Browse code

bug fix to krlmm

git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/crlmm@101808 bc3139a8-67e5-0310-9ffc-ced21a209358

unknown authored on 03/04/2015 00:01:45
Showing3 changed files

... ...
@@ -2,8 +2,8 @@ Package: crlmm
2 2
 Type: Package
3 3
 Title: Genotype Calling (CRLMM) and Copy Number Analysis tool for
4 4
         Affymetrix SNP 5.0 and 6.0 and Illumina arrays.
5
-Version: 1.25.0
6
-Date: Thu Sep 25 21:06:19 EST 2014
5
+Version: 1.25.1
6
+Date: Sat Oct 18 14:34:17 EST 2014
7 7
 Author: Benilton S Carvalho, Robert Scharpf, Matt Ritchie, Ingo
8 8
         Ruczinski, Rafael A Irizarry
9 9
 Maintainer: Benilton S Carvalho <Benilton.Carvalho@cancer.org.uk>,
... ...
@@ -1260,7 +1260,8 @@ genotype.Illumina <- function(sampleSheet=NULL,
1260 1260
 	                    "humanomni258v1a",        # Omni2.5 8 v1 A
1261 1261
                             "humanomni258v1p1b",      # Omni2.5 8 v1.1 B
1262 1262
                             "humanomni5quadv1b",      # Omni5 quad
1263
-			    "humanexome12v1p2a")      # Exome 12 v1.2 A
1263
+			    "humanexome12v1p2a",      # Exome 12 v1.2 A
1264
+                            "humanomniexpexome8v1p1b") # Omni Express Exome 8 v1.1b
1264 1265
         crlmm.supported = c("human1mv1c",             # 1M
1265 1266
                             "human370v1c",            # 370CNV
1266 1267
 	                    "human650v3a",            # 650Y
... ...
@@ -159,10 +159,10 @@ calculatePriorValues <- function(M, numSNP, verbose) {
159 159
     stopCluster(cl) 
160 160
     centers <- matrix(centers, numSNP, 3, byrow = TRUE)
161 161
     priormeans = apply(centers, 2, FUN="median", na.rm=TRUE)
162
-       if(abs(sum(priormeans))>1)
163
-        checksymmetric= apply(centers,1,function(x){abs(sum(x))})<1
162
+    if(abs(sum(priormeans))>1) {
163
+      checksymmetric= apply(centers,1,function(x){abs(sum(x))})<1
164 164
       priormeans=apply(centers[checksymmetric,],2, FUN="median", na.rm=TRUE)
165
- 
165
+    }
166 166
     if (verbose) message("Done calculating Prior Means")
167 167
     return(priormeans)
168 168
 }