git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/crlmm@58638 bc3139a8-67e5-0310-9ffc-ced21a209358
... | ... |
@@ -1,7 +1,7 @@ |
1 | 1 |
Package: crlmm |
2 | 2 |
Type: Package |
3 | 3 |
Title: Genotype Calling (CRLMM) and Copy Number Analysis tool for Affymetrix SNP 5.0 and 6.0 and Illumina arrays. |
4 |
-Version: 1.11.16 |
|
4 |
+Version: 1.11.18 |
|
5 | 5 |
Date: 2010-12-10 |
6 | 6 |
Author: Benilton S Carvalho <Benilton.Carvalho@cancer.org.uk>, Robert Scharpf <rscharpf@jhsph.edu>, Matt Ritchie <mritchie@wehi.edu.au>, Ingo Ruczinski <iruczins@jhsph.edu>, Rafael A Irizarry |
7 | 7 |
Maintainer: Benilton S Carvalho <Benilton.Carvalho@cancer.org.uk>, Robert Scharpf <rscharpf@jhsph.edu>, Matt Ritchie <mritchie@wehi.EDU.AU> |
... | ... |
@@ -10,7 +10,7 @@ License: Artistic-2.0 |
10 | 10 |
Depends: R (>= 2.13.0), |
11 | 11 |
methods, |
12 | 12 |
Biobase (>= 2.11.9), |
13 |
- oligoClasses (>= 1.13.22) |
|
13 |
+ oligoClasses (>= 1.15.31) |
|
14 | 14 |
Imports: affyio (>= 1.19.2), |
15 | 15 |
ellipse, |
16 | 16 |
ff (>= 2.2-1), |
... | ... |
@@ -2702,24 +2702,16 @@ dbvn <- function(x, mu, Sigma){ |
2702 | 2702 |
|
2703 | 2703 |
ABpanel <- function(x, y, predictRegion, |
2704 | 2704 |
copyNumber=0:4, |
2705 |
- object, |
|
2706 |
-## x.axis, |
|
2707 |
-## line.col, |
|
2708 |
-## line.lwd, |
|
2709 |
-## shades, |
|
2705 |
+ fill, |
|
2710 | 2706 |
..., |
2711 | 2707 |
subscripts){ |
2712 |
-## data.last=FALSE, |
|
2713 |
-## highlight.index=NULL){ |
|
2714 |
- ##if(length(scale.sd)==1) scale.sd <- rep(scale.sd,3) |
|
2715 | 2708 |
panel.grid(h=5, v=5) |
2716 |
- panel.xyplot(x, y, ...) |
|
2717 |
-## if(!is.null(highlight.index)){ |
|
2718 |
-## ##ii <- subscripts[highlight.index] |
|
2719 |
-## ii <- highlight.index |
|
2720 |
-## lpoints(x[ii], y[ii], pch="X", cex=1.5, col="black") |
|
2721 |
-## } |
|
2722 |
- i <- panel.number() |
|
2709 |
+ if(!missing(fill)){ |
|
2710 |
+ panel.xyplot(x, y, fill=fill[subscripts], ...) |
|
2711 |
+ } else { |
|
2712 |
+ panel.xyplot(x, y, ...) |
|
2713 |
+ } |
|
2714 |
+ pn <- panel.number() |
|
2723 | 2715 |
for(CN in copyNumber){ |
2724 | 2716 |
gts <- genotypes(CN) |
2725 | 2717 |
index <- match(gts, names(predictRegion)) |
... | ... |
@@ -2727,65 +2719,15 @@ ABpanel <- function(x, y, predictRegion, |
2727 | 2719 |
for(i in seq_along(pr)){ |
2728 | 2720 |
## scale? |
2729 | 2721 |
pr2 <- pr[[i]] |
2730 |
- mu <- pr2$mu |
|
2731 |
- Sigma <- pr2$cov |
|
2722 |
+ mu <- pr2$mu[pn, , , drop=FALSE] ## pn=panel number |
|
2723 |
+ Sigma <- pr2$cov[pn, , ,drop=FALSE] |
|
2732 | 2724 |
for(j in seq_len(dim(mu)[3])){ |
2733 | 2725 |
dat.ellipse <- ellipse(x=Sigma[, 2, j], |
2734 |
- centre=mu[, , j], |
|
2735 |
- scale=c(sqrt(Sigma[,1,j]), |
|
2726 |
+ centre=mu[ , , j], |
|
2727 |
+ scale=c(sqrt(Sigma[ , 1, j]), |
|
2736 | 2728 |
sqrt(Sigma[, 3, j]))) |
2737 | 2729 |
lpolygon(dat.ellipse[,1], dat.ellipse[,2], ...) |
2738 | 2730 |
} |
2739 |
-## } else { |
|
2740 |
-## dat.ellipse <- ellipse(x=rho, centre=c(log2(nuB+CB*phB), log2(nuA+CA*phA)), scale=rev(scale)) |
|
2741 |
-## } |
|
2742 |
-## lpolygon(dat.ellipse[, 1], dat.ellipse[, 2], border=line.col[k], col=shades[k], ...) |
|
2743 | 2731 |
} |
2744 | 2732 |
} |
2745 |
-## nuB <- as.numeric(nu(object, "B"))[i] |
|
2746 |
-## phB <- as.numeric(phi(object, "B"))[i] |
|
2747 |
-## nuA <- as.numeric(nu(object, "A"))[i] |
|
2748 |
-## phA <- as.numeric(phi(object, "A"))[i] |
|
2749 |
-## taus <- tau2(object, i=i)[, , , 1] |
|
2750 |
-## cors <- corr(object, i=i)[, , 1] |
|
2751 |
-## t2A <- taus["A", "BB"] |
|
2752 |
-## t2B <- taus["B", "AA"] |
|
2753 |
-## s2A <- taus["A", "AA"] |
|
2754 |
-## s2B <- taus["B", "BB"] |
|
2755 |
-## corrAB <- cors["AB"] |
|
2756 |
-## corrAA <- cors["AA"] |
|
2757 |
-## corrBB <- cors["BB"] |
|
2758 |
-## k <- 1 |
|
2759 |
-## for(CN in copynumber){ |
|
2760 |
-## for(CA in 0:CN){ |
|
2761 |
-## CB <- CN-CA |
|
2762 |
-## A.scale <- sqrt(t2A*(CA==0) + s2A*(CA > 0)) |
|
2763 |
-## B.scale <- sqrt(t2B*(CB==0) + s2B*(CB > 0)) |
|
2764 |
-## if(CA == 0 | CB == 0){ |
|
2765 |
-## A.scale <- A.scale*scale.sd[1] |
|
2766 |
-## B.scale <- B.scale*scale.sd[1] |
|
2767 |
-## } else { ## both greater than zero |
|
2768 |
-## A.scale <- A.scale*scale.sd[2] |
|
2769 |
-## B.scale <- B.scale*scale.sd[2] |
|
2770 |
-## } |
|
2771 |
-## scale <- c(A.scale, B.scale) |
|
2772 |
-## if(CA == 0 & CB > 0) rho <- corrBB |
|
2773 |
-## if(CA > 0 & CB == 0) rho <- corrAA |
|
2774 |
-## if(CA > 0 & CB > 0) rho <- corrAB |
|
2775 |
-## if(CA == 0 & CB == 0) rho <- 0 |
|
2776 |
-## if(x.axis=="A"){ |
|
2777 |
-## dat.ellipse <- ellipse(x=rho, centre=c(log2(nuA+CA*phA), log2(nuB+CB*phB)), scale=scale) |
|
2778 |
-## } else { |
|
2779 |
-## dat.ellipse <- ellipse(x=rho, centre=c(log2(nuB+CB*phB), log2(nuA+CA*phA)), scale=rev(scale)) |
|
2780 |
-## } |
|
2781 |
-## lpolygon(dat.ellipse[, 1], dat.ellipse[, 2], border=line.col[k], col=shades[k], ...) |
|
2782 |
-## } |
|
2783 |
-## k <- k+1 |
|
2784 |
-## } |
|
2785 |
-## if(data.last) { |
|
2786 |
-## panel.xyplot(x, y, ...) |
|
2787 |
-## if(!is.null(highlight.index)){ |
|
2788 |
-## lpoints(x[ii], y[ii], pch="X", cex=1.5, col="black") |
|
2789 |
-## } |
|
2790 |
-## } |
|
2791 | 2733 |
} |
2792 | 2734 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,64 @@ |
1 |
+\name{ABpanel} |
|
2 |
+\alias{ABpanel} |
|
3 |
+\title{A panel function for plotting prediction regions and |
|
4 |
+ log-normalized intensities |
|
5 |
+} |
|
6 |
+\description{ |
|
7 |
+ A panel function for plotting prediction regions and |
|
8 |
+ log-normalized intensities |
|
9 |
+} |
|
10 |
+\usage{ |
|
11 |
+ABpanel(x, y, predictRegion, copyNumber = 0:4, fill, ..., subscripts) |
|
12 |
+} |
|
13 |
+%- maybe also 'usage' for other objects documented here. |
|
14 |
+\arguments{ |
|
15 |
+ \item{x}{ |
|
16 |
+ log-normalized intensities for the A or B allele |
|
17 |
+} |
|
18 |
+\item{y}{ |
|
19 |
+ log-normalized intensities for the A or B allele |
|
20 |
+} |
|
21 |
+ \item{predictRegion}{ |
|
22 |
+ A \code{list}. See \code{predictionRegion}. |
|
23 |
+} |
|
24 |
+ \item{copyNumber}{ |
|
25 |
+ Integer vector. Indicates which prediction regions are drawn. |
|
26 |
+} |
|
27 |
+ \item{fill}{ |
|
28 |
+ Character or integer vector for coloring the points. Only valid for |
|
29 |
+ certain point symbols. See \code{points}. |
|
30 |
+} |
|
31 |
+ \item{\dots}{ |
|
32 |
+ Additional arguments to \code{panel.xyplot} and \code{\lpolygon}. |
|
33 |
+} |
|
34 |
+ \item{subscripts}{ |
|
35 |
+ See \code{xyplot} in the \pkg{lattice} package. |
|
36 |
+} |
|
37 |
+} |
|
38 |
+\details{ |
|
39 |
+%% ~~ If necessary, more details than the description above ~~ |
|
40 |
+} |
|
41 |
+\value{ |
|
42 |
+ Not applicable |
|
43 |
+} |
|
44 |
+ |
|
45 |
+\note{ |
|
46 |
+ |
|
47 |
+ \code{ABpanel} can be passed as the argument to panel in the |
|
48 |
+ \code{xyplot} method for \code{CNSet} objects. See the examples in |
|
49 |
+ \code{xyplot}. |
|
50 |
+ |
|
51 |
+} |
|
52 |
+ |
|
53 |
+\author{ |
|
54 |
+R. Scharpf |
|
55 |
+} |
|
56 |
+ |
|
57 |
+\seealso{ |
|
58 |
+ \code{\link[lattice]{xyplot}}, \code{\link[lattice]{panel.xyplot}} |
|
59 |
+ \code{\link[lattice]{lpolygon}} |
|
60 |
+} |
|
61 |
+ |
|
62 |
+% Add one or more standard keywords, see file 'KEYWORDS' in the |
|
63 |
+% R documentation directory. |
|
64 |
+\keyword{aplot} |
|
0 | 65 |
\ No newline at end of file |