crlmm <- function(filenames, row.names=TRUE, col.names=TRUE, probs=c(1/3, 1/3, 1/3), DF=6, SNRMin=5, gender=NULL, save.it=FALSE, load.it=FALSE, intensityFile, mixtureSampleSize=10^5, eps=0.1, verbose=TRUE, cdfName, sns, recallMin=10, recallRegMin=1000, returnParams=FALSE, badSNP=.7){ if ((load.it | save.it) & missing(intensityFile)) stop("'intensityFile' is missing, and you chose either load.it or save.it") if (missing(sns)) sns <- basename(filenames) if (!missing(intensityFile)) if (load.it & !file.exists(intensityFile)){ load.it <- FALSE message("File ", intensityFile, " does not exist.") message("Not loading it, but running SNPRMA from scratch.") } if (!load.it){ res <- snprma(filenames, fitMixture=TRUE, mixtureSampleSize=mixtureSampleSize, verbose=verbose, eps=eps, cdfName=cdfName, sns=sns) if(save.it){ t0 <- proc.time() save(res, file=intensityFile) t0 <- proc.time()-t0 if (verbose) message("Used ", t0[3], " seconds to save ", intensityFile, ".") } }else{ if (verbose) message("Loading ", intensityFile, ".") obj <- load(intensityFile) if (verbose) message("Done.") if (obj != "res") stop("Object in ", intensityFile, " seems to be invalid.") } if(row.names) row.names=res$gns else row.names=NULL if(col.names) col.names=res$sns else col.names=NULL res2 <- crlmmGT(res[["A"]], res[["B"]], res[["SNR"]], res[["mixtureParams"]], res[["cdfName"]], gender=gender, row.names=row.names, col.names=col.names, recallMin=recallMin, recallRegMin=1000, SNRMin=SNRMin, returnParams=returnParams, badSNP=badSNP, verbose=verbose) res2[["SNR"]] <- res[["SNR"]] res2[["SKW"]] <- res[["SKW"]] return(list2SnpSet(res2, returnParams=returnParams)) } crlmmGT <- function(A, B, SNR, mixtureParams, cdfName, row.names=NULL, col.names=NULL, probs=c(1/3, 1/3, 1/3), DF=6, SNRMin=5, recallMin=10, recallRegMin=1000, gender=NULL, desctrucitve=FALSE, verbose=TRUE, returnParams=FALSE, badSNP=.7){ keepIndex <- which(SNR>SNRMin) if(length(keepIndex)==0) stop("No arrays above quality threshold!") NC <- ncol(A) NR <- nrow(A) pkgname <- getCrlmmAnnotationName(cdfName) if(!require(pkgname, character.only=TRUE, quietly=!verbose)){ suggCall <- paste("library(", pkgname, ", lib.loc='/Altern/Lib/Loc')", sep="") msg <- paste("If", pkgname, "is installed on an alternative location, please load it manually by using", suggCall) message(strwrap(msg)) stop("Package ", pkgname, " could not be found.") rm(suggCall, msg) } if(verbose) message("Loading annotations.") loader("genotypeStuff.rda", .crlmmPkgEnv, pkgname) loader("mixtureStuff.rda", .crlmmPkgEnv, pkgname) ## this is toget rid of the 'no visible binding' notes ## variable definitions XIndex <- getVarInEnv("XIndex") autosomeIndex <- getVarInEnv("autosomeIndex") YIndex <- getVarInEnv("YIndex") SMEDIAN <- getVarInEnv("SMEDIAN") theKnots <- getVarInEnv("theKnots") regionInfo <- getVarInEnv("regionInfo") params <- getVarInEnv("params") ##IF gender not provide, we predict if(is.null(gender)){ if(verbose) message("Determining gender.") XMedian <- apply(log2(A[XIndex,, drop=FALSE])+log2(B[XIndex,, drop=FALSE]), 2, median)/2 if(sum(SNR>SNRMin)==1){ gender <- which.min(c(abs(XMedian-8.9), abs(XMedian-9.5))) }else{ gender <- kmeans(XMedian, c(min(XMedian[SNR>SNRMin]), max(XMedian[SNR>SNRMin])))[["cluster"]] } } Indexes <- list(autosomeIndex, XIndex, YIndex) cIndexes <- list(keepIndex, keepIndex[which(gender[keepIndex]==2)], keepIndex[which(gender[keepIndex]==1)]) if(verbose) cat("Calling", NR, "SNPs for recalibration... ") ## call C fIndex <- which(gender==2) mIndex <- which(gender==1) newparams <- gtypeCallerR(A, B, fIndex, mIndex, params[["centers"]], params[["scales"]], params[["N"]], Indexes, cIndexes, sapply(Indexes, length), sapply(cIndexes, length), SMEDIAN, theKnots, mixtureParams, DF, probs, 0.025) gc(verbose=FALSE) names(newparams) <- c("centers", "scales", "N") if(verbose) message("Done.") if(verbose) message("Estimating recalibration parameters.") d <- newparams[["centers"]] - params$centers ##regression Index <- intersect(which(pmin(newparams[["N"]][, 1], newparams[["N"]][, 2], newparams[["N"]][, 3]) > recallMin & !apply(regionInfo, 1, any)), autosomeIndex) if(length(Index) < recallRegMin){ warning("Recalibration not possible. Possible cause: small sample size.") newparams <- params dev <- vector("numeric", nrow(newparams[["centers"]])) SS <- matrix(Inf, 3, 3) DD <- 0 }else{ data4reg <- as.data.frame(newparams[["centers"]][Index,]) names(data4reg) <- c("AA", "AB", "BB") regParams <- cbind( coef(lm(AA~AB*BB, data=data4reg)), c(coef(lm(AB~AA+BB, data=data4reg)), 0), coef(lm(BB~AA*AB, data=data4reg))) rownames(regParams) <- c("intercept", "X", "Y", "XY") rm(data4reg) minN <- 3 newparams[["centers"]][newparams[["N"]] < minN] <- NA Index <- setdiff(which(rowSums(is.na(newparams[["centers"]]))==1), YIndex) if(verbose) cat("Filling out empty centers") for(i in Index){ if(verbose) if(i%%10000==0)cat(".") mu <- newparams[["centers"]][i, ] j <- which(is.na(mu)) newparams[["centers"]][i, j] <- c(1, mu[-j], prod(mu[-j]))%*%regParams[, j] } ##remaing NAs are made like originals if(length(YIndex)>0){ noMoveIndex <- union(setdiff(which(rowSums(is.na(newparams[["centers"]]))>0), YIndex), YIndex[rowSums(is.na(newparams[["centers"]][YIndex, ])>1)]) } snps2ignore <- which(rowSums(is.na(newparams[["centers"]])) > 0) snps2keep <- setdiff(autosomeIndex, snps2ignore) rm(snps2ignore) newparams[["centers"]][is.na(newparams[["centers"]])] <- params[["centers"]][is.na(newparams[["centers"]])] if(verbose) cat("\n") if(verbose) message("Calculating and standardizing size of shift.") GG <- DD <- newparams[["centers"]] - params[["centers"]] DD <- sweep(DD, 2, colMeans(DD[autosomeIndex, ])) SS <- cov(DD[autosomeIndex, ]) SSI <- solve(SS) dev <- vector("numeric", nrow(DD)) if(length(YIndex)){ dev[-YIndex] <- apply(DD[-YIndex, ], 1, function(x) x%*%SSI%*%x) dev[-YIndex] <- 1/sqrt( (2*pi)^3*det(SS))*exp(-0.5*dev[-YIndex]) ##Now Y (only two params) SSY <- SS[c(1, 3), c(1, 3)] SSI <- solve(SSY) dev[YIndex] <- apply(DD[YIndex, c(1, 3)], 1, function(x) x%*%SSI%*%x) dev[YIndex] <- 1/sqrt( (2*pi)^2*det(SSY))*exp(-0.5*dev[YIndex]) } else { dev=apply(DD,1,function(x) x%*%SSI%*%x) dev=1/sqrt( (2*pi)^3*det(SS))*exp(-0.5*dev) } } ## BC: must keep SD params[-2] <- newparams[-2] rm(newparams);gc(verbose=FALSE) if(verbose) cat("Calling", NR, "SNPs... ") ## ################### ## ## MOVE TO C####### ImNull <- gtypeCallerR2(A, B, fIndex, mIndex, params[["centers"]], params[["scales"]], params[["N"]], Indexes, cIndexes, sapply(Indexes, length), sapply(cIndexes, length), SMEDIAN, theKnots, mixtureParams, DF, probs, 0.025, which(regionInfo[,2]), which(regionInfo[,1])) gc(verbose=FALSE) ## END MOVE TO C####### ## ################## dev <- dev/(dev+1/383) if(!is.null(row.names)){ rownames(A) <- rownames(B) <- names(dev) <- row.names} if(!is.null(col.names)){ colnames(A) <- colnames(B) <- col.names} if(length(Index) >= recallRegMin){ tmp4batchQC <- DD[autosomeIndex,]/(params[["N"]][autosomeIndex,]+1) tmpSnpQc <- dev[autosomeIndex] SS <- cov(tmp4batchQC[tmpSnpQc < badSNP,]) batchQC <- mean(diag(SS)) }else{ SS <- matrix(0, 3, 3) batchQC <- Inf } if(verbose) message("Done.") if (returnParams){ return(list(calls=A, confs=B, SNPQC=dev, batchQC=batchQC, params=params, DD=DD, covDD=SS, gender=gender, pkgname=pkgname)) }else{ return(list(calls=A, confs=B, SNPQC=dev, batchQC=batchQC, DD=DD, covDD=SS, gender=gender, pkgname=pkgname)) } } gtypeCallerR <- function(A, B, fIndex, mIndex, theCenters, theScales, theNs, Indexes, cIndexes, nIndexes, ncIndexes, SMEDIAN, knots, params, dft, probs, trim){ stopifnot(!missing(A), !missing(B), dim(A)==dim(B), nrow(A)==nrow(theCenters), nrow(A)==nrow(theScales), nrow(A) == nrow(theNs), length(knots)==3, nrow(params)==4, ncol(params)==ncol(A), length(trim)==1, length(probs)==3) ## make code robust ## check types before passing to C .Call("gtypeCallerPart1", A, B, as.integer(fIndex), as.integer(mIndex), as.numeric(theCenters), as.numeric(theScales), as.integer(theNs), lapply(Indexes, as.integer), lapply(cIndexes, as.integer), as.integer(nIndexes), as.integer(ncIndexes), as.numeric(SMEDIAN), as.numeric(knots), as.numeric(params), as.integer(dft), as.numeric(probs), as.numeric(trim), PACKAGE="crlmm") } gtypeCallerR2 <- function(A, B, fIndex, mIndex, theCenters, theScales, theNs, Indexes, cIndexes, nIndexes, ncIndexes, SMEDIAN, knots, params, dft, probs, trim, noTraining, noInfo){ stopifnot(!missing(A), !missing(B), dim(A)==dim(B), nrow(A)==nrow(theCenters), nrow(A)==nrow(theScales), nrow(A) == nrow(theNs), length(knots)==3, nrow(params)==4, ncol(params)==ncol(A), length(trim)==1, length(probs)==3) .Call("gtypeCallerPart2", A, B, as.integer(fIndex), as.integer(mIndex), as.numeric(theCenters), as.numeric(theScales), as.integer(theNs), Indexes, cIndexes, nIndexes, ncIndexes, as.numeric(SMEDIAN), as.numeric(knots), as.numeric(params), as.integer(dft), as.numeric(probs), as.numeric(trim), as.integer(noTraining), as.integer(noInfo), PACKAGE="crlmm") } ### parallel version crlmm2 <- function(filenames, row.names=TRUE, col.names=TRUE, probs=c(1/3, 1/3, 1/3), DF=6, SNRMin=5, gender=NULL, save.it=FALSE, load.it=FALSE, intensityFile, mixtureSampleSize=10^5, eps=0.1, verbose=TRUE, cdfName, sns, recallMin=10, recallRegMin=1000, returnParams=FALSE, badSNP=.7){ if ((load.it || save.it) && missing(intensityFile)) stop("'intensityFile' is missing, and you chose either load.it or save.it") if (missing(sns)) sns <- basename(filenames) if (!missing(intensityFile)) if (load.it & !file.exists(intensityFile)){ load.it <- FALSE message("File ", intensityFile, " does not exist.") message("Not loading it, but running SNPRMA from scratch.") } if (!load.it){ res <- snprma2(filenames, fitMixture=TRUE, mixtureSampleSize=mixtureSampleSize, verbose=verbose, eps=eps, cdfName=cdfName, sns=sns) open(res[["A"]]) open(res[["B"]]) open(res[["SNR"]]) open(res[["mixtureParams"]]) if(save.it){ t0 <- proc.time() save(res, file=intensityFile) t0 <- proc.time()-t0 if (verbose) message("Used ", t0[3], " seconds to save ", intensityFile, ".") } }else{ if (verbose) message("Loading ", intensityFile, ".") obj <- load(intensityFile) if (verbose) message("Done.") if (obj != "res") stop("Object in ", intensityFile, " seems to be invalid.") } if(row.names) row.names=res$gns else row.names=NULL if(col.names) col.names=res$sns else col.names=NULL res2 <- crlmmGT2(res[["A"]], res[["B"]], res[["SNR"]], res[["mixtureParams"]], res[["cdfName"]], gender=gender, row.names=row.names, col.names=col.names, recallMin=recallMin, recallRegMin=1000, SNRMin=SNRMin, returnParams=returnParams, badSNP=badSNP, verbose=verbose) res2[["SNR"]] <- res[["SNR"]] res2[["SKW"]] <- res[["SKW"]] return(list2SnpSet(res2, returnParams=returnParams)) } predictGender <- function(cols, theA, theB, XIndex){ n <- length(cols) med <- numeric(n) if (n > 0){ open(theA) open(theB) for (i in 1:n){ vA <- log2(theA[XIndex, cols[i]]) vB <- log2(theB[XIndex, cols[i]]) med[i] <- median(vA+vB)/2 rm(vA, vB) } close(theA) close(theB) rm(theA, theB) } rm(n) gc(verbose=FALSE) med } crlmmGT2 <- function(A, B, SNR, mixtureParams, cdfName, row.names=NULL, col.names=NULL, probs=c(1/3, 1/3, 1/3), DF=6, SNRMin=5, recallMin=10, recallRegMin=1000, gender=NULL, desctrucitve=FALSE, verbose=TRUE, returnParams=FALSE, badSNP=.7){ open(SNR) open(A) open(B) open(mixtureParams) ## expect objects to be ff keepIndex <- which( SNR[] > SNRMin) if(length(keepIndex)==0) stop("No arrays above quality threshold!") NC <- ncol(A) NR <- nrow(A) pkgname <- getCrlmmAnnotationName(cdfName) stopifnot(require(pkgname, character.only=TRUE, quietly=!verbose)) if(verbose) message("Loading annotations.") obj1 <- loader("genotypeStuff.rda", .crlmmPkgEnv, pkgname) obj2 <- loader("mixtureStuff.rda", .crlmmPkgEnv, pkgname) ## this is toget rid of the 'no visible binding' notes ## variable definitions XIndex <- getVarInEnv("XIndex") autosomeIndex <- getVarInEnv("autosomeIndex") YIndex <- getVarInEnv("YIndex") SMEDIAN <- getVarInEnv("SMEDIAN") theKnots <- getVarInEnv("theKnots") regionInfo <- getVarInEnv("regionInfo") params <- getVarInEnv("params") rm(list=c(obj1, obj2), envir=.crlmmPkgEnv) rm(obj1, obj2) ## IF gender not provide, we predict ## FIXME: XIndex may be greater than ocProbesets() if(is.null(gender)){ if(verbose) message("Determining gender.") ## XMedian <- apply(log2(A[XIndex,, drop=FALSE])+log2(B[XIndex,, drop=FALSE]), 2, median)/2 XMedian <- ocLapply(splitIndicesByNode(1:NC), predictGender, theA=A, theB=B, XIndex=XIndex, neededPkgs="crlmm") XMedian <- unlist(XMedian) if(sum(SNR[] > SNRMin)==1){ gender <- which.min(c(abs(XMedian-8.9), abs(XMedian-9.5))) }else{ gender <- kmeans(XMedian, c(min(XMedian[SNR[]>SNRMin]), max(XMedian[SNR[]>SNRMin])))[["cluster"]] } } Indexes <- list(autosomeIndex, XIndex, YIndex) cIndexes <- list(keepIndex, keepIndex[which(gender[keepIndex]==2)], keepIndex[which(gender[keepIndex]==1)]) if(verbose) cat("Calling", NR, "SNPs for recalibration... ") ## call C fIndex <- which(gender==2) mIndex <- which(gender==1) ## different here ## use gtypeCallerR in batches snpBatches <- splitIndicesByLength(1:nrow(A), ocProbesets()) newparamsBatch <- vector("list", length(snpBatches)) process1 <- function(idxBatch, snpBatches, autosomeIndex, XIndex, YIndex, A, B, mixtureParams, fIndex, mIndex, params, cIndexes, SMEDIAN, theKnots, DF, probs, batchSize){ open(A) open(B) open(mixtureParams) snps <- snpBatches[[idxBatch]] rSnps <- range(snps) last <- (idxBatch-1)*batchSize IndexesBatch <- list(autosomeIndex[autosomeIndex %in% snps]-last, XIndex[XIndex %in% snps]-last, YIndex[YIndex %in% snps]-last) IndexesBatch <- lapply(IndexesBatch, as.integer) tmpA <- as.matrix(A[snps,]) tmpB <- as.matrix(B[snps,]) ## newparamsBatch[[idxBatch]] tmp <- gtypeCallerR(tmpA, tmpB, fIndex, mIndex, params[["centers"]][snps,], params[["scales"]][snps,], params[["N"]][snps,], IndexesBatch, cIndexes, sapply(IndexesBatch, length), sapply(cIndexes, length), SMEDIAN, theKnots, mixtureParams[], DF, probs, 0.025) rm(snps, rSnps, IndexesBatch, tmpA, tmpB, last) gc(verbose=FALSE) close(A) close(B) close(mixtureParams) tmp } newparamsBatch <- ocLapply(seq(along=snpBatches), process1, snpBatches=snpBatches, autosomeIndex=autosomeIndex, XIndex=XIndex, YIndex=YIndex, A=A, B=B, mixtureParams=mixtureParams, fIndex=fIndex, mIndex=mIndex, params=params, cIndexes=cIndexes, SMEDIAN=SMEDIAN, theKnots=theKnots, DF=DF, probs=probs, batchSize=ocProbesets()) newparams <- vector("list", 3) names(newparams) <- c("centers", "scales", "N") newparams[["centers"]] <- do.call("rbind", lapply(newparamsBatch, "[[", 1)) newparams[["scales"]] <- do.call("rbind", lapply(newparamsBatch, "[[", 2)) newparams[["N"]] <- do.call("rbind", lapply(newparamsBatch, "[[", 3)) rm(newparamsBatch); gc(verbose=FALSE) if(verbose) message("Done.") if(verbose) message("Estimating recalibration parameters.") d <- newparams[["centers"]] - params$centers ##regression Index <- intersect(which(pmin(newparams[["N"]][, 1], newparams[["N"]][, 2], newparams[["N"]][, 3]) > recallMin & !apply(regionInfo, 1, any)), autosomeIndex) if(length(Index) < recallRegMin){ warning("Recalibration not possible. Possible cause: small sample size.") newparams <- params dev <- vector("numeric", nrow(newparams[["centers"]])) SS <- matrix(Inf, 3, 3) DD <- 0 }else{ data4reg <- as.data.frame(newparams[["centers"]][Index,]) names(data4reg) <- c("AA", "AB", "BB") regParams <- cbind( coef(lm(AA~AB*BB, data=data4reg)), c(coef(lm(AB~AA+BB, data=data4reg)), 0), coef(lm(BB~AA*AB, data=data4reg))) rownames(regParams) <- c("intercept", "X", "Y", "XY") rm(data4reg) minN <- 3 newparams[["centers"]][newparams[["N"]] < minN] <- NA Index <- setdiff(which(rowSums(is.na(newparams[["centers"]]))==1), YIndex) if(verbose) message("Filling out empty centers", appendLF=FALSE) for(i in Index){ if(verbose) if(i%%10000==0) message(".", appendLF=FALSE) mu <- newparams[["centers"]][i, ] j <- which(is.na(mu)) newparams[["centers"]][i, j] <- c(1, mu[-j], prod(mu[-j]))%*%regParams[, j] rm(mu, j) } ##remaing NAs are made like originals if(length(YIndex)>0){ noMoveIndex <- union(setdiff(which(rowSums(is.na(newparams[["centers"]]))>0), YIndex), YIndex[rowSums(is.na(newparams[["centers"]][YIndex, ])>1)]) } snps2ignore <- which(rowSums(is.na(newparams[["centers"]])) > 0) snps2keep <- setdiff(autosomeIndex, snps2ignore) rm(snps2ignore) newparams[["centers"]][is.na(newparams[["centers"]])] <- params[["centers"]][is.na(newparams[["centers"]])] if(verbose) cat("\n") if(verbose) message("Calculating and standardizing size of shift... ", appendLF=FALSE) GG <- DD <- newparams[["centers"]] - params[["centers"]] DD <- sweep(DD, 2, colMeans(DD[autosomeIndex, ])) SS <- cov(DD[autosomeIndex, ]) SSI <- solve(SS) dev <- vector("numeric", nrow(DD)) if(length(YIndex)){ dev[-YIndex] <- apply(DD[-YIndex, ], 1, function(x) x%*%SSI%*%x) dev[-YIndex] <- 1/sqrt( (2*pi)^3*det(SS))*exp(-0.5*dev[-YIndex]) ##Now Y (only two params) SSY <- SS[c(1, 3), c(1, 3)] SSI <- solve(SSY) dev[YIndex] <- apply(DD[YIndex, c(1, 3)], 1, function(x) x%*%SSI%*%x) dev[YIndex] <- 1/sqrt( (2*pi)^2*det(SSY))*exp(-0.5*dev[YIndex]) } else { dev=apply(DD,1,function(x) x%*%SSI%*%x) dev=1/sqrt( (2*pi)^3*det(SS))*exp(-0.5*dev) } } if (verbose) message("OK") ## BC: must keep SD params[-2] <- newparams[-2] rm(newparams) gc(verbose=FALSE) if(verbose) message("Calling ", NR, " SNPs... ", appendLF=FALSE) ## ################### ## ## MOVE TO C####### ## running in batches process2 <- function(idxBatch, snpBatches, autosomeIndex, XIndex, YIndex, A, B, mixtureParams, fIndex, mIndex, params, cIndexes, SMEDIAN, theKnots, DF, probs, regionInfo, batchSize){ open(A) open(B) open(mixtureParams) snps <- snpBatches[[idxBatch]] tmpA <- as.matrix(A[snps,]) tmpB <- as.matrix(B[snps,]) rSnps <- range(snps) last <- (idxBatch-1)*batchSize IndexesBatch <- list(autosomeIndex[autosomeIndex %in% snps]-last, XIndex[XIndex %in% snps]-last, YIndex[YIndex %in% snps]-last) IndexesBatch <- lapply(IndexesBatch, as.integer) ImNull <- gtypeCallerR2(tmpA, tmpB, fIndex, mIndex, params[["centers"]][snps,], params[["scales"]][snps,], params[["N"]][snps,], IndexesBatch, cIndexes, sapply(IndexesBatch, length), sapply(cIndexes, length), SMEDIAN, theKnots, mixtureParams[], DF, probs, 0.025, which(regionInfo[snps, 2]), which(regionInfo[snps, 1])) A[snps,] <- tmpA B[snps,] <- tmpB rm(tmpA, tmpB, snps, rSnps, IndexesBatch, ImNull, last) gc(verbose=FALSE) close(A) close(B) close(mixtureParams) } ocLapply(seq(along=snpBatches), process2, snpBatches=snpBatches, autosomeIndex=autosomeIndex, XIndex=XIndex, YIndex=YIndex, A=A, B=B, mixtureParams=mixtureParams, fIndex=fIndex, mIndex=mIndex, params=params, cIndexes=cIndexes, SMEDIAN=SMEDIAN, theKnots=theKnots, DF=DF, probs=probs, regionInfo=regionInfo, batchSize=ocProbesets()) ## END MOVE TO C####### ## ################## dev <- dev/(dev+1/383) if(!is.null(row.names)){ rownames(A) <- rownames(B) <- names(dev) <- row.names} if(!is.null(col.names)){ colnames(A) <- colnames(B) <- col.names} if(length(Index) >= recallRegMin){ tmp4batchQC <- DD[autosomeIndex,]/(params[["N"]][autosomeIndex,]+1) tmpSnpQc <- dev[autosomeIndex] SS <- cov(tmp4batchQC[tmpSnpQc < badSNP,]) batchQC <- mean(diag(SS)) }else{ SS <- matrix(0, 3, 3) batchQC <- Inf } if(verbose) message("Done.") if (returnParams){ return(list(calls=A, confs=B, SNPQC=dev, batchQC=batchQC, params=params, DD=DD, covDD=SS, gender=gender, pkgname=pkgname)) }else{ return(list(calls=A, confs=B, SNPQC=dev, batchQC=batchQC, DD=DD, covDD=SS, gender=gender, pkgname=pkgname)) } }