripts.
14
+}
15
+\usage{data(sample.CNSet)}
14 16
 \format{
15
-
16
-	This class has been deprecated.  See example below for how to
17
-	update an existing 'CNSetLM' object to class 'CNSet'.
18
-
19
-	The data illustrates the \code{CNSetLM-class}, with
17
+  The data illustrates the \code{CNSet-class}, with
20 18
 	\code{assayData} containing the quantile-normalized
21 19
 	intensities for the A and B alleles, genotype calls and
22
-	confidence scores (call and callProbability), and
23
-	allele-specific copy number (CA and CB). The parameters from
24
-	the linear model are stored in the lM slot.
20
+	confidence scores.  New slots that specific to copy number
21
+	estimation are \code{batch} and \code{batchStatistics}.
25 22
 
26 23
 }
27 24
 \examples{
28
-## class CNSetLM has been deprecated
29
-data(sample.CNSetLM)
30
-## update to class CNSet
31
-cnSet <- as(sample.CNSetLM, "CNSet")
32
-all(isCurrent(cnSet)) ## is the cnSet object current?
33
-##subsetting
34
-cnSet2 <- cnSet[, 1:5]
35
-stopifnot(batchNames(cnSet2) == "C")
36
-\dontrun{
37
-	## updating class CNSetLM using ff objects
38
-	## a bigger object with multiple batches
39
-	if(require(ff)){
40
-		outdir <- "/amber1/scratch/rscharpf/jss/hapmap2"
41
-		load(file.path(outdir, "container.rda"))
42
-		container <- object; rm(object); gc()
43
-		container2 <- as(container, "CNSet")
44
-		all(isCurrent(container2))
45
-		## test replacement methods, subset methods
46
-		table(batch(container2))
47
-		##generates warning ... would need open, close in the '[' method
48
-		invisible(open(nuA(container2)))
49
-		xx <- nu(container2, "A")[1:5, ]
50
-		nuA(container2)[1:5, ] <- xx
51
-		invisible(close(nuA(container2)))
52
-	}
53
-}
25
+data(sample.CNSet)
54 26
 ## --------------------------------------------------
55 27
 ## accessors for the feature-level info
56 28
 ## --------------------------------------------------
57 29
 chromosome(cnSet)[1:5]
58 30
 position(cnSet)[1:5]
59 31
 isSnp(cnSet)[1:5]
60
-## 980 nonpolymorphic markers and 1139 polymoprhic markers
61 32
 table(isSnp(cnSet))
62 33
 ## --------------------------------------------------
63 34
 ## sample-level statistics computed by crlmm
... ...
@@ -71,14 +42,9 @@ cnSet$SKW[1:5]
71 42
 ## the gender (gender is imputed unless specified in the call to crlmm)
72 43
 table(cnSet$gender)  ## 1=male, 2=female
73 44
 ## --------------------------------------------------
74
-## --------------------------------------------------
75
-##
76
-## accessors for parameters estimated from the linear model for copy
77
-## number (note that the parameters have dimension R x C, where R
78
-## corresponds to the number of features and C corresponds to the
79
-## number of batches)
45
+## batchStatistics
80 46
 ## -------------------------------------------------- estimate of
81
-## background
47
+## intercept from linear model
82 48
 dim(nu(cnSet, "A"))
83 49
 ## background for the A allele in the 2 batches for the
84 50
 ## first 5 markers
... ...
@@ -123,14 +89,5 @@ all.equal(cn4, cn2)
123 89
 cn5 <- totalCopynumber(cnSet, i=1:5)
124 90
 ## all markers, samples 1-5
125 91
 cn6 <- totalCopynumber(cnSet, j=1:5)
126
-
127
-## NOTE: subsetting the object before extracting copy number
128
-##       can be very inefficient when the data set is very large,
129
-##       particularly if using ff objects.  IN particular, subsetting
130
-##       the CNSet object will subset all of the assay data elements
131
-##       and all of the elements in the LinearModelParameter slot
132
-\dontrun{
133
-	cnsubset <- cnSet[1:5, ]
134
-}
135 92
 }
136 93
 \keyword{datasets}