\name{genotype.Illumina}
\alias{genotype.Illumina}
\alias{crlmmIllumina}

\title{
	Preprocessing and genotyping of Illumina Infinium II arrays.
}
\description{
	Preprocessing and genotyping of Illumina Infinium II arrays.
}
\usage{
genotype.Illumina(sampleSheet=NULL, arrayNames=NULL, ids=NULL, path=".",
      arrayInfoColNames=list(barcode="SentrixBarcode_A", position="SentrixPosition_A"),
      highDensity=FALSE, sep="_", fileExt=list(green="Grn.idat", red="Red.idat"), XY=NULL, anno, genome, 
      call.method="crlmm", trueCalls=NULL, cdfName, copynumber=TRUE, batch=NULL, saveDate=FALSE, stripNorm=TRUE, 
      useTarget=TRUE, quantile.method="between", nopackage.norm="quantile", mixtureSampleSize=10^5, fitMixture=TRUE,
      eps=0.1, verbose = TRUE, seed = 1, sns, probs = rep(1/3, 3), DF = 6, SNRMin = 5, 
      recallMin = 10, recallRegMin = 1000, gender = NULL, returnParams = TRUE, badSNP = 0.7)

crlmmIllumina(sampleSheet=NULL, arrayNames=NULL, ids=NULL, path=".",
      arrayInfoColNames=list(barcode="SentrixBarcode_A", position="SentrixPosition_A"),
      highDensity=FALSE, sep="_", fileExt=list(green="Grn.idat", red="Red.idat"), XY=NULL, anno, genome, 
      call.method="crlmm", trueCalls=NULL, cdfName, copynumber=TRUE, batch=NULL, saveDate=FALSE, stripNorm=TRUE, 
      useTarget=TRUE, quantile.method="between", nopackage.norm="quantile", mixtureSampleSize=10^5, fitMixture=TRUE,
      eps=0.1, verbose = TRUE, seed = 1, sns, probs = rep(1/3, 3), DF = 6, SNRMin = 5, 
      recallMin = 10, recallRegMin = 1000, gender = NULL, returnParams = TRUE, badSNP = 0.7)

}
\arguments{
  \item{sampleSheet}{\code{data.frame} containing Illumina sample sheet
    information (for required columns, refer to BeadStudio Genotyping
    guide - Appendix A).}
  \item{arrayNames}{character vector containing names of arrays to be
    read in.  If \code{NULL}, all arrays that can be found in the
    specified working directory will be read in.}
  \item{ids}{vector containing ids of probes to be read in.  If
    \code{NULL} all probes found on the first array are read in.}
  \item{path}{character string specifying the location of files to be
    read by the function}
  \item{arrayInfoColNames}{(used when \code{sampleSheet} is specified)
    list containing elements 'barcode' which indicates column names in
    the \code{sampleSheet} which contains the arrayNumber/barcode number
    and 'position' which indicates the strip number.  In older style
    sample sheets, this information is combined (usually in a column
    named 'SentrixPosition') and this should be specified as
    \code{list(barcode=NULL, position="SentrixPosition")}}
  \item{highDensity}{logical (used when \code{sampleSheet} is
    specified). If \code{TRUE}, array extensions '\_A', '\_B' in
    sampleSheet are replaced with 'R01C01', 'R01C02' etc.}
  \item{sep}{character string specifying separator used in .idat file
    names.}
  \item{fileExt}{list containing elements 'Green' and 'Red' which
    specify the .idat file extension for the Cy3 and Cy5 channels.}
  \item{XY}{\code{NChannelSet} containing X and Y intensities.}
  \item{anno}{data.frame containing SNP annotation information from 
    manifest and additional columns 'isSnp', 'position', 'chromosome' 
    and 'featureNames'. For use when \code{cdfName}='nopackage'}
  \item{genome}{character string specifying which genome is used in annotation}
  \item{call.method}{character string specifying the genotype calling algorithm to use ('crlmm' or 'krlmm').}
  \item{trueCalls}{matrix specifying known Genotype calls(can contain some NAs) for a subset of samples and features (1 - AA, 2 - AB, 3 - BB).}
  \item{cdfName}{annotation package (see also \code{validCdfNames}) or 'nopackage' when combined with 'krlmm', an \code{anno} data.frame and \code{genome}.}
  \item{copynumber}{ 'logical.' Whether to store copy number intensities with SNP output.}
  \item{batch}{ character vector indicating the batch variable. Must be
	the same length as the number of samples. See details.}
  \item{saveDate}{'logical'.  Should the dates from each .idat be saved
    with sample information?}
  \item{stripNorm}{'logical'.  Should the data be strip-level normalized?}
  \item{useTarget}{'logical' (only used when \code{stripNorm=TRUE}).
    Should the reference HapMap intensities be used in strip-level normalization?}
  \item{quantile.method}{character string specifying the quantile normalization method to use ('within' or 'between' channels).}
  \item{nopackage.norm}{character string specifying normalization to be used when \code{cdfName}='nopackage'.
    Options are 'none', 'quantile' (within channel, between array) and 'loess'.}
  \item{mixtureSampleSize}{ Sample size to be use when fitting the mixture model.}
  \item{fitMixture}{ 'logical.' Whether to fit per-array mixture model.}
  \item{eps}{   Stop criteria.}
  \item{verbose}{  'logical.'  Whether to print descriptive messages during processing.}
  \item{seed}{ Seed to be used when sampling. Useful for reproducibility}
  \item{sns}{The sample identifiers.  If missing, the default sample names are \code{basename(filenames)}}
  \item{probs}{'numeric' vector with priors for AA, AB and BB.}
  \item{DF}{'integer' with number of degrees of freedom to use with t-distribution.}
  \item{SNRMin}{'numeric' scalar defining the minimum SNR used to filter
  out samples.}
  \item{recallMin}{Minimum number of samples for recalibration. }
  \item{recallRegMin}{Minimum number of SNP's for regression.}
  \item{gender}{  integer vector (  male = 1, female = 2 ) or missing,
  with same length as filenames.  If missing, the gender is predicted.}
  \item{returnParams}{'logical'. Return recalibrated parameters from crlmm.}
  \item{badSNP}{'numeric'. Threshold to flag as bad SNP (affects batchQC)}
}

\details{

	\code{genotype.Illumina} (or equivalently \code{crlmmIllumina}) 
        is a wrapper of the \code{crlmm} function for genotyping.  
        Differences include (1) that the copy number probes (if present) 
        are also quantile-normalized and (2) the class of object returned 
        by this function, \code{CNSet}, is needed for subsequent copy number 
        estimation.  Note that the batch variable (a character string) has 
        no effect on the normalization or genotyping steps. Rather, \code{batch} 
        is required in order to initialize a \code{CNSet} container with the 
        appropriate dimensions.

        The new 'krlmm' option is available for certain chip types. Optional 
	argument \code{trueCalls} matrix contains known Genotype calls 
	(1 - AA, 2 - AB, 3 - BB) for a subset of samples and features. This 
	will used to compute KRLMM coefficients by calling \code{vglm} function 
	from \code{VGAM} package.

	The 'krlmm' method makes use of functions provided in \code{parallel} 
	package to speed up the process. It by default initialises up to 
	8 clusters. This is configurable by setting up an option named 
	"krlmm.cores", e.g. options("krlmm.cores" = 16). 

        In general, a chip specific annotation package is required to use the 
        \code{genotype.Illumina} function. If this is not available (newer chip 
        types or custom chips often don't have a chip-specific package available
        on Bioconductor), consider using \code{cdfName}='nopackage' and specifying 
        \code{anno} and \code{genome}, which runs 'krlmm' on the samples available.
        Here \code{anno} is a data.frame read in from the relevant chip-specific
        manifest, which must have additional columns 'isSnp' which is a logical that
        indicates whether a probe is polymorphic or not, 'position', 'chromosome' and
        'featureNames' that give the location on the chromosome and SNP name.
      }

\value{	A \code{SnpSuperSet} instance.}
\references{
  Ritchie ME, Carvalho BS, Hetrick KN, Tavar\'{e} S, Irizarry RA.
  R/Bioconductor software for Illumina's Infinium whole-genome
  genotyping BeadChips. Bioinformatics. 2009 Oct 1;25(19):2621-3.

  Liu R, Dai Z, Yeager M, Irizarry RA1, Ritchie ME.
  KRLMM: an adaptive genotype calling method for common and low frequency variants.
  BMC Bioinformatics. 2014 May 23;15:158.

  Carvalho B, Bengtsson H, Speed TP, Irizarry RA. Exploration,
  normalization, and genotype calls of high-density oligonucleotide SNP
  array data. Biostatistics. 2007 Apr;8(2):485-99. Epub 2006 Dec
  22. PMID: 17189563.

  Carvalho BS, Louis TA, Irizarry RA.
  Quantifying uncertainty in genotype calls.
  Bioinformatics. 2010 Jan 15;26(2):242-9.
}

\author{Matt Ritchie, Cynthia Liu, Zhiyin Dai}

\seealso{
	\code{\link[oligoClasses]{ocSamples}},
	\code{\link[oligoClasses]{ldOpts}}
}
\examples{
\dontrun{
	# example for 'crlmm' option
	library(ff)
	library(crlmm)
	## to enable paralellization, set to TRUE
	if(FALSE){
		library(snow)
		library(doSNOW)
		## with 10 workers
		cl <- makeCluster(10, type="SOCK")
		registerDoSNOW(cl)
	}
	## path to idat files
	datadir <- "/thumper/ctsa/snpmicroarray/illumina/IDATS/370k"
	## read in your samplesheet
	samplesheet = read.csv(file.path(datadir, "HumanHap370Duo_Sample_Map.csv"), header=TRUE, as.is=TRUE)
	samplesheet <- samplesheet[-c(28:46,61:75,78:79), ]
	arrayNames <- file.path(datadir, unique(samplesheet[, "SentrixPosition"]))
	arrayInfo <- list(barcode=NULL, position="SentrixPosition")
	cnSet <- genotype.Illumina(sampleSheet=samplesheet,
				   arrayNames=arrayNames,
				   arrayInfoColNames=arrayInfo,
				   cdfName="human370v1c",
				   batch=rep("1", nrow(samplesheet)))

}
\dontrun{
	# example for 'krlmm' option
	library(crlmm)
	library(ff)
	# line below is an optional step for krlmm to initialise 16 workers 
	# options("krlmm.cores" = 16)
	# read in raw X and Y intensities output by GenomeStudio's GenCall genotyping module
	XY = readGenCallOutput(c("HumanOmni2-5_4v1_FinalReport_83TUSCAN.csv","HumanOmni2-5_4v1_FinalReport_88CHB-JPT.csv"),
				cdfName="humanomni25quadv1b",
				verbose=TRUE)
	krlmmResult = genotype.Illumina(XY=XY, 
		      			cdfName=ThiscdfName, 
					call.method="krlmm", 
					verbose=TRUE)

	# example for 'krlmm' option with known genotype call for some SNPs and samples
	library(VGAM)
	hapmapCalls = load("hapmapCalls.rda")
	# hapmapCalls should have rownames and colnames corresponding to XY featureNames and sampleNames
	krlmmResult = genotype.Illumina(XY=XY,
					cdfName=ThiscdfName, 
					call.method="krlmm", 
					trueCalls=hapmapCalls, 
					verbose=TRUE)		
}
}
\keyword{classif}