Browse code

Do not export calculatePosteriorMean

git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/crlmm@59038 bc3139a8-67e5-0310-9ffc-ced21a209358

Rob Scharp authored on 11/10/2011 12:17:35
Showing 6 changed files

... ...
@@ -1,7 +1,7 @@
1 1
 Package: crlmm
2 2
 Type: Package
3 3
 Title: Genotype Calling (CRLMM) and Copy Number Analysis tool for Affymetrix SNP 5.0 and 6.0 and Illumina arrays.
4
-Version: 1.11.54
4
+Version: 1.11.55
5 5
 Date: 2010-12-10
6 6
 Author: Benilton S Carvalho <Benilton.Carvalho@cancer.org.uk>, Robert Scharpf <rscharpf@jhsph.edu>, Matt Ritchie <mritchie@wehi.edu.au>, Ingo Ruczinski <iruczins@jhsph.edu>, Rafael A Irizarry
7 7
 Maintainer: Benilton S Carvalho <Benilton.Carvalho@cancer.org.uk>, Robert Scharpf <rscharpf@jhsph.edu>, Matt Ritchie <mritchie@wehi.EDU.AU>
... ...
@@ -67,7 +67,7 @@ export(crlmm,
67 67
        genotype.Illumina,
68 68
        crlmmCopynumber2, crlmmCopynumberLD, crlmmCopynumber)
69 69
 export(genotypes, totalCopynumber, rawCopynumber, xyplot)
70
-exportMethods(A, B, calculatePosteriorMean, corr, nuA, nuB, phiA, phiB, predictionRegion, posteriorProbability, tau2, Ns, medians, mads,
70
+exportMethods(A, B, corr, nuA, nuB, phiA, phiB, predictionRegion, posteriorProbability, tau2, Ns, medians, mads,
71 71
 	      xyplot, calculateRBaf)
72 72
 export(ABpanel, constructInf, preprocessInf, genotypeInf)
73 73
 exportClasses(PredictionRegion)
74 74
deleted file mode 100644
... ...
@@ -1,65 +0,0 @@
1
-\name{calculatePosteriorMean}
2
-\alias{calculatePosteriorMean}
3
-\alias{calculatePosteriorMean,CNSet-method}
4
-%- Also NEED an '\alias' for EACH other topic documented here.
5
-\title{Calculate the posterior mean of the integer copy numbers}
6
-\description{
7
-
8
-  Computes the posterior mean copy number from the bivariate normal
9
-  prediction regions.
10
-
11
-}
12
-
13
-\usage{
14
-calculatePosteriorMean(object, posteriorProb, copyNumber = 0:4, ...)
15
-}
16
-%- maybe also 'usage' for other objects documented here.
17
-\arguments{
18
-  \item{object}{
19
-    A \code{CNSet} object.
20
-}
21
-  \item{posteriorProb}{
22
-    The posterior probability for copy numbers 0-4.
23
-  }
24
-
25
-  \item{copyNumber}{
26
-    Integer vector.
27
-}
28
-  \item{\dots}{
29
-    Ignored
30
-}
31
-}
32
-\details{
33
-}
34
-\value{
35
-  An array  (features x samples x copy number)
36
-}
37
-
38
-\author{
39
-R. Scharpf
40
-}
41
-
42
-
43
-%% ~Make other sections like Warning with \section{Warning }{....} ~
44
-
45
-\seealso{
46
-  \code{\link{predictionRegion}}, \code{\link{posteriorProbability}}
47
-}
48
-\examples{
49
-data(sample.CNSet)
50
-pr <- predictionRegion(sample.CNSet, copyNumber=0:4)
51
-pp <- posteriorProbability(sample.CNSet, predictRegion=pr)
52
-pm <- calculatePosteriorMean(sample.CNSet, posteriorProb=pp)
53
-
54
-## multiple batches
55
-data(sample.CNSet2)
56
-pr <- predictionRegion(sample.CNSet2, copyNumber=0:4)
57
-pp <- posteriorProbability(sample.CNSet2, predictRegion=pr)
58
-## prediction regions not available for some batches
59
-pm <- calculatePosteriorMean(sample.CNSet2, posteriorProb=pp)
60
-
61
-}
62
-% Add one or more standard keywords, see file 'KEYWORDS' in the
63
-% R documentation directory.
64
-\keyword{array}
65
-\keyword{models}
... ...
@@ -30,9 +30,11 @@ posteriorProbability(object, predictRegion, copyNumber = 0:4, w)
30 30
     to 1.}
31 31
 
32 32
 }
33
-\details{
34 33
 
34
+\details{
35
+This is currently under development.
35 36
 }
37
+
36 38
 \value{
37 39
 An array (features x samples x copy number)
38 40
 }
... ...
@@ -40,25 +42,26 @@ An array (features x samples x copy number)
40 42
 \author{
41 43
 R. Scharpf
42 44
 }
45
+
43 46
 \note{
44
-  %Remark about nonpolymorphic probes
47
+  This is under development. Use at your own risk.
45 48
 }
46 49
 
47 50
 %% ~Make other sections like Warning with \section{Warning }{....} ~
48 51
 
49 52
 \seealso{
50
-  \code{\link{predictionRegion}}, \code{\link{genotypes}}, \code{\link{calculatePosteriorMean}}
53
+  \code{\link{predictionRegion}}, \code{\link{genotypes}} %\code{\link{calculatePosteriorMean}}
51 54
 }
52 55
 \examples{
53
-data(sample.CNSet)
54
-pr <- predictionRegion(sample.CNSet, copyNumber=0:4)
55
-pp <- posteriorProbability(sample.CNSet, predictRegion=pr)
56
+data(cnSetExample)
57
+pr <- predictionRegion(cnSetExample, copyNumber=0:4)
58
+pp <- posteriorProbability(cnSetExample, predictRegion=pr)
56 59
 dim(pp)
57 60
 
58 61
 ## multiple batches
59
-data(sample.CNSet2)
60
-pr <- predictionRegion(sample.CNSet2, copyNumber=0:4)
61
-pp <- posteriorProbability(sample.CNSet2, predictRegion=pr)
62
+data(cnSetExample2)
63
+pr <- predictionRegion(cnSetExample2, copyNumber=0:4)
64
+pp <- posteriorProbability(cnSetExample2, predictRegion=pr)
62 65
 }
63 66
 % Add one or more standard keywords, see file 'KEYWORDS' in the
64 67
 % R documentation directory.
... ...
@@ -54,12 +54,12 @@ predictionRegion(object, copyNumber)
54 54
 %% ~Make other sections like Warning with \section{Warning }{....} ~
55 55
 
56 56
 \seealso{
57
-  \code{\link{calculatePosteriorMean}},
57
+%  \code{\link{calculatePosteriorMean}},
58 58
   \code{\link{posteriorProbability}}, \code{\link{genotypes}}
59 59
 }
60 60
 \examples{
61
-data(sample.CNSet)
62
-pr <- predictionRegion(sample.CNSet, copyNumber=0:4)
61
+data(cnSetExample)
62
+pr <- predictionRegion(cnSetExample, copyNumber=0:4)
63 63
 names(pr)
64 64
 ## bivariate normal prediction region for NULL genotype (homozygous deletion)
65 65
 str(pr[["NULL"]])
66 66
deleted file mode 100644
... ...
@@ -1,103 +0,0 @@
1
-\name{sample.CNSet}
2
-\alias{sample.CNSet}
3
-\alias{sample.CNSet2}
4
-\alias{cnSet}
5
-\docType{data}
6
-\title{
7
-	Object of class 'CNSet'
8
-}
9
-\description{
10
-
11
-	The data for the first 16 polymorphic markers in the HapMap analysis.
12
-
13
-}
14
-\details{
15
-  This object was created from the copynumber vignette in inst/scripts.
16
-}
17
-\usage{
18
-
19
-data(sample.CNSet)
20
-data(sample.CNSet2)
21
-
22
-}
23
-\format{
24
-  The data illustrates the \code{CNSet-class}, with
25
-	\code{assayData} containing the quantile-normalized
26
-	intensities for the A and B alleles, genotype calls and
27
-	confidence scores.  New slots that specific to copy number
28
-	estimation are \code{batch} and \code{batchStatistics}.
29
-
30
-}
31
-\examples{
32
-\dontshow{
33
-\dontrun{
34
-
35
-      ## hapmap phase 3 data
36
-      data(hapmapSet, package="CnvScripts")
37
-      marker.index <- which(chromosome(hapmapSet) == 8)
38
-      marker.index <- marker.index[1:60e3]
39
-      sample.CNSet <- hapmapSet[marker.index, c(1168:1169)]
40
-      ## 2 samples, many markers
41
-
42
-      ## all samples, a few markers
43
-      snp.index <- which(isSnp(hapmapSet))[1:100]
44
-      np.index <- which(!isSnp(hapmapSet))[1:100]
45
-      marker.index <- c(snp.index, np.index)
46
-      sample.CNSet2 <- hapmapSet[marker.index, ]
47
-}
48
-}
49
-data(sample.CNSet)
50
-## --------------------------------------------------
51
-## accessors for the feature-level info
52
-## --------------------------------------------------
53
-chromosome(sample.CNSet)[1:5]
54
-position(sample.CNSet)[1:5]
55
-isSnp(sample.CNSet)[1:5]
56
-table(isSnp(sample.CNSet))
57
-## --------------------------------------------------
58
-## sample-level statistics computed by crlmm
59
-## --------------------------------------------------
60
-varLabels(sample.CNSet)
61
-## accessors for sample-level statistics
62
-## The signal to noise ratio (SNR)
63
-sample.CNSet$SNR[]
64
-## the skew
65
-sample.CNSet$SKW[]
66
-## the gender (gender is imputed unless specified in the call to crlmm)
67
-table(sample.CNSet$gender[])  ## 1=male, 2=female
68
-## --------------------------------------------------
69
-## batchStatistics
70
-## -------------------------------------------------- estimate of
71
-## intercept from linear model
72
-dim(nu(sample.CNSet, "A"))
73
-## background for the A allele in the 2 batches for the
74
-## first 5 markers
75
-nu(sample.CNSet, "A")[1:5, ]
76
-## background for the B allele in the 2 batches for the
77
-## first 5 markers
78
-nu(sample.CNSet, "B")[1:5, ]
79
-## the slope
80
-phi(sample.CNSet, "A")[1:5, ]
81
-
82
-## --------------------------------------------------
83
-## calculating allele-specific copy number
84
-## --------------------------------------------------
85
-(ca <- CA(sample.CNSet, i=1:5, j=1:2))
86
-## copy number for allele B, first 5 markers, first 2 samples
87
-(cb <- CB(sample.CNSet, i=1:5, j=1:2))
88
-index <- which(!isSnp(sample.CNSet))[1:5]
89
-cn2 <- CA(sample.CNSet, i=index, j=1:2)
90
-## note, cb is 0 at nonpolymorphic loci
91
-CB(sample.CNSet, i=index, j=1:2)
92
-## A shortcut for total copy number
93
-cn3 <- totalCopynumber(sample.CNSet, i=1:5, j=1:2)
94
-all.equal(cn3, ca+cb)
95
-cn4 <- totalCopynumber(sample.CNSet, i=index, j=1:2)
96
-all.equal(cn4, cn2)
97
-
98
-## markers 1-5, all samples
99
-cn5 <- totalCopynumber(sample.CNSet, i=1:5)
100
-## all markers, samples 1-2
101
-cn6 <- totalCopynumber(sample.CNSet, j=1:2)
102
-}
103
-\keyword{datasets}