git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/crlmm@48932 bc3139a8-67e5-0310-9ffc-ced21a209358
... | ... |
@@ -836,7 +836,7 @@ fit.lm1 <- function(idxBatch, |
836 | 836 |
flags <- nuA <- nuB <- phiA <- phiB <- corrAB |
837 | 837 |
|
838 | 838 |
normal.snps <- normal[snps, ] |
839 |
- cB <- cA <- matrix(NA, length(snps), ncol(object)) |
|
839 |
+ ##cB <- cA <- matrix(NA, length(snps), ncol(object)) |
|
840 | 840 |
GG <- as.matrix(calls(object)[snps, ]) |
841 | 841 |
CP <- as.matrix(snpCallProbability(object)[snps, ]) |
842 | 842 |
AA <- as.matrix(A(object)[snps, ]) |
... | ... |
@@ -1044,8 +1044,7 @@ fit.lm2 <- function(idxBatch, |
1044 | 1044 |
open(snpflags) |
1045 | 1045 |
open(normal) |
1046 | 1046 |
|
1047 |
- |
|
1048 |
- cA <- matrix(NA, length(snps), ncol(object)) |
|
1047 |
+## cA <- matrix(NA, length(snps), ncol(object)) |
|
1049 | 1048 |
ii <- isSnp(object) & chromosome(object) < 23 & !is.na(chromosome(object)) |
1050 | 1049 |
flags <- as.matrix(snpflags[,]) |
1051 | 1050 |
noflags <- rowSums(flags, na.rm=TRUE) == 0 ##NA's for unevaluated batches |
... | ... |
@@ -1158,7 +1157,7 @@ fit.lm3 <- function(idxBatch, |
1158 | 1157 |
corrAB <- corrBB <- corrAA <- sig2B <- sig2A <- tau2B <- tau2A <- matrix(NA, length(snps), length(unique(batch(object)))) |
1159 | 1158 |
phiA2 <- phiB2 <- tau2A |
1160 | 1159 |
flags <- nuA <- nuB <- phiA <- phiB <- corrAB |
1161 |
- cB <- cA <- matrix(NA, length(snps), ncol(object)) |
|
1160 |
+## cB <- cA <- matrix(NA, length(snps), ncol(object)) |
|
1162 | 1161 |
gender <- object$gender |
1163 | 1162 |
IX <- matrix(gender, length(snps), ncol(object)) |
1164 | 1163 |
NORM <- normal[snps,] |
... | ... |
@@ -1298,28 +1297,27 @@ fit.lm3 <- function(idxBatch, |
1298 | 1297 |
phiB2[phiB2[, J] < MIN.PHI, J] <- MIN.PHI |
1299 | 1298 |
} |
1300 | 1299 |
phistar <- phiB2[, J]/phiA[, J] |
1301 |
- tmp <- (B-nuB[, J] - phistar*A + phistar*nuA[, J])/phiB[, J] |
|
1302 |
- cB[, k] <- tmp/(1-phistar*phiA2[, J]/phiB[, J]) |
|
1303 |
- cA[, k] <- (A-nuA[, J]-phiA2[, J]*cB[, k])/phiA[, J] |
|
1300 |
+## tmp <- (B-nuB[, J] - phistar*A + phistar*nuA[, J])/phiB[, J] |
|
1301 |
+## cB[, k] <- tmp/(1-phistar*phiA2[, J]/phiB[, J]) |
|
1302 |
+## cA[, k] <- (A-nuA[, J]-phiA2[, J]*cB[, k])/phiA[, J] |
|
1304 | 1303 |
##some of the snps are called for the men, but not the women |
1305 | 1304 |
rm(YA, YB, wA, wB, res, tmp, phistar, A, B, G, index) |
1306 | 1305 |
gc() |
1307 | 1306 |
} |
1308 |
- |
|
1309 |
- cA[cA < 0.05] <- 0.05 |
|
1310 |
- cB[cB < 0.05] <- 0.05 |
|
1311 |
- cA[cA > 5] <- 5 |
|
1312 |
- cB[cB > 5] <- 5 |
|
1307 |
+## cA[cA < 0.05] <- 0.05 |
|
1308 |
+## cB[cB < 0.05] <- 0.05 |
|
1309 |
+## cA[cA > 5] <- 5 |
|
1310 |
+## cB[cB > 5] <- 5 |
|
1313 | 1311 |
|
1314 | 1312 |
##-------------------------------------------------- |
1315 | 1313 |
##RS: need to fix. why are there NA's by coercion |
1316 |
- cA <- matrix(as.integer(cA*100), nrow(cA), ncol(cA)) |
|
1314 |
+## cA <- matrix(as.integer(cA*100), nrow(cA), ncol(cA)) |
|
1317 | 1315 |
##-------------------------------------------------- |
1318 | 1316 |
##ii <- rowSums(is.na(cA)) > 0 |
1319 | 1317 |
##these often arise at SNPs with low confidence scores |
1320 |
- cB <- matrix(as.integer(cB*100), nrow(cB), ncol(cB)) |
|
1321 |
- CA(object)[snps, ] <- cA |
|
1322 |
- CB(object)[snps, ] <- cB |
|
1318 |
+## cB <- matrix(as.integer(cB*100), nrow(cB), ncol(cB)) |
|
1319 |
+## CA(object)[snps, ] <- cA |
|
1320 |
+## CB(object)[snps, ] <- cB |
|
1323 | 1321 |
snpflags[snps, ] <- flags |
1324 | 1322 |
tmp <- physical(lM(object))$tau2A |
1325 | 1323 |
tmp[snps, ] <- tau2A |