git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/crlmm@38486 bc3139a8-67e5-0310-9ffc-ced21a209358
... | ... |
@@ -92,3 +92,7 @@ and crlmmIllumina() in crlmm-illumina.R) |
92 | 92 |
2009-04-03 B Carvalho - committed version 1.0.70 |
93 | 93 |
|
94 | 94 |
** Updated TODO and DESCRIPTION |
95 |
+ |
|
96 |
+2009-04-04 R.Scharpf - committed version 1.0.71 |
|
97 |
+ |
|
98 |
+* bug in oneBatch function for chromosome X. added additional checks for missing values |
... | ... |
@@ -1,7 +1,7 @@ |
1 | 1 |
Package: crlmm |
2 | 2 |
Type: Package |
3 | 3 |
Title: Genotype Calling (CRLMM) and Copy Number Analysis tool for SNP 5.0 and 6.0 arrays. |
4 |
-Version: 1.0.70 |
|
4 |
+Version: 1.0.71 |
|
5 | 5 |
Date: 2008-12-30 |
6 | 6 |
Author: Rafael A Irizarry, Benilton S Carvalho <bcarvalh@jhsph.edu>, Robert Scharpf <rscharpf@jhsph.edu>, Matt Ritchie <mritchie@wehi.EDU.AU> |
7 | 7 |
Maintainer: Benilton S Carvalho <bcarvalh@jhsph.edu>, Robert Scharpf <rscharpf@jhsph.edu>, Matt Ritchie <mritchie@wehi.EDU.AU> |
... | ... |
@@ -6,6 +6,5 @@ importFrom(utils, data, packageDescription, setTxtProgressBar, txtProgressBar) |
6 | 6 |
importFrom(stats, coef, cov, dnorm, kmeans, lm, mad, median, quantile, sd) |
7 | 7 |
importFrom(genefilter, rowSds) |
8 | 8 |
importFrom(mvtnorm, dmvnorm) |
9 |
- |
|
10 | 9 |
export("crlmm", "list.celfiles", "computeCopynumber", "cnrma", "celDates", "crlmmIllumina", "readIdatFiles", "snprma") |
11 | 10 |
exportMethods("calls", "confs") |
... | ... |
@@ -333,7 +333,7 @@ computeCopynumber <- function(chrom, |
333 | 333 |
envir[["steps"]] <- rep(FALSE, 4) |
334 | 334 |
} |
335 | 335 |
##will be updating these objects |
336 |
- message("Sufficient statistics") |
|
336 |
+ if(verbose) message("Sufficient statistics") |
|
337 | 337 |
if(missing(P)) P <- seq(along=uplate) |
338 | 338 |
steps <- envir[["steps"]] |
339 | 339 |
if(!steps[1]){ |
... | ... |
@@ -664,12 +664,14 @@ oneBatch <- function(plateIndex, |
664 | 664 |
} |
665 | 665 |
nobsA <- Ns[, p, "A"] > 10 |
666 | 666 |
nobsB <- Ns[, p, "B"] > 10 |
667 |
+ notMissing <- !(is.na(muA[, p, "A"]) | is.na(muA[, p, "B"]) | is.na(muB[, p, "A"]) | is.na(muB[, p, "B"])) |
|
667 | 668 |
complete <- list() |
668 |
- complete[[1]] <- which(correct.orderA & correct.orderB & nobsA) ##be selective here |
|
669 |
- complete[[2]] <- which(correct.orderA & correct.orderB & nobsB) ##be selective here |
|
669 |
+ complete[[1]] <- which(correct.orderA & correct.orderB & nobsA & notMissing) ##be selective here |
|
670 |
+ complete[[2]] <- which(correct.orderA & correct.orderB & nobsB & notMissing) ##be selective here |
|
670 | 671 |
size <- min(5000, length(complete[[1]])) |
671 | 672 |
if(size == 5000) complete <- lapply(complete, function(x) sample(x, size)) |
672 | 673 |
if(CHR == 23){ |
674 |
+ index <- list() |
|
673 | 675 |
index[[1]] <- which(Ns[, p, "A"] == 0) |
674 | 676 |
index[[2]] <- which(Ns[, p, "B"] == 0) |
675 | 677 |
cols <- 2:1 |
... | ... |
@@ -1310,3 +1312,4 @@ biasAdjNP <- function(plateIndex, envir, priorProb){ |
1310 | 1312 |
normalNP[normalNP == FALSE] <- NA |
1311 | 1313 |
envir[["normalNP"]] <- normalNP |
1312 | 1314 |
} |
1315 |
+ |