Browse code

crlmmGT2 <- rscrlmmGT2. Removed rscrlmmGT2.

git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/crlmm@54169 bc3139a8-67e5-0310-9ffc-ced21a209358

Rob Scharp authored on 30/03/2011 02:40:33
Showing 4 changed files

... ...
@@ -1,7 +1,7 @@
1 1
 Package: crlmm
2 2
 Type: Package
3 3
 Title: Genotype Calling (CRLMM) and Copy Number Analysis tool for Affymetrix SNP 5.0 and 6.0 and Illumina arrays.
4
-Version: 1.9.21
4
+Version: 1.9.22
5 5
 Date: 2010-12-10
6 6
 Author: Benilton S Carvalho <Benilton.Carvalho@cancer.org.uk>, Robert Scharpf <rscharpf@jhsph.edu>, Matt Ritchie <mritchie@wehi.edu.au>, Ingo Ruczinski <iruczins@jhsph.edu>, Rafael A Irizarry
7 7
 Maintainer: Benilton S Carvalho <Benilton.Carvalho@cancer.org.uk>, Robert Scharpf <rscharpf@jhsph.edu>, Matt Ritchie <mritchie@wehi.EDU.AU>
... ...
@@ -35,6 +35,7 @@ Collate: AllGenerics.R
35 35
          methods-SnpSuperSet.R
36 36
          cnrma-functions.R
37 37
          crlmm-functions.R
38
+	 crlmmGT2.R
38 39
          crlmm-illumina.R
39 40
 	 snprma-functions.R
40 41
 	 plot-methods.R
... ...
@@ -202,7 +202,7 @@ genotype <- function(filenames,
202 202
 	       sns=sampleNames(cnSet),
203 203
 	       seed=seed,
204 204
 	       verbose=verbose)
205
-	tmp <- rscrlmmGT2(A=calls(cnSet),
205
+	tmp <- crlmmGT2(A=calls(cnSet),
206 206
 			  B=snpCallProbability(cnSet),
207 207
 			  SNR=SNR,
208 208
 			  mixtureParams=mixtureParams,
... ...
@@ -2384,318 +2384,55 @@ posteriorMean.snp <- function(stratum, object, index.list, CN,
2384 2384
 
2385 2385
 
2386 2386
 
2387
-rscrlmmGT2 <- function(A, B, SNR, mixtureParams, cdfName, row.names=NULL,
2388
-                     col.names=NULL, probs=c(1/3, 1/3, 1/3), DF=6,
2389
-                     SNRMin=5, recallMin=10, recallRegMin=1000,
2390
-                     gender=NULL, desctrucitve=FALSE, verbose=TRUE,
2391
-                     returnParams=FALSE, badSNP=.7, snp.names){
2392
-	pkgname <- getCrlmmAnnotationName(cdfName)
2393
-	stopifnot(require(pkgname, character.only=TRUE, quietly=!verbose))
2394
-	open(SNR)
2395
-	open(A)
2396
-	open(B)
2397
-	open(mixtureParams)
2398
-	## expect objects to be ff
2399
-	keepIndex <- which( SNR[] > SNRMin)
2400
-	if(length(keepIndex)==0) stop("No arrays above quality threshold!")
2401
-	if(is.null(rownames(A))){
2402
-		loader("preprocStuff.rda", .crlmmPkgEnv, pkgname)
2403
-		gns <- getVarInEnv("gns", .crlmmPkgEnv)
2404
-		stopifnot(nrow(A) == length(gns))
2405
-		index <- seq(length=nrow(A))
2406
-	}
2407
-	if(!missing(snp.names)){
2408
-		stopifnot(!is.null(rownames(A)))
2409
-		##verify that A has only snps.  otherwise, calling function must pass rownames
2410
-		index <- match(snp.names, rownames(A))
2411
-	}
2412
-	snpBatches <- splitIndicesByLength(index, ocProbesets())
2413
-	NR <- length(unlist(snpBatches))
2414
-	if(verbose) cat("Calling", NR, "SNPs for recalibration... ")
2415
-	NC <- ncol(A)
2416
-	##
2417
-	if(verbose) message("Loading annotations.")
2418
-	obj1 <- loader("genotypeStuff.rda", .crlmmPkgEnv, pkgname)
2419
-	obj2 <- loader("mixtureStuff.rda", .crlmmPkgEnv, pkgname)
2420
-	## this is toget rid of the 'no visible binding' notes
2421
-	## variable definitions
2422
-	XIndex <- getVarInEnv("XIndex")
2423
-	autosomeIndex <- getVarInEnv("autosomeIndex")
2424
-	YIndex <- getVarInEnv("YIndex")
2425
-	SMEDIAN <- getVarInEnv("SMEDIAN")
2426
-	theKnots <- getVarInEnv("theKnots")
2427
-	regionInfo <- getVarInEnv("regionInfo")
2428
-	params <- getVarInEnv("params")
2429
-	rm(list=c(obj1, obj2), envir=.crlmmPkgEnv)
2430
-	rm(obj1, obj2)
2431
-	##
2432
-	## IF gender not provide, we predict
2433
-	## FIXME: XIndex may be greater than ocProbesets()
2434
-	if(is.null(gender)){
2435
-		if(verbose) message("Determining gender.")
2436
-		##    XMedian <- apply(log2(A[XIndex,, drop=FALSE])+log2(B[XIndex,, drop=FALSE]), 2, median)/2
2437
-		XMedian <- ocLapply(splitIndicesByNode(1:NC), predictGender, theA=A, theB=B, XIndex=XIndex, neededPkgs="crlmm")
2438
-		XMedian <- unlist(XMedian)
2439
-		if(sum(SNR[] > SNRMin)==1){
2440
-			gender <- which.min(c(abs(XMedian-8.9), abs(XMedian-9.5)))
2441
-		}else{
2442
-			gender <- kmeans(XMedian, c(min(XMedian[SNR[]>SNRMin]), max(XMedian[SNR[]>SNRMin])))[["cluster"]]
2443
-		}
2444
-	}
2445
-	##
2446
-	Indexes <- list(autosomeIndex, XIndex, YIndex)
2447
-	cIndexes <- list(keepIndex,
2448
-			 keepIndex[which(gender[keepIndex]==2)],
2449
-			 keepIndex[which(gender[keepIndex]==1)])
2450
-	if(verbose) cat("Calling", NR, "SNPs for recalibration... ")
2451
-	## call C
2452
-	fIndex <- which(gender==2)
2453
-	mIndex <- which(gender==1)
2454
-	## different here
2455
-	## use gtypeCallerR in batches
2456
-	##snpBatches <- splitIndicesByLength(1:nrow(A), ocProbesets())
2457
-	newparamsBatch <- vector("list", length(snpBatches))
2458
-	process1 <- function(idxBatch, snpBatches, autosomeIndex, XIndex,
2459
-			     YIndex, A, B, mixtureParams, fIndex, mIndex,
2460
-			     params, cIndexes, SMEDIAN, theKnots, DF, probs, batchSize){
2461
-		open(A)
2462
-		open(B)
2463
-		open(mixtureParams)
2464
-		snps <- snpBatches[[idxBatch]]
2465
-		rSnps <- range(snps)
2466
-		last <- (idxBatch-1)*batchSize
2467
-		IndexesBatch <- list(autosomeIndex[autosomeIndex %in% snps]-last,
2468
-				     XIndex[XIndex %in% snps]-last,
2469
-				     YIndex[YIndex %in% snps]-last)
2470
-		IndexesBatch <- lapply(IndexesBatch, as.integer)
2471
-		tmpA <- as.matrix(A[snps,])
2472
-		tmpB <- as.matrix(B[snps,])
2473
-		## newparamsBatch[[idxBatch]]
2474
-		tmp <- gtypeCallerR(tmpA, tmpB, fIndex, mIndex,
2475
-				    params[["centers"]][snps,],
2476
-				    params[["scales"]][snps,],
2477
-				    params[["N"]][snps,],
2478
-				    IndexesBatch, cIndexes,
2479
-				    sapply(IndexesBatch, length),
2480
-				    sapply(cIndexes, length), SMEDIAN,
2481
-				    theKnots, mixtureParams[], DF, probs, 0.025)
2482
-		rm(snps, rSnps, IndexesBatch, tmpA, tmpB, last)
2483
-		gc(verbose=FALSE)
2484
-		close(A)
2485
-		close(B)
2486
-		close(mixtureParams)
2487
-		tmp
2488
-	}
2489
-	##
2490
-	newparamsBatch <- ocLapply(seq(along=snpBatches), process1,
2491
-				   snpBatches=snpBatches,
2492
-				   autosomeIndex=autosomeIndex, XIndex=XIndex,
2493
-				   YIndex=YIndex, A=A, B=B,
2494
-				   mixtureParams=mixtureParams, fIndex=fIndex,
2495
-				   mIndex=mIndex, params=params,
2496
-				   cIndexes=cIndexes, SMEDIAN=SMEDIAN,
2497
-				   theKnots=theKnots, DF=DF, probs=probs,
2498
-				   batchSize=ocProbesets())
2499
-	newparams <- vector("list", 3)
2500
-	names(newparams) <- c("centers", "scales", "N")
2501
-	newparams[["centers"]] <- do.call("rbind", lapply(newparamsBatch, "[[", 1))
2502
-	newparams[["scales"]] <- do.call("rbind", lapply(newparamsBatch, "[[", 2))
2503
-	newparams[["N"]] <- do.call("rbind", lapply(newparamsBatch, "[[", 3))
2504
-	rm(newparamsBatch); gc(verbose=FALSE)
2505
-	if(verbose) message("Done.")
2506
-	if(verbose) message("Estimating recalibration parameters.")
2507
-	d <- newparams[["centers"]] - params$centers
2508
-	##
2509
-	##regression
2510
-	Index <- intersect(which(pmin(newparams[["N"]][, 1],
2511
-				      newparams[["N"]][, 2],
2512
-				      newparams[["N"]][, 3]) > recallMin &
2513
-				 !apply(regionInfo, 1, any)),
2514
-			   autosomeIndex)
2515
-	if(length(Index) < recallRegMin){
2516
-		warning("Recalibration not possible. Possible cause: small sample size.")
2517
-		newparams <- params
2518
-		dev <- vector("numeric", nrow(newparams[["centers"]]))
2519
-		SS <- matrix(Inf, 3, 3)
2520
-		DD <- 0
2521
-	}else{
2522
-		data4reg <- as.data.frame(newparams[["centers"]][Index,])
2523
-		names(data4reg) <- c("AA", "AB", "BB")
2524
-		regParams <- cbind(  coef(lm(AA~AB*BB, data=data4reg)),
2525
-				   c(coef(lm(AB~AA+BB, data=data4reg)), 0),
2526
-				   coef(lm(BB~AA*AB, data=data4reg)))
2527
-		rownames(regParams) <- c("intercept", "X", "Y", "XY")
2528
-		rm(data4reg)
2529
-		##
2530
-		minN <- 3
2531
-		newparams[["centers"]][newparams[["N"]] < minN] <- NA
2532
-		Index <- setdiff(which(rowSums(is.na(newparams[["centers"]]))==1), YIndex)
2533
-		if(verbose) message("Filling out empty centers", appendLF=FALSE)
2534
-		for(i in Index){
2535
-			if(verbose) if(i%%10000==0) message(".", appendLF=FALSE)
2536
-			mu <- newparams[["centers"]][i, ]
2537
-			j <- which(is.na(mu))
2538
-			newparams[["centers"]][i, j] <- c(1, mu[-j], prod(mu[-j]))%*%regParams[, j]
2539
-			rm(mu, j)
2540
-		}
2541
-		##
2542
-		##remaing NAs are made like originals
2543
-		if(length(YIndex)>0){
2544
-			noMoveIndex <- union(setdiff(which(rowSums(is.na(newparams[["centers"]]))>0), YIndex),
2545
-					     YIndex[rowSums(is.na(newparams[["centers"]][YIndex, ])>1)])
2546
-		}
2547
-		snps2ignore <- which(rowSums(is.na(newparams[["centers"]])) > 0)
2548
-		snps2keep <- setdiff(autosomeIndex, snps2ignore)
2549
-		rm(snps2ignore)
2550
-		newparams[["centers"]][is.na(newparams[["centers"]])] <- params[["centers"]][is.na(newparams[["centers"]])]
2551
-		if(verbose) cat("\n")
2552
-		##
2553
-		if(verbose) message("Calculating and standardizing size of shift... ", appendLF=FALSE)
2554
-		GG <- DD <- newparams[["centers"]] - params[["centers"]]
2555
-		DD <- sweep(DD, 2, colMeans(DD[autosomeIndex, ]))
2556
-		SS <- cov(DD[autosomeIndex, ])
2557
-		SSI <- solve(SS)
2558
-		dev <- vector("numeric", nrow(DD))
2559
-		if(length(YIndex)){
2560
-			dev[-YIndex] <- apply(DD[-YIndex, ], 1, function(x) x%*%SSI%*%x)
2561
-			dev[-YIndex] <- 1/sqrt( (2*pi)^3*det(SS))*exp(-0.5*dev[-YIndex])
2562
-			##Now Y (only two params)
2563
-			SSY <- SS[c(1, 3), c(1, 3)]
2564
-			SSI <- solve(SSY)
2565
-			dev[YIndex] <- apply(DD[YIndex, c(1, 3)], 1, function(x) x%*%SSI%*%x)
2566
-			dev[YIndex] <- 1/sqrt( (2*pi)^2*det(SSY))*exp(-0.5*dev[YIndex])
2567
-		} else {
2568
-			dev=apply(DD,1,function(x) x%*%SSI%*%x)
2569
-			dev=1/sqrt( (2*pi)^3*det(SS))*exp(-0.5*dev)
2570
-		}
2571
-	}
2572
-	if (verbose) message("OK")
2573
-	##
2574
-	## BC: must keep SD
2575
-	params[-2] <- newparams[-2]
2576
-	rm(newparams)
2577
-	gc(verbose=FALSE)
2578
-	##
2579
-	if(verbose) message("Calling ", NR, " SNPs... ", appendLF=FALSE)
2580
-	##
2581
-	## ###################
2582
-	## ## MOVE TO C#######
2583
-	##
2584
-	## running in batches
2585
-	process2 <- function(idxBatch, snpBatches, autosomeIndex, XIndex,
2586
-			     YIndex, A, B, mixtureParams, fIndex, mIndex,
2587
-			     params, cIndexes, SMEDIAN, theKnots, DF, probs,
2588
-			     regionInfo, batchSize){
2589
-		open(A)
2590
-		open(B)
2591
-		open(mixtureParams)
2592
-		snps <- snpBatches[[idxBatch]]
2593
-		tmpA <- as.matrix(A[snps,])
2594
-		tmpB <- as.matrix(B[snps,])
2595
-		rSnps <- range(snps)
2596
-		last <- (idxBatch-1)*batchSize
2597
-		IndexesBatch <- list(autosomeIndex[autosomeIndex %in% snps]-last,
2598
-				     XIndex[XIndex %in% snps]-last,
2599
-				     YIndex[YIndex %in% snps]-last)
2600
-		IndexesBatch <- lapply(IndexesBatch, as.integer)
2601
-		ImNull <- gtypeCallerR2(tmpA, tmpB, fIndex, mIndex,
2602
-					params[["centers"]][snps,],
2603
-					params[["scales"]][snps,],
2604
-					params[["N"]][snps,],
2605
-					IndexesBatch, cIndexes,
2606
-					sapply(IndexesBatch, length),
2607
-					sapply(cIndexes, length),
2608
-					SMEDIAN, theKnots, mixtureParams[],
2609
-					DF, probs, 0.025,
2610
-					which(regionInfo[snps, 2]),
2611
-					which(regionInfo[snps, 1]))
2612
-		A[snps,] <- tmpA
2613
-		B[snps,] <- tmpB
2614
-		rm(tmpA, tmpB, snps, rSnps, IndexesBatch, ImNull, last)
2615
-		gc(verbose=FALSE)
2616
-		close(A)
2617
-		close(B)
2618
-		close(mixtureParams)
2619
-	}
2620
-	##
2621
-	ocLapply(seq(along=snpBatches), process2, snpBatches=snpBatches,
2622
-		 autosomeIndex=autosomeIndex, XIndex=XIndex, YIndex=YIndex,
2623
-		 A=A, B=B, mixtureParams=mixtureParams, fIndex=fIndex,
2624
-		 mIndex=mIndex, params=params, cIndexes=cIndexes,
2625
-		 SMEDIAN=SMEDIAN, theKnots=theKnots, DF=DF, probs=probs,
2626
-		 regionInfo=regionInfo, batchSize=ocProbesets())
2627
-	##  END MOVE TO C#######
2628
-	## ##################
2629
-	##
2630
-	dev <- dev/(dev+1/383)
2631
-	if(!is.null(row.names)){ rownames(A) <- rownames(B) <- names(dev) <- row.names}
2632
-	if(!is.null(col.names)){ colnames(A) <- colnames(B) <- col.names}
2633
-	##
2634
-	if(length(Index) >= recallRegMin){
2635
-		tmp4batchQC <- DD[autosomeIndex,]/(params[["N"]][autosomeIndex,]+1)
2636
-		tmpSnpQc <- dev[autosomeIndex]
2637
-		SS <- cov(tmp4batchQC[tmpSnpQc < badSNP,])
2638
-		batchQC <- mean(diag(SS))
2639
-	}else{
2640
-		SS <- matrix(0, 3, 3)
2641
-		batchQC <- Inf
2642
-	}
2643
-	##
2644
-	if(verbose) message("Done.")
2645
-	if (returnParams){
2646
-		return(list(calls=A, confs=B, SNPQC=dev, batchQC=batchQC, params=params, DD=DD, covDD=SS, gender=gender, pkgname=pkgname))
2647
-	}else{
2648
-		return(list(calls=A, confs=B, SNPQC=dev, batchQC=batchQC, DD=DD, covDD=SS, gender=gender, pkgname=pkgname))
2649
-	}
2650
-}
2651 2387
 
2652
-crlmm2.2 <- function(filenames, row.names=TRUE, col.names=TRUE,
2653
-                   probs=c(1/3, 1/3, 1/3), DF=6, SNRMin=5, gender=NULL,
2654
-                   save.it=FALSE, load.it=FALSE, intensityFile,
2655
-                   mixtureSampleSize=10^5, eps=0.1, verbose=TRUE,
2656
-                   cdfName, sns, recallMin=10, recallRegMin=1000,
2657
-                   returnParams=FALSE, badSNP=.7){
2658
-  if ((load.it || save.it) && missing(intensityFile))
2659
-    stop("'intensityFile' is missing, and you chose either load.it or save.it")
2660
-  if (missing(sns)) sns <- basename(filenames)
2661
-  if (!missing(intensityFile))
2662
-    if (load.it & !file.exists(intensityFile)){
2663
-      load.it <- FALSE
2664
-      message("File ", intensityFile, " does not exist.")
2665
-      message("Not loading it, but running SNPRMA from scratch.")
2666
-    }
2667
-  if (!load.it){
2668
-    res <- snprma2(filenames, fitMixture=TRUE,
2669
-                   mixtureSampleSize=mixtureSampleSize, verbose=verbose,
2670
-                   eps=eps, cdfName=cdfName, sns=sns)
2671
-    open(res[["A"]])
2672
-    open(res[["B"]])
2673
-    open(res[["SNR"]])
2674
-    open(res[["mixtureParams"]])
2675
-    if(save.it){
2676
-      t0 <- proc.time()
2677
-      save(res, file=intensityFile)
2678
-      t0 <- proc.time()-t0
2679
-      if (verbose) message("Used ", t0[3], " seconds to save ", intensityFile, ".")
2680
-    }
2681
-  }else{
2682
-    if (verbose) message("Loading ", intensityFile, ".")
2683
-    obj <- load(intensityFile)
2684
-    if (verbose) message("Done.")
2685
-    if (obj != "res")
2686
-      stop("Object in ", intensityFile, " seems to be invalid.")
2687
-  }
2688
-  if(row.names) row.names=res$gns else row.names=NULL
2689
-  if(col.names) col.names=res$sns else col.names=NULL
2690
-  res2 <- rscrlmmGT2(res[["A"]], res[["B"]], res[["SNR"]],
2691
-                   res[["mixtureParams"]], res[["cdfName"]],
2692
-                   gender=gender, row.names=row.names,
2693
-                   col.names=col.names, recallMin=recallMin,
2694
-                   recallRegMin=1000, SNRMin=SNRMin,
2695
-                   returnParams=returnParams, badSNP=badSNP,
2696
-                   verbose=verbose)
2697
-
2698
-  res2[["SNR"]] <- res[["SNR"]]
2699
-  res2[["SKW"]] <- res[["SKW"]]
2700
-  return(list2SnpSet(res2, returnParams=returnParams))
2701
-}
2388
+## used for testing
2389
+##crlmm2.2 <- function(filenames, row.names=TRUE, col.names=TRUE,
2390
+##                   probs=c(1/3, 1/3, 1/3), DF=6, SNRMin=5, gender=NULL,
2391
+##                   save.it=FALSE, load.it=FALSE, intensityFile,
2392
+##                   mixtureSampleSize=10^5, eps=0.1, verbose=TRUE,
2393
+##                   cdfName, sns, recallMin=10, recallRegMin=1000,
2394
+##                   returnParams=FALSE, badSNP=.7){
2395
+##  if ((load.it || save.it) && missing(intensityFile))
2396
+##    stop("'intensityFile' is missing, and you chose either load.it or save.it")
2397
+##  if (missing(sns)) sns <- basename(filenames)
2398
+##  if (!missing(intensityFile))
2399
+##    if (load.it & !file.exists(intensityFile)){
2400
+##      load.it <- FALSE
2401
+##      message("File ", intensityFile, " does not exist.")
2402
+##      message("Not loading it, but running SNPRMA from scratch.")
2403
+##    }
2404
+##  if (!load.it){
2405
+##    res <- snprma2(filenames, fitMixture=TRUE,
2406
+##                   mixtureSampleSize=mixtureSampleSize, verbose=verbose,
2407
+##                   eps=eps, cdfName=cdfName, sns=sns)
2408
+##    open(res[["A"]])
2409
+##    open(res[["B"]])
2410
+##    open(res[["SNR"]])
2411
+##    open(res[["mixtureParams"]])
2412
+##    if(save.it){
2413
+##      t0 <- proc.time()
2414
+##      save(res, file=intensityFile)
2415
+##      t0 <- proc.time()-t0
2416
+##      if (verbose) message("Used ", t0[3], " seconds to save ", intensityFile, ".")
2417
+##    }
2418
+##  }else{
2419
+##    if (verbose) message("Loading ", intensityFile, ".")
2420
+##    obj <- load(intensityFile)
2421
+##    if (verbose) message("Done.")
2422
+##    if (obj != "res")
2423
+##      stop("Object in ", intensityFile, " seems to be invalid.")
2424
+##  }
2425
+##  if(row.names) row.names=res$gns else row.names=NULL
2426
+##  if(col.names) col.names=res$sns else col.names=NULL
2427
+##  res2 <- crlmmGT2(res[["A"]], res[["B"]], res[["SNR"]],
2428
+##                   res[["mixtureParams"]], res[["cdfName"]],
2429
+##                   gender=gender, row.names=row.names,
2430
+##                   col.names=col.names, recallMin=recallMin,
2431
+##                   recallRegMin=1000, SNRMin=SNRMin,
2432
+##                   returnParams=returnParams, badSNP=badSNP,
2433
+##                   verbose=verbose)
2434
+##
2435
+##  res2[["SNR"]] <- res[["SNR"]]
2436
+##  res2[["SKW"]] <- res[["SKW"]]
2437
+##  return(list2SnpSet(res2, returnParams=returnParams))
2438
+##}
... ...
@@ -339,262 +339,263 @@ predictGender <- function(cols, theA, theB, XIndex){
339 339
   med
340 340
 }
341 341
 
342
-crlmmGT2 <- function(A, B, SNR, mixtureParams, cdfName, row.names=NULL,
343
-                     col.names=NULL, probs=c(1/3, 1/3, 1/3), DF=6,
344
-                     SNRMin=5, recallMin=10, recallRegMin=1000,
345
-                     gender=NULL, desctrucitve=FALSE, verbose=TRUE,
346
-                     returnParams=FALSE, badSNP=.7){
347
-  open(SNR)
348
-  open(A)
349
-  open(B)
350
-  open(mixtureParams)
351
-  ## expect objects to be ff
352
-
353
-  keepIndex <- which( SNR[] > SNRMin)
354
-  if(length(keepIndex)==0) stop("No arrays above quality threshold!")
355
-
356
-  NC <- ncol(A)
357
-  NR <- nrow(A)
358
-
359
-  pkgname <- getCrlmmAnnotationName(cdfName)
360
-  stopifnot(require(pkgname, character.only=TRUE, quietly=!verbose))
361
-
362
-  if(verbose) message("Loading annotations.")
363
-  obj1 <- loader("genotypeStuff.rda", .crlmmPkgEnv, pkgname)
364
-  obj2 <- loader("mixtureStuff.rda", .crlmmPkgEnv, pkgname)
365
-  ## this is toget rid of the 'no visible binding' notes
366
-  ## variable definitions
367
-  XIndex <- getVarInEnv("XIndex")
368
-  autosomeIndex <- getVarInEnv("autosomeIndex")
369
-  YIndex <- getVarInEnv("YIndex")
370
-  SMEDIAN <- getVarInEnv("SMEDIAN")
371
-  theKnots <- getVarInEnv("theKnots")
372
-  regionInfo <- getVarInEnv("regionInfo")
373
-  params <- getVarInEnv("params")
374
-  rm(list=c(obj1, obj2), envir=.crlmmPkgEnv)
375
-  rm(obj1, obj2)
376
-
377
-  ## IF gender not provide, we predict
378
-  ## FIXME: XIndex may be greater than ocProbesets()
379
-  if(is.null(gender)){
380
-    if(verbose) message("Determining gender.")
381
-##    XMedian <- apply(log2(A[XIndex,, drop=FALSE])+log2(B[XIndex,, drop=FALSE]), 2, median)/2
382
-    XMedian <- ocLapply(splitIndicesByNode(1:NC), predictGender, theA=A, theB=B, XIndex=XIndex, neededPkgs="crlmm")
383
-    XMedian <- unlist(XMedian)
384
-    if(sum(SNR[] > SNRMin)==1){
385
-      gender <- which.min(c(abs(XMedian-8.9), abs(XMedian-9.5)))
386
-    }else{
387
-      gender <- kmeans(XMedian, c(min(XMedian[SNR[]>SNRMin]), max(XMedian[SNR[]>SNRMin])))[["cluster"]]
388
-    }
389
-  }
390
-
391
-  Indexes <- list(autosomeIndex, XIndex, YIndex)
392
-  cIndexes <- list(keepIndex,
393
-                   keepIndex[which(gender[keepIndex]==2)],
394
-                   keepIndex[which(gender[keepIndex]==1)])
395
-
396
-  if(verbose) cat("Calling", NR, "SNPs for recalibration... ")
397
-
398
-  ## call C
399
-  fIndex <- which(gender==2)
400
-  mIndex <- which(gender==1)
401
-
402
-  ## different here
403
-  ## use gtypeCallerR in batches
404
-  snpBatches <- splitIndicesByLength(1:nrow(A), ocProbesets())
405
-  newparamsBatch <- vector("list", length(snpBatches))
406
-
407
-  process1 <- function(idxBatch, snpBatches, autosomeIndex, XIndex,
408
-                       YIndex, A, B, mixtureParams, fIndex, mIndex,
409
-                       params, cIndexes, SMEDIAN, theKnots, DF, probs, batchSize){
410
-    open(A)
411
-    open(B)
412
-    open(mixtureParams)
413
-    snps <- snpBatches[[idxBatch]]
414
-    rSnps <- range(snps)
415
-    last <- (idxBatch-1)*batchSize
416
-    IndexesBatch <- list(autosomeIndex[autosomeIndex %in% snps]-last,
417
-                         XIndex[XIndex %in% snps]-last,
418
-                         YIndex[YIndex %in% snps]-last)
419
-    IndexesBatch <- lapply(IndexesBatch, as.integer)
420
-    tmpA <- as.matrix(A[snps,])
421
-    tmpB <- as.matrix(B[snps,])
422
-    ## newparamsBatch[[idxBatch]]
423
-
424
-    tmp <- gtypeCallerR(tmpA, tmpB, fIndex, mIndex,
425
-                        params[["centers"]][snps,],
426
-                        params[["scales"]][snps,],
427
-                        params[["N"]][snps,],
428
-                        IndexesBatch, cIndexes,
429
-                        sapply(IndexesBatch, length),
430
-                        sapply(cIndexes, length), SMEDIAN,
431
-                        theKnots, mixtureParams[], DF, probs, 0.025)
432
-    rm(snps, rSnps, IndexesBatch, tmpA, tmpB, last)
433
-    gc(verbose=FALSE)
434
-    close(A)
435
-    close(B)
436
-    close(mixtureParams)
437
-    tmp
438
-  }
439
-
440
-  newparamsBatch <- ocLapply(seq(along=snpBatches), process1,
441
-                             snpBatches=snpBatches,
442
-                             autosomeIndex=autosomeIndex, XIndex=XIndex,
443
-                             YIndex=YIndex, A=A, B=B,
444
-                             mixtureParams=mixtureParams, fIndex=fIndex,
445
-                             mIndex=mIndex, params=params,
446
-                             cIndexes=cIndexes, SMEDIAN=SMEDIAN,
447
-                             theKnots=theKnots, DF=DF, probs=probs,
448
-                             batchSize=ocProbesets())
449
-  newparams <- vector("list", 3)
450
-  names(newparams) <- c("centers", "scales", "N")
451
-  newparams[["centers"]] <- do.call("rbind", lapply(newparamsBatch, "[[", 1))
452
-  newparams[["scales"]] <- do.call("rbind", lapply(newparamsBatch, "[[", 2))
453
-  newparams[["N"]] <- do.call("rbind", lapply(newparamsBatch, "[[", 3))
454
-  rm(newparamsBatch); gc(verbose=FALSE)
455
-  if(verbose) message("Done.")
456
-  if(verbose) message("Estimating recalibration parameters.")
457
-  d <- newparams[["centers"]] - params$centers
458
-
459
-  ##regression
460
-  Index <- intersect(which(pmin(newparams[["N"]][, 1],
461
-                                newparams[["N"]][, 2],
462
-                                newparams[["N"]][, 3]) > recallMin &
463
-                                !apply(regionInfo, 1, any)),
464
-                                autosomeIndex)
465
-  if(length(Index) < recallRegMin){
466
-    warning("Recalibration not possible. Possible cause: small sample size.")
467
-    newparams <- params
468
-    dev <- vector("numeric", nrow(newparams[["centers"]]))
469
-    SS <- matrix(Inf, 3, 3)
470
-    DD <- 0
471
-  }else{
472
-    data4reg <- as.data.frame(newparams[["centers"]][Index,])
473
-    names(data4reg) <- c("AA", "AB", "BB")
474
-    regParams <- cbind(  coef(lm(AA~AB*BB, data=data4reg)),
475
-                       c(coef(lm(AB~AA+BB, data=data4reg)), 0),
476
-                         coef(lm(BB~AA*AB, data=data4reg)))
477
-    rownames(regParams) <- c("intercept", "X", "Y", "XY")
478
-    rm(data4reg)
479
-
480
-    minN <- 3
481
-    newparams[["centers"]][newparams[["N"]] < minN] <- NA
482
-    Index <- setdiff(which(rowSums(is.na(newparams[["centers"]]))==1), YIndex)
483
-    if(verbose) message("Filling out empty centers", appendLF=FALSE)
484
-    for(i in Index){
485
-      if(verbose) if(i%%10000==0) message(".", appendLF=FALSE)
486
-      mu <- newparams[["centers"]][i, ]
487
-      j <- which(is.na(mu))
488
-      newparams[["centers"]][i, j] <- c(1, mu[-j], prod(mu[-j]))%*%regParams[, j]
489
-      rm(mu, j)
490
-    }
491
-
492
-    ##remaing NAs are made like originals
493
-    if(length(YIndex)>0){
494
-      noMoveIndex <- union(setdiff(which(rowSums(is.na(newparams[["centers"]]))>0), YIndex),
495
-                           YIndex[rowSums(is.na(newparams[["centers"]][YIndex, ])>1)])
496
-    }
497
-    snps2ignore <- which(rowSums(is.na(newparams[["centers"]])) > 0)
498
-    snps2keep <- setdiff(autosomeIndex, snps2ignore)
499
-    rm(snps2ignore)
500
-    newparams[["centers"]][is.na(newparams[["centers"]])] <- params[["centers"]][is.na(newparams[["centers"]])]
501
-    if(verbose) cat("\n")
502
-
503
-    if(verbose) message("Calculating and standardizing size of shift... ", appendLF=FALSE)
504
-    GG <- DD <- newparams[["centers"]] - params[["centers"]]
505
-    DD <- sweep(DD, 2, colMeans(DD[autosomeIndex, ]))
506
-    SS <- cov(DD[autosomeIndex, ])
507
-    SSI <- solve(SS)
508
-    dev <- vector("numeric", nrow(DD))
509
-    if(length(YIndex)){
510
-      dev[-YIndex] <- apply(DD[-YIndex, ], 1, function(x) x%*%SSI%*%x)
511
-      dev[-YIndex] <- 1/sqrt( (2*pi)^3*det(SS))*exp(-0.5*dev[-YIndex])
512
-      ##Now Y (only two params)
513
-      SSY <- SS[c(1, 3), c(1, 3)]
514
-      SSI <- solve(SSY)
515
-      dev[YIndex] <- apply(DD[YIndex, c(1, 3)], 1, function(x) x%*%SSI%*%x)
516
-      dev[YIndex] <- 1/sqrt( (2*pi)^2*det(SSY))*exp(-0.5*dev[YIndex])
517
-    } else {
518
-      dev=apply(DD,1,function(x) x%*%SSI%*%x)
519
-      dev=1/sqrt( (2*pi)^3*det(SS))*exp(-0.5*dev)
520
-    }
521
-  }
522
-  if (verbose) message("OK")
523
-
524
-  ## BC: must keep SD
525
-  params[-2] <- newparams[-2]
526
-  rm(newparams)
527
-  gc(verbose=FALSE)
528
-
529
-  if(verbose) message("Calling ", NR, " SNPs... ", appendLF=FALSE)
530
-
531
-  ## ###################
532
-  ## ## MOVE TO C#######
533
-
534
-  ## running in batches
535
-  process2 <- function(idxBatch, snpBatches, autosomeIndex, XIndex,
536
-                       YIndex, A, B, mixtureParams, fIndex, mIndex,
537
-                       params, cIndexes, SMEDIAN, theKnots, DF, probs,
538
-                       regionInfo, batchSize){
539
-    open(A)
540
-    open(B)
541
-    open(mixtureParams)
542
-    snps <- snpBatches[[idxBatch]]
543
-    tmpA <- as.matrix(A[snps,])
544
-    tmpB <- as.matrix(B[snps,])
545
-    rSnps <- range(snps)
546
-    last <- (idxBatch-1)*batchSize
547
-    IndexesBatch <- list(autosomeIndex[autosomeIndex %in% snps]-last,
548
-                         XIndex[XIndex %in% snps]-last,
549
-                         YIndex[YIndex %in% snps]-last)
550
-    IndexesBatch <- lapply(IndexesBatch, as.integer)
551
-    ImNull <- gtypeCallerR2(tmpA, tmpB, fIndex, mIndex,
552
-                            params[["centers"]][snps,],
553
-                            params[["scales"]][snps,],
554
-                            params[["N"]][snps,],
555
-                            IndexesBatch, cIndexes,
556
-                            sapply(IndexesBatch, length),
557
-                            sapply(cIndexes, length),
558
-                            SMEDIAN, theKnots, mixtureParams[],
559
-                            DF, probs, 0.025,
560
-                            which(regionInfo[snps, 2]),
561
-                            which(regionInfo[snps, 1]))
562
-    A[snps,] <- tmpA
563
-    B[snps,] <- tmpB
564
-    rm(tmpA, tmpB, snps, rSnps, IndexesBatch, ImNull, last)
565
-    gc(verbose=FALSE)
566
-    close(A)
567
-    close(B)
568
-    close(mixtureParams)
569
-  }
570
-
571
-  ocLapply(seq(along=snpBatches), process2, snpBatches=snpBatches,
572
-           autosomeIndex=autosomeIndex, XIndex=XIndex, YIndex=YIndex,
573
-           A=A, B=B, mixtureParams=mixtureParams, fIndex=fIndex,
574
-           mIndex=mIndex, params=params, cIndexes=cIndexes,
575
-           SMEDIAN=SMEDIAN, theKnots=theKnots, DF=DF, probs=probs,
576
-           regionInfo=regionInfo, batchSize=ocProbesets())
577
-  ##  END MOVE TO C#######
578
-  ## ##################
579
-
580
-  dev <- dev/(dev+1/383)
581
-  if(!is.null(row.names)){ rownames(A) <- rownames(B) <- names(dev) <- row.names}
582
-  if(!is.null(col.names)){ colnames(A) <- colnames(B) <- col.names}
583
-
584
-  if(length(Index) >= recallRegMin){
585
-   tmp4batchQC <- DD[autosomeIndex,]/(params[["N"]][autosomeIndex,]+1)
586
-   tmpSnpQc <- dev[autosomeIndex]
587
-   SS <- cov(tmp4batchQC[tmpSnpQc < badSNP,])
588
-   batchQC <- mean(diag(SS))
589
-  }else{
590
-    SS <- matrix(0, 3, 3)
591
-    batchQC <- Inf
592
-  }
593
-
594
-  if(verbose) message("Done.")
595
-  if (returnParams){
596
-    return(list(calls=A, confs=B, SNPQC=dev, batchQC=batchQC, params=params, DD=DD, covDD=SS, gender=gender, pkgname=pkgname))
597
-  }else{
598
-    return(list(calls=A, confs=B, SNPQC=dev, batchQC=batchQC, DD=DD, covDD=SS, gender=gender, pkgname=pkgname))
599
-  }
600
-}
342
+## RS:  commented
343
+##crlmmGT2 <- function(A, B, SNR, mixtureParams, cdfName, row.names=NULL,
344
+##                     col.names=NULL, probs=c(1/3, 1/3, 1/3), DF=6,
345
+##                     SNRMin=5, recallMin=10, recallRegMin=1000,
346
+##                     gender=NULL, desctrucitve=FALSE, verbose=TRUE,
347
+##                     returnParams=FALSE, badSNP=.7){
348
+##  open(SNR)
349
+##  open(A)
350
+##  open(B)
351
+##  open(mixtureParams)
352
+##  ## expect objects to be ff
353
+##
354
+##  keepIndex <- which( SNR[] > SNRMin)
355
+##  if(length(keepIndex)==0) stop("No arrays above quality threshold!")
356
+##
357
+##  NC <- ncol(A)
358
+##  NR <- nrow(A)
359
+##
360
+##  pkgname <- getCrlmmAnnotationName(cdfName)
361
+##  stopifnot(require(pkgname, character.only=TRUE, quietly=!verbose))
362
+##
363
+##  if(verbose) message("Loading annotations.")
364
+##  obj1 <- loader("genotypeStuff.rda", .crlmmPkgEnv, pkgname)
365
+##  obj2 <- loader("mixtureStuff.rda", .crlmmPkgEnv, pkgname)
366
+##  ## this is toget rid of the 'no visible binding' notes
367
+##  ## variable definitions
368
+##  XIndex <- getVarInEnv("XIndex")
369
+##  autosomeIndex <- getVarInEnv("autosomeIndex")
370
+##  YIndex <- getVarInEnv("YIndex")
371
+##  SMEDIAN <- getVarInEnv("SMEDIAN")
372
+##  theKnots <- getVarInEnv("theKnots")
373
+##  regionInfo <- getVarInEnv("regionInfo")
374
+##  params <- getVarInEnv("params")
375
+##  rm(list=c(obj1, obj2), envir=.crlmmPkgEnv)
376
+##  rm(obj1, obj2)
377
+##
378
+##  ## IF gender not provide, we predict
379
+##  ## FIXME: XIndex may be greater than ocProbesets()
380
+##  if(is.null(gender)){
381
+##    if(verbose) message("Determining gender.")
382
+####    XMedian <- apply(log2(A[XIndex,, drop=FALSE])+log2(B[XIndex,, drop=FALSE]), 2, median)/2
383
+##    XMedian <- ocLapply(splitIndicesByNode(1:NC), predictGender, theA=A, theB=B, XIndex=XIndex, neededPkgs="crlmm")
384
+##    XMedian <- unlist(XMedian)
385
+##    if(sum(SNR[] > SNRMin)==1){
386
+##      gender <- which.min(c(abs(XMedian-8.9), abs(XMedian-9.5)))
387
+##    }else{
388
+##      gender <- kmeans(XMedian, c(min(XMedian[SNR[]>SNRMin]), max(XMedian[SNR[]>SNRMin])))[["cluster"]]
389
+##    }
390
+##  }
391
+##
392
+##  Indexes <- list(autosomeIndex, XIndex, YIndex)
393
+##  cIndexes <- list(keepIndex,
394
+##                   keepIndex[which(gender[keepIndex]==2)],
395
+##                   keepIndex[which(gender[keepIndex]==1)])
396
+##
397
+##  if(verbose) cat("Calling", NR, "SNPs for recalibration... ")
398
+##
399
+##  ## call C
400
+##  fIndex <- which(gender==2)
401
+##  mIndex <- which(gender==1)
402
+##
403
+##  ## different here
404
+##  ## use gtypeCallerR in batches
405
+##  snpBatches <- splitIndicesByLength(1:nrow(A), ocProbesets())
406
+##  newparamsBatch <- vector("list", length(snpBatches))
407
+##
408
+##  process1 <- function(idxBatch, snpBatches, autosomeIndex, XIndex,
409
+##                       YIndex, A, B, mixtureParams, fIndex, mIndex,
410
+##                       params, cIndexes, SMEDIAN, theKnots, DF, probs, batchSize){
411
+##    open(A)
412
+##    open(B)
413
+##    open(mixtureParams)
414
+##    snps <- snpBatches[[idxBatch]]
415
+##    rSnps <- range(snps)
416
+##    last <- (idxBatch-1)*batchSize
417
+##    IndexesBatch <- list(autosomeIndex[autosomeIndex %in% snps]-last,
418
+##                         XIndex[XIndex %in% snps]-last,
419
+##                         YIndex[YIndex %in% snps]-last)
420
+##    IndexesBatch <- lapply(IndexesBatch, as.integer)
421
+##    tmpA <- as.matrix(A[snps,])
422
+##    tmpB <- as.matrix(B[snps,])
423
+##    ## newparamsBatch[[idxBatch]]
424
+##
425
+##    tmp <- gtypeCallerR(tmpA, tmpB, fIndex, mIndex,
426
+##                        params[["centers"]][snps,],
427
+##                        params[["scales"]][snps,],
428
+##                        params[["N"]][snps,],
429
+##                        IndexesBatch, cIndexes,
430
+##                        sapply(IndexesBatch, length),
431
+##                        sapply(cIndexes, length), SMEDIAN,
432
+##                        theKnots, mixtureParams[], DF, probs, 0.025)
433
+##    rm(snps, rSnps, IndexesBatch, tmpA, tmpB, last)
434
+##    gc(verbose=FALSE)
435
+##    close(A)
436
+##    close(B)
437
+##    close(mixtureParams)
438
+##    tmp
439
+##  }
440
+##
441
+##  newparamsBatch <- ocLapply(seq(along=snpBatches), process1,
442
+##                             snpBatches=snpBatches,
443
+##                             autosomeIndex=autosomeIndex, XIndex=XIndex,
444
+##                             YIndex=YIndex, A=A, B=B,
445
+##                             mixtureParams=mixtureParams, fIndex=fIndex,
446
+##                             mIndex=mIndex, params=params,
447
+##                             cIndexes=cIndexes, SMEDIAN=SMEDIAN,
448
+##                             theKnots=theKnots, DF=DF, probs=probs,
449
+##                             batchSize=ocProbesets())
450
+##  newparams <- vector("list", 3)
451
+##  names(newparams) <- c("centers", "scales", "N")
452
+##  newparams[["centers"]] <- do.call("rbind", lapply(newparamsBatch, "[[", 1))
453
+##  newparams[["scales"]] <- do.call("rbind", lapply(newparamsBatch, "[[", 2))
454
+##  newparams[["N"]] <- do.call("rbind", lapply(newparamsBatch, "[[", 3))
455
+##  rm(newparamsBatch); gc(verbose=FALSE)
456
+##  if(verbose) message("Done.")
457
+##  if(verbose) message("Estimating recalibration parameters.")
458
+##  d <- newparams[["centers"]] - params$centers
459
+##
460
+##  ##regression
461
+##  Index <- intersect(which(pmin(newparams[["N"]][, 1],
462
+##                                newparams[["N"]][, 2],
463
+##                                newparams[["N"]][, 3]) > recallMin &
464
+##                                !apply(regionInfo, 1, any)),
465
+##                                autosomeIndex)
466
+##  if(length(Index) < recallRegMin){
467
+##    warning("Recalibration not possible. Possible cause: small sample size.")
468
+##    newparams <- params
469
+##    dev <- vector("numeric", nrow(newparams[["centers"]]))
470
+##    SS <- matrix(Inf, 3, 3)
471
+##    DD <- 0
472
+##  }else{
473
+##    data4reg <- as.data.frame(newparams[["centers"]][Index,])
474
+##    names(data4reg) <- c("AA", "AB", "BB")
475
+##    regParams <- cbind(  coef(lm(AA~AB*BB, data=data4reg)),
476
+##                       c(coef(lm(AB~AA+BB, data=data4reg)), 0),
477
+##                         coef(lm(BB~AA*AB, data=data4reg)))
478
+##    rownames(regParams) <- c("intercept", "X", "Y", "XY")
479
+##    rm(data4reg)
480
+##
481
+##    minN <- 3
482
+##    newparams[["centers"]][newparams[["N"]] < minN] <- NA
483
+##    Index <- setdiff(which(rowSums(is.na(newparams[["centers"]]))==1), YIndex)
484
+##    if(verbose) message("Filling out empty centers", appendLF=FALSE)
485
+##    for(i in Index){
486
+##      if(verbose) if(i%%10000==0) message(".", appendLF=FALSE)
487
+##      mu <- newparams[["centers"]][i, ]
488
+##      j <- which(is.na(mu))
489
+##      newparams[["centers"]][i, j] <- c(1, mu[-j], prod(mu[-j]))%*%regParams[, j]
490
+##      rm(mu, j)
491
+##    }
492
+##
493
+##    ##remaing NAs are made like originals
494
+##    if(length(YIndex)>0){
495
+##      noMoveIndex <- union(setdiff(which(rowSums(is.na(newparams[["centers"]]))>0), YIndex),
496
+##                           YIndex[rowSums(is.na(newparams[["centers"]][YIndex, ])>1)])
497
+##    }
498
+##    snps2ignore <- which(rowSums(is.na(newparams[["centers"]])) > 0)
499
+##    snps2keep <- setdiff(autosomeIndex, snps2ignore)
500
+##    rm(snps2ignore)
501
+##    newparams[["centers"]][is.na(newparams[["centers"]])] <- params[["centers"]][is.na(newparams[["centers"]])]
502
+##    if(verbose) cat("\n")
503
+##
504
+##    if(verbose) message("Calculating and standardizing size of shift... ", appendLF=FALSE)
505
+##    GG <- DD <- newparams[["centers"]] - params[["centers"]]
506
+##    DD <- sweep(DD, 2, colMeans(DD[autosomeIndex, ]))
507
+##    SS <- cov(DD[autosomeIndex, ])
508
+##    SSI <- solve(SS)
509
+##    dev <- vector("numeric", nrow(DD))
510
+##    if(length(YIndex)){
511
+##      dev[-YIndex] <- apply(DD[-YIndex, ], 1, function(x) x%*%SSI%*%x)
512
+##      dev[-YIndex] <- 1/sqrt( (2*pi)^3*det(SS))*exp(-0.5*dev[-YIndex])
513
+##      ##Now Y (only two params)
514
+##      SSY <- SS[c(1, 3), c(1, 3)]
515
+##      SSI <- solve(SSY)
516
+##      dev[YIndex] <- apply(DD[YIndex, c(1, 3)], 1, function(x) x%*%SSI%*%x)
517
+##      dev[YIndex] <- 1/sqrt( (2*pi)^2*det(SSY))*exp(-0.5*dev[YIndex])
518
+##    } else {
519
+##      dev=apply(DD,1,function(x) x%*%SSI%*%x)
520
+##      dev=1/sqrt( (2*pi)^3*det(SS))*exp(-0.5*dev)
521
+##    }
522
+##  }
523
+##  if (verbose) message("OK")
524
+##
525
+##  ## BC: must keep SD
526
+##  params[-2] <- newparams[-2]
527
+##  rm(newparams)
528
+##  gc(verbose=FALSE)
529
+##
530
+##  if(verbose) message("Calling ", NR, " SNPs... ", appendLF=FALSE)
531
+##
532
+##  ## ###################
533
+##  ## ## MOVE TO C#######
534
+##
535
+##  ## running in batches
536
+##  process2 <- function(idxBatch, snpBatches, autosomeIndex, XIndex,
537
+##                       YIndex, A, B, mixtureParams, fIndex, mIndex,
538
+##                       params, cIndexes, SMEDIAN, theKnots, DF, probs,
539
+##                       regionInfo, batchSize){
540
+##    open(A)
541
+##    open(B)
542
+##    open(mixtureParams)
543
+##    snps <- snpBatches[[idxBatch]]
544
+##    tmpA <- as.matrix(A[snps,])
545
+##    tmpB <- as.matrix(B[snps,])
546
+##    rSnps <- range(snps)
547
+##    last <- (idxBatch-1)*batchSize
548
+##    IndexesBatch <- list(autosomeIndex[autosomeIndex %in% snps]-last,
549
+##                         XIndex[XIndex %in% snps]-last,
550
+##                         YIndex[YIndex %in% snps]-last)
551
+##    IndexesBatch <- lapply(IndexesBatch, as.integer)
552
+##    ImNull <- gtypeCallerR2(tmpA, tmpB, fIndex, mIndex,
553
+##                            params[["centers"]][snps,],
554
+##                            params[["scales"]][snps,],
555
+##                            params[["N"]][snps,],
556
+##                            IndexesBatch, cIndexes,
557
+##                            sapply(IndexesBatch, length),
558
+##                            sapply(cIndexes, length),
559
+##                            SMEDIAN, theKnots, mixtureParams[],
560
+##                            DF, probs, 0.025,
561
+##                            which(regionInfo[snps, 2]),
562
+##                            which(regionInfo[snps, 1]))
563
+##    A[snps,] <- tmpA
564
+##    B[snps,] <- tmpB
565
+##    rm(tmpA, tmpB, snps, rSnps, IndexesBatch, ImNull, last)
566
+##    gc(verbose=FALSE)
567
+##    close(A)
568
+##    close(B)
569
+##    close(mixtureParams)
570
+##  }
571
+##
572
+##  ocLapply(seq(along=snpBatches), process2, snpBatches=snpBatches,
573
+##           autosomeIndex=autosomeIndex, XIndex=XIndex, YIndex=YIndex,
574
+##           A=A, B=B, mixtureParams=mixtureParams, fIndex=fIndex,
575
+##           mIndex=mIndex, params=params, cIndexes=cIndexes,
576
+##           SMEDIAN=SMEDIAN, theKnots=theKnots, DF=DF, probs=probs,
577
+##           regionInfo=regionInfo, batchSize=ocProbesets())
578
+##  ##  END MOVE TO C#######
579
+##  ## ##################
580
+##
581
+##  dev <- dev/(dev+1/383)
582
+##  if(!is.null(row.names)){ rownames(A) <- rownames(B) <- names(dev) <- row.names}
583
+##  if(!is.null(col.names)){ colnames(A) <- colnames(B) <- col.names}
584
+##
585
+##  if(length(Index) >= recallRegMin){
586
+##   tmp4batchQC <- DD[autosomeIndex,]/(params[["N"]][autosomeIndex,]+1)
587
+##   tmpSnpQc <- dev[autosomeIndex]
588
+##   SS <- cov(tmp4batchQC[tmpSnpQc < badSNP,])
589
+##   batchQC <- mean(diag(SS))
590
+##  }else{
591
+##    SS <- matrix(0, 3, 3)
592
+##    batchQC <- Inf
593
+##  }
594
+##
595
+##  if(verbose) message("Done.")
596
+##  if (returnParams){
597
+##    return(list(calls=A, confs=B, SNPQC=dev, batchQC=batchQC, params=params, DD=DD, covDD=SS, gender=gender, pkgname=pkgname))
598
+##  }else{
599
+##    return(list(calls=A, confs=B, SNPQC=dev, batchQC=batchQC, DD=DD, covDD=SS, gender=gender, pkgname=pkgname))
600
+##  }
601
+##}
... ...
@@ -1196,7 +1196,7 @@ genotypeInf <- function(cnSet, mixtureParams, probs=rep(1/3,3),
1196 1196
 ##	message("Writing complete.  Begin genotyping...")
1197 1197
 ##	close(A(cnSet))
1198 1198
 ##	close(B(cnSet))
1199
-	tmp <- rscrlmmGT2(A=snpCall(cnSet),
1199
+	tmp <- crlmmGT2(A=snpCall(cnSet),
1200 1200
 			  B=snpCallProbability(cnSet),
1201 1201
 			  SNR=cnSet$SNR,
1202 1202
 			  mixtureParams=mixtureParams,