\name{genotype.Illumina} \alias{genotype.Illumina} \alias{crlmmIllumina} \title{ Preprocessing and genotyping of Illumina Infinium II arrays. } \description{ Preprocessing and genotyping of Illumina Infinium II arrays. } \usage{ genotype.Illumina(sampleSheet=NULL, arrayNames=NULL, ids=NULL, path=".", arrayInfoColNames=list(barcode="SentrixBarcode_A", position="SentrixPosition_A"), highDensity=FALSE, sep="_", fileExt=list(green="Grn.idat", red="Red.idat"), XY=NULL, anno, genome, call.method="crlmm", trueCalls=NULL, cdfName, copynumber=TRUE, batch=NULL, saveDate=FALSE, stripNorm=TRUE, useTarget=TRUE, quantile.method="between", nopackage.norm="quantile", mixtureSampleSize=10^5, fitMixture=TRUE, eps=0.1, verbose = TRUE, seed = 1, sns, probs = rep(1/3, 3), DF = 6, SNRMin = 5, recallMin = 10, recallRegMin = 1000, gender = NULL, returnParams = TRUE, badSNP = 0.7) crlmmIllumina(sampleSheet=NULL, arrayNames=NULL, ids=NULL, path=".", arrayInfoColNames=list(barcode="SentrixBarcode_A", position="SentrixPosition_A"), highDensity=FALSE, sep="_", fileExt=list(green="Grn.idat", red="Red.idat"), XY=NULL, anno, genome, call.method="crlmm", trueCalls=NULL, cdfName, copynumber=TRUE, batch=NULL, saveDate=FALSE, stripNorm=TRUE, useTarget=TRUE, quantile.method="between", nopackage.norm="quantile", mixtureSampleSize=10^5, fitMixture=TRUE, eps=0.1, verbose = TRUE, seed = 1, sns, probs = rep(1/3, 3), DF = 6, SNRMin = 5, recallMin = 10, recallRegMin = 1000, gender = NULL, returnParams = TRUE, badSNP = 0.7) } \arguments{ \item{sampleSheet}{\code{data.frame} containing Illumina sample sheet information (for required columns, refer to BeadStudio Genotyping guide - Appendix A).} \item{arrayNames}{character vector containing names of arrays to be read in. If \code{NULL}, all arrays that can be found in the specified working directory will be read in.} \item{ids}{vector containing ids of probes to be read in. If \code{NULL} all probes found on the first array are read in.} \item{path}{character string specifying the location of files to be read by the function} \item{arrayInfoColNames}{(used when \code{sampleSheet} is specified) list containing elements 'barcode' which indicates column names in the \code{sampleSheet} which contains the arrayNumber/barcode number and 'position' which indicates the strip number. In older style sample sheets, this information is combined (usually in a column named 'SentrixPosition') and this should be specified as \code{list(barcode=NULL, position="SentrixPosition")}} \item{highDensity}{logical (used when \code{sampleSheet} is specified). If \code{TRUE}, array extensions '\_A', '\_B' in sampleSheet are replaced with 'R01C01', 'R01C02' etc.} \item{sep}{character string specifying separator used in .idat file names.} \item{fileExt}{list containing elements 'Green' and 'Red' which specify the .idat file extension for the Cy3 and Cy5 channels.} \item{XY}{\code{NChannelSet} containing X and Y intensities.} \item{anno}{data.frame containing SNP annotation information from manifest and additional columns 'isSnp', 'position', 'chromosome' and 'featureNames'. For use when \code{cdfName}='nopackage'} \item{genome}{character string specifying which genome is used in annotation} \item{call.method}{character string specifying the genotype calling algorithm to use ('crlmm' or 'krlmm').} \item{trueCalls}{matrix specifying known Genotype calls(can contain some NAs) for a subset of samples and features (1 - AA, 2 - AB, 3 - BB).} \item{cdfName}{annotation package (see also \code{validCdfNames}) or 'nopackage' when combined with 'krlmm', an \code{anno} data.frame and \code{genome}.} \item{copynumber}{ 'logical.' Whether to store copy number intensities with SNP output.} \item{batch}{ character vector indicating the batch variable. Must be the same length as the number of samples. See details.} \item{saveDate}{'logical'. Should the dates from each .idat be saved with sample information?} \item{stripNorm}{'logical'. Should the data be strip-level normalized?} \item{useTarget}{'logical' (only used when \code{stripNorm=TRUE}). Should the reference HapMap intensities be used in strip-level normalization?} \item{quantile.method}{character string specifying the quantile normalization method to use ('within' or 'between' channels).} \item{nopackage.norm}{character string specifying normalization to be used when \code{cdfName}='nopackage'. Options are 'none', 'quantile' (within channel, between array) and 'loess'.} \item{mixtureSampleSize}{ Sample size to be use when fitting the mixture model.} \item{fitMixture}{ 'logical.' Whether to fit per-array mixture model.} \item{eps}{ Stop criteria.} \item{verbose}{ 'logical.' Whether to print descriptive messages during processing.} \item{seed}{ Seed to be used when sampling. Useful for reproducibility} \item{sns}{The sample identifiers. If missing, the default sample names are \code{basename(filenames)}} \item{probs}{'numeric' vector with priors for AA, AB and BB.} \item{DF}{'integer' with number of degrees of freedom to use with t-distribution.} \item{SNRMin}{'numeric' scalar defining the minimum SNR used to filter out samples.} \item{recallMin}{Minimum number of samples for recalibration. } \item{recallRegMin}{Minimum number of SNP's for regression.} \item{gender}{ integer vector ( male = 1, female = 2 ) or missing, with same length as filenames. If missing, the gender is predicted.} \item{returnParams}{'logical'. Return recalibrated parameters from crlmm.} \item{badSNP}{'numeric'. Threshold to flag as bad SNP (affects batchQC)} } \details{ \code{genotype.Illumina} (or equivalently \code{crlmmIllumina}) is a wrapper of the \code{crlmm} function for genotyping. Differences include (1) that the copy number probes (if present) are also quantile-normalized and (2) the class of object returned by this function, \code{CNSet}, is needed for subsequent copy number estimation. Note that the batch variable (a character string) has no effect on the normalization or genotyping steps. Rather, \code{batch} is required in order to initialize a \code{CNSet} container with the appropriate dimensions. The new 'krlmm' option is available for certain chip types. Optional argument \code{trueCalls} matrix contains known Genotype calls (1 - AA, 2 - AB, 3 - BB) for a subset of samples and features. This will used to compute KRLMM coefficients by calling \code{vglm} function from \code{VGAM} package. The 'krlmm' method makes use of functions provided in \code{parallel} package to speed up the process. It by default initialises up to 8 clusters. This is configurable by setting up an option named "krlmm.cores", e.g. options("krlmm.cores" = 16). In general, a chip specific annotation package is required to use the \code{genotype.Illumina} function. If this is not available (newer chip types or custom chips often don't have a chip-specific package available on Bioconductor), consider using \code{cdfName}='nopackage' and specifying \code{anno} and \code{genome}, which runs 'krlmm' on the samples available. Here \code{anno} is a data.frame read in from the relevant chip-specific manifest, which must have additional columns 'isSnp' which is a logical that indicates whether a probe is polymorphic or not, 'position', 'chromosome' and 'featureNames' that give the location on the chromosome and SNP name. } \value{ A \code{SnpSuperSet} instance.} \references{ Ritchie ME, Carvalho BS, Hetrick KN, Tavar\'{e} S, Irizarry RA. R/Bioconductor software for Illumina's Infinium whole-genome genotyping BeadChips. Bioinformatics. 2009 Oct 1;25(19):2621-3. Liu R, Dai Z, Yeager M, Irizarry RA1, Ritchie ME. KRLMM: an adaptive genotype calling method for common and low frequency variants. BMC Bioinformatics. 2014 May 23;15:158. Carvalho B, Bengtsson H, Speed TP, Irizarry RA. Exploration, normalization, and genotype calls of high-density oligonucleotide SNP array data. Biostatistics. 2007 Apr;8(2):485-99. Epub 2006 Dec 22. PMID: 17189563. Carvalho BS, Louis TA, Irizarry RA. Quantifying uncertainty in genotype calls. Bioinformatics. 2010 Jan 15;26(2):242-9. } \author{Matt Ritchie, Cynthia Liu, Zhiyin Dai} \seealso{ \code{\link[oligoClasses]{ocSamples}}, \code{\link[oligoClasses]{ldOpts}} } \examples{ \dontrun{ # example for 'crlmm' option library(ff) library(crlmm) ## to enable paralellization, set to TRUE if(FALSE){ library(snow) library(doSNOW) ## with 10 workers cl <- makeCluster(10, type="SOCK") registerDoSNOW(cl) } ## path to idat files datadir <- "/thumper/ctsa/snpmicroarray/illumina/IDATS/370k" ## read in your samplesheet samplesheet = read.csv(file.path(datadir, "HumanHap370Duo_Sample_Map.csv"), header=TRUE, as.is=TRUE) samplesheet <- samplesheet[-c(28:46,61:75,78:79), ] arrayNames <- file.path(datadir, unique(samplesheet[, "SentrixPosition"])) arrayInfo <- list(barcode=NULL, position="SentrixPosition") cnSet <- genotype.Illumina(sampleSheet=samplesheet, arrayNames=arrayNames, arrayInfoColNames=arrayInfo, cdfName="human370v1c", batch=rep("1", nrow(samplesheet))) } \dontrun{ # example for 'krlmm' option library(crlmm) library(ff) # line below is an optional step for krlmm to initialise 16 workers # options("krlmm.cores" = 16) # read in raw X and Y intensities output by GenomeStudio's GenCall genotyping module XY = readGenCallOutput(c("HumanOmni2-5_4v1_FinalReport_83TUSCAN.csv","HumanOmni2-5_4v1_FinalReport_88CHB-JPT.csv"), cdfName="humanomni25quadv1b", verbose=TRUE) krlmmResult = genotype.Illumina(XY=XY, cdfName=ThiscdfName, call.method="krlmm", verbose=TRUE) # example for 'krlmm' option with known genotype call for some SNPs and samples library(VGAM) hapmapCalls = load("hapmapCalls.rda") # hapmapCalls should have rownames and colnames corresponding to XY featureNames and sampleNames krlmmResult = genotype.Illumina(XY=XY, cdfName=ThiscdfName, call.method="krlmm", trueCalls=hapmapCalls, verbose=TRUE) } } \keyword{classif}