git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/crlmm@59038 bc3139a8-67e5-0310-9ffc-ced21a209358
... | ... |
@@ -1,7 +1,7 @@ |
1 | 1 |
Package: crlmm |
2 | 2 |
Type: Package |
3 | 3 |
Title: Genotype Calling (CRLMM) and Copy Number Analysis tool for Affymetrix SNP 5.0 and 6.0 and Illumina arrays. |
4 |
-Version: 1.11.54 |
|
4 |
+Version: 1.11.55 |
|
5 | 5 |
Date: 2010-12-10 |
6 | 6 |
Author: Benilton S Carvalho <Benilton.Carvalho@cancer.org.uk>, Robert Scharpf <rscharpf@jhsph.edu>, Matt Ritchie <mritchie@wehi.edu.au>, Ingo Ruczinski <iruczins@jhsph.edu>, Rafael A Irizarry |
7 | 7 |
Maintainer: Benilton S Carvalho <Benilton.Carvalho@cancer.org.uk>, Robert Scharpf <rscharpf@jhsph.edu>, Matt Ritchie <mritchie@wehi.EDU.AU> |
... | ... |
@@ -67,7 +67,7 @@ export(crlmm, |
67 | 67 |
genotype.Illumina, |
68 | 68 |
crlmmCopynumber2, crlmmCopynumberLD, crlmmCopynumber) |
69 | 69 |
export(genotypes, totalCopynumber, rawCopynumber, xyplot) |
70 |
-exportMethods(A, B, calculatePosteriorMean, corr, nuA, nuB, phiA, phiB, predictionRegion, posteriorProbability, tau2, Ns, medians, mads, |
|
70 |
+exportMethods(A, B, corr, nuA, nuB, phiA, phiB, predictionRegion, posteriorProbability, tau2, Ns, medians, mads, |
|
71 | 71 |
xyplot, calculateRBaf) |
72 | 72 |
export(ABpanel, constructInf, preprocessInf, genotypeInf) |
73 | 73 |
exportClasses(PredictionRegion) |
74 | 74 |
deleted file mode 100644 |
... | ... |
@@ -1,65 +0,0 @@ |
1 |
-\name{calculatePosteriorMean} |
|
2 |
-\alias{calculatePosteriorMean} |
|
3 |
-\alias{calculatePosteriorMean,CNSet-method} |
|
4 |
-%- Also NEED an '\alias' for EACH other topic documented here. |
|
5 |
-\title{Calculate the posterior mean of the integer copy numbers} |
|
6 |
-\description{ |
|
7 |
- |
|
8 |
- Computes the posterior mean copy number from the bivariate normal |
|
9 |
- prediction regions. |
|
10 |
- |
|
11 |
-} |
|
12 |
- |
|
13 |
-\usage{ |
|
14 |
-calculatePosteriorMean(object, posteriorProb, copyNumber = 0:4, ...) |
|
15 |
-} |
|
16 |
-%- maybe also 'usage' for other objects documented here. |
|
17 |
-\arguments{ |
|
18 |
- \item{object}{ |
|
19 |
- A \code{CNSet} object. |
|
20 |
-} |
|
21 |
- \item{posteriorProb}{ |
|
22 |
- The posterior probability for copy numbers 0-4. |
|
23 |
- } |
|
24 |
- |
|
25 |
- \item{copyNumber}{ |
|
26 |
- Integer vector. |
|
27 |
-} |
|
28 |
- \item{\dots}{ |
|
29 |
- Ignored |
|
30 |
-} |
|
31 |
-} |
|
32 |
-\details{ |
|
33 |
-} |
|
34 |
-\value{ |
|
35 |
- An array (features x samples x copy number) |
|
36 |
-} |
|
37 |
- |
|
38 |
-\author{ |
|
39 |
-R. Scharpf |
|
40 |
-} |
|
41 |
- |
|
42 |
- |
|
43 |
-%% ~Make other sections like Warning with \section{Warning }{....} ~ |
|
44 |
- |
|
45 |
-\seealso{ |
|
46 |
- \code{\link{predictionRegion}}, \code{\link{posteriorProbability}} |
|
47 |
-} |
|
48 |
-\examples{ |
|
49 |
-data(sample.CNSet) |
|
50 |
-pr <- predictionRegion(sample.CNSet, copyNumber=0:4) |
|
51 |
-pp <- posteriorProbability(sample.CNSet, predictRegion=pr) |
|
52 |
-pm <- calculatePosteriorMean(sample.CNSet, posteriorProb=pp) |
|
53 |
- |
|
54 |
-## multiple batches |
|
55 |
-data(sample.CNSet2) |
|
56 |
-pr <- predictionRegion(sample.CNSet2, copyNumber=0:4) |
|
57 |
-pp <- posteriorProbability(sample.CNSet2, predictRegion=pr) |
|
58 |
-## prediction regions not available for some batches |
|
59 |
-pm <- calculatePosteriorMean(sample.CNSet2, posteriorProb=pp) |
|
60 |
- |
|
61 |
-} |
|
62 |
-% Add one or more standard keywords, see file 'KEYWORDS' in the |
|
63 |
-% R documentation directory. |
|
64 |
-\keyword{array} |
|
65 |
-\keyword{models} |
... | ... |
@@ -30,9 +30,11 @@ posteriorProbability(object, predictRegion, copyNumber = 0:4, w) |
30 | 30 |
to 1.} |
31 | 31 |
|
32 | 32 |
} |
33 |
-\details{ |
|
34 | 33 |
|
34 |
+\details{ |
|
35 |
+This is currently under development. |
|
35 | 36 |
} |
37 |
+ |
|
36 | 38 |
\value{ |
37 | 39 |
An array (features x samples x copy number) |
38 | 40 |
} |
... | ... |
@@ -40,25 +42,26 @@ An array (features x samples x copy number) |
40 | 42 |
\author{ |
41 | 43 |
R. Scharpf |
42 | 44 |
} |
45 |
+ |
|
43 | 46 |
\note{ |
44 |
- %Remark about nonpolymorphic probes |
|
47 |
+ This is under development. Use at your own risk. |
|
45 | 48 |
} |
46 | 49 |
|
47 | 50 |
%% ~Make other sections like Warning with \section{Warning }{....} ~ |
48 | 51 |
|
49 | 52 |
\seealso{ |
50 |
- \code{\link{predictionRegion}}, \code{\link{genotypes}}, \code{\link{calculatePosteriorMean}} |
|
53 |
+ \code{\link{predictionRegion}}, \code{\link{genotypes}} %\code{\link{calculatePosteriorMean}} |
|
51 | 54 |
} |
52 | 55 |
\examples{ |
53 |
-data(sample.CNSet) |
|
54 |
-pr <- predictionRegion(sample.CNSet, copyNumber=0:4) |
|
55 |
-pp <- posteriorProbability(sample.CNSet, predictRegion=pr) |
|
56 |
+data(cnSetExample) |
|
57 |
+pr <- predictionRegion(cnSetExample, copyNumber=0:4) |
|
58 |
+pp <- posteriorProbability(cnSetExample, predictRegion=pr) |
|
56 | 59 |
dim(pp) |
57 | 60 |
|
58 | 61 |
## multiple batches |
59 |
-data(sample.CNSet2) |
|
60 |
-pr <- predictionRegion(sample.CNSet2, copyNumber=0:4) |
|
61 |
-pp <- posteriorProbability(sample.CNSet2, predictRegion=pr) |
|
62 |
+data(cnSetExample2) |
|
63 |
+pr <- predictionRegion(cnSetExample2, copyNumber=0:4) |
|
64 |
+pp <- posteriorProbability(cnSetExample2, predictRegion=pr) |
|
62 | 65 |
} |
63 | 66 |
% Add one or more standard keywords, see file 'KEYWORDS' in the |
64 | 67 |
% R documentation directory. |
... | ... |
@@ -54,12 +54,12 @@ predictionRegion(object, copyNumber) |
54 | 54 |
%% ~Make other sections like Warning with \section{Warning }{....} ~ |
55 | 55 |
|
56 | 56 |
\seealso{ |
57 |
- \code{\link{calculatePosteriorMean}}, |
|
57 |
+% \code{\link{calculatePosteriorMean}}, |
|
58 | 58 |
\code{\link{posteriorProbability}}, \code{\link{genotypes}} |
59 | 59 |
} |
60 | 60 |
\examples{ |
61 |
-data(sample.CNSet) |
|
62 |
-pr <- predictionRegion(sample.CNSet, copyNumber=0:4) |
|
61 |
+data(cnSetExample) |
|
62 |
+pr <- predictionRegion(cnSetExample, copyNumber=0:4) |
|
63 | 63 |
names(pr) |
64 | 64 |
## bivariate normal prediction region for NULL genotype (homozygous deletion) |
65 | 65 |
str(pr[["NULL"]]) |
66 | 66 |
deleted file mode 100644 |
... | ... |
@@ -1,103 +0,0 @@ |
1 |
-\name{sample.CNSet} |
|
2 |
-\alias{sample.CNSet} |
|
3 |
-\alias{sample.CNSet2} |
|
4 |
-\alias{cnSet} |
|
5 |
-\docType{data} |
|
6 |
-\title{ |
|
7 |
- Object of class 'CNSet' |
|
8 |
-} |
|
9 |
-\description{ |
|
10 |
- |
|
11 |
- The data for the first 16 polymorphic markers in the HapMap analysis. |
|
12 |
- |
|
13 |
-} |
|
14 |
-\details{ |
|
15 |
- This object was created from the copynumber vignette in inst/scripts. |
|
16 |
-} |
|
17 |
-\usage{ |
|
18 |
- |
|
19 |
-data(sample.CNSet) |
|
20 |
-data(sample.CNSet2) |
|
21 |
- |
|
22 |
-} |
|
23 |
-\format{ |
|
24 |
- The data illustrates the \code{CNSet-class}, with |
|
25 |
- \code{assayData} containing the quantile-normalized |
|
26 |
- intensities for the A and B alleles, genotype calls and |
|
27 |
- confidence scores. New slots that specific to copy number |
|
28 |
- estimation are \code{batch} and \code{batchStatistics}. |
|
29 |
- |
|
30 |
-} |
|
31 |
-\examples{ |
|
32 |
-\dontshow{ |
|
33 |
-\dontrun{ |
|
34 |
- |
|
35 |
- ## hapmap phase 3 data |
|
36 |
- data(hapmapSet, package="CnvScripts") |
|
37 |
- marker.index <- which(chromosome(hapmapSet) == 8) |
|
38 |
- marker.index <- marker.index[1:60e3] |
|
39 |
- sample.CNSet <- hapmapSet[marker.index, c(1168:1169)] |
|
40 |
- ## 2 samples, many markers |
|
41 |
- |
|
42 |
- ## all samples, a few markers |
|
43 |
- snp.index <- which(isSnp(hapmapSet))[1:100] |
|
44 |
- np.index <- which(!isSnp(hapmapSet))[1:100] |
|
45 |
- marker.index <- c(snp.index, np.index) |
|
46 |
- sample.CNSet2 <- hapmapSet[marker.index, ] |
|
47 |
-} |
|
48 |
-} |
|
49 |
-data(sample.CNSet) |
|
50 |
-## -------------------------------------------------- |
|
51 |
-## accessors for the feature-level info |
|
52 |
-## -------------------------------------------------- |
|
53 |
-chromosome(sample.CNSet)[1:5] |
|
54 |
-position(sample.CNSet)[1:5] |
|
55 |
-isSnp(sample.CNSet)[1:5] |
|
56 |
-table(isSnp(sample.CNSet)) |
|
57 |
-## -------------------------------------------------- |
|
58 |
-## sample-level statistics computed by crlmm |
|
59 |
-## -------------------------------------------------- |
|
60 |
-varLabels(sample.CNSet) |
|
61 |
-## accessors for sample-level statistics |
|
62 |
-## The signal to noise ratio (SNR) |
|
63 |
-sample.CNSet$SNR[] |
|
64 |
-## the skew |
|
65 |
-sample.CNSet$SKW[] |
|
66 |
-## the gender (gender is imputed unless specified in the call to crlmm) |
|
67 |
-table(sample.CNSet$gender[]) ## 1=male, 2=female |
|
68 |
-## -------------------------------------------------- |
|
69 |
-## batchStatistics |
|
70 |
-## -------------------------------------------------- estimate of |
|
71 |
-## intercept from linear model |
|
72 |
-dim(nu(sample.CNSet, "A")) |
|
73 |
-## background for the A allele in the 2 batches for the |
|
74 |
-## first 5 markers |
|
75 |
-nu(sample.CNSet, "A")[1:5, ] |
|
76 |
-## background for the B allele in the 2 batches for the |
|
77 |
-## first 5 markers |
|
78 |
-nu(sample.CNSet, "B")[1:5, ] |
|
79 |
-## the slope |
|
80 |
-phi(sample.CNSet, "A")[1:5, ] |
|
81 |
- |
|
82 |
-## -------------------------------------------------- |
|
83 |
-## calculating allele-specific copy number |
|
84 |
-## -------------------------------------------------- |
|
85 |
-(ca <- CA(sample.CNSet, i=1:5, j=1:2)) |
|
86 |
-## copy number for allele B, first 5 markers, first 2 samples |
|
87 |
-(cb <- CB(sample.CNSet, i=1:5, j=1:2)) |
|
88 |
-index <- which(!isSnp(sample.CNSet))[1:5] |
|
89 |
-cn2 <- CA(sample.CNSet, i=index, j=1:2) |
|
90 |
-## note, cb is 0 at nonpolymorphic loci |
|
91 |
-CB(sample.CNSet, i=index, j=1:2) |
|
92 |
-## A shortcut for total copy number |
|
93 |
-cn3 <- totalCopynumber(sample.CNSet, i=1:5, j=1:2) |
|
94 |
-all.equal(cn3, ca+cb) |
|
95 |
-cn4 <- totalCopynumber(sample.CNSet, i=index, j=1:2) |
|
96 |
-all.equal(cn4, cn2) |
|
97 |
- |
|
98 |
-## markers 1-5, all samples |
|
99 |
-cn5 <- totalCopynumber(sample.CNSet, i=1:5) |
|
100 |
-## all markers, samples 1-2 |
|
101 |
-cn6 <- totalCopynumber(sample.CNSet, j=1:2) |
|
102 |
-} |
|
103 |
-\keyword{datasets} |