#include <math.h> #include <R.h> #include <Rdefines.h> #include <Rmath.h> #include <Rinternals.h> int genotypeConfidence(const double *prob){ int K=1000; if (*prob == 1.0) return(INT_MAX); else return( (int) round(-K*log2(1- *prob))); } int intInSet(const int *x, const int *set, const int *n){ int i; for (i=0; i < *n; i++) if (*x == set[i]) return(1); return(0); } int genotypeCall(const double *pAA, const double *pAB, const double *pBB){ if( *pAA >= *pAB && *pAA >= *pBB ) return(1); else if (*pAB > *pAA && *pAB >= *pBB) return(2); else return(3); } double sdCorrection(const int *n){ return(sqrt(1.0+1.0/fmax(1.0, (double) *n))); } int sort_double(const double *a1, const double *a2){ if (*a1 < *a2) return (-1); if (*a1 > *a2) return (1); return 0; } void trimmed_mean(double *datavec, int *classvec, int class, double trim, int cols, int rows, double *m1, double *m2, double *m3, int i_ext){ double sum=0, sum2=0; int i, j=0, n_ignore, n=0; for (i = 0; i < cols; i++) if (classvec[i] == class) n++; double *buffer=Calloc(n, double); for (i = 0; i < cols; i++) if (classvec[i] == class){ buffer[j]=datavec[i]; j++; } qsort(buffer, n, sizeof(double), (int(*)(const void*, const void*))sort_double); n_ignore= (int) floor((double) n * trim); j=0; for (i = n_ignore; i < (n-n_ignore); i++){ sum+=buffer[i]; sum2+=pow(buffer[i], 2); j++; } sum/=j; sum2-=(pow(sum, 2)*(double) j); sum2/=(j-1); sum2=sqrt(sum2); m1[i_ext + (class-1) * rows]=sum; m2[i_ext + (class-1) * rows]=sum2; m3[i_ext + (class-1) * rows]=j; Free(buffer); } void trimmed_stats(double *data, double *m1, double *m2, double *m3, int *class, int rows, int cols, double *trim){ int i, j, n1, n2, n3; double *datvec=Calloc(cols,double); int *classvec=Calloc(cols,int); for (i=0; i < rows; i++){ n1=0; n2=0; n3=0; for (j=0; j < cols; j++){ if (class[j*rows + i] == 1){ datvec[j]=data[j*rows + i]; ++n1; classvec[j] = 1; } else if (class[j*rows + i] == 2){ datvec[j]=data[j*rows + i]; ++n2; classvec[j] = 2; } else if (class[j*rows + i] == 3){ datvec[j]=data[j*rows + i]; ++n3; classvec[j] = 3; } else { // Should be the NA's classvec[j] = class[j*rows + i]; } } trimmed_mean(datvec, classvec, 1, trim[0], cols, rows, m1, m2, m3, i); trimmed_mean(datvec, classvec, 2, trim[0], cols, rows, m1, m2, m3, i); trimmed_mean(datvec, classvec, 3, trim[0], cols, rows, m1, m2, m3, i); } Free(datvec); Free(classvec); } double median(double *x, int length){ int half; double med; double *buffer = Calloc(length,double); memcpy(buffer,x,length*sizeof(double)); half = (length + 1)/2; rPsort(buffer, length, half-1); med = buffer[half-1]; if (length % 2 == 0){ rPsort(buffer, length, half); med = (med + buffer[half])/2.0; } Free(buffer); return med; } void mad_median(double *datavec, int *classvec, int class, double trim, int cols, int rows, double *m1, double *m2, double *m3, int i_ext){ /* trim is ignored for the moment - for compatibility */ int i, j=0, n_ignore, n=0; for (i = 0; i < cols; i++) if (classvec[i] == class) n++; double *buffer=Calloc(n, double); for (i = 0; i < cols; i++) if (classvec[i] == class){ buffer[j]=datavec[i]; j++; } m1[i_ext + (class-1) * rows] = median(buffer, n); for (i = 0; i < n; i++) buffer[i] = fabs(buffer[i]-m1[i_ext + (class-1) * rows]); m2[i_ext + (class-1) * rows] = median(buffer, n); m3[i_ext + (class-1) * rows] = n; Free(buffer); } /* Pieces below are for testing */ static void mad_stats(double *data, double *m1, double *m2, double *m3, int *class, int rows, int cols, double *trim){ int i, j, n1, n2, n3; double *datvec=Calloc(cols,double); int *classvec=Calloc(cols,int); for (i=0; i < rows; i++){ n1=0; n2=0; n3=0; for (j=0; j < cols; j++){ if (class[j*rows + i] == 1){ datvec[j]=data[j*rows + i]; ++n1; classvec[j] = 1; } else if (class[j*rows + i] == 2){ datvec[j]=data[j*rows + i]; ++n2; classvec[j] = 2; } else if (class[j*rows + i] == 3){ datvec[j]=data[j*rows + i]; ++n3; classvec[j] = 3; } else { // Should be the NA's classvec[j] = class[j*rows + i]; } } mad_median(datvec, classvec, 1, trim[0], cols, rows, m1, m2, m3, i); mad_median(datvec, classvec, 2, trim[0], cols, rows, m1, m2, m3, i); mad_median(datvec, classvec, 3, trim[0], cols, rows, m1, m2, m3, i); } Free(datvec); Free(classvec); } SEXP test_mad_median(SEXP X, SEXP Y, SEXP trim){ SEXP dim1; SEXP estimates1, estimates2, estimates3, output; double *Xptr, *Mptr1, *Mptr2, *Mptr3, *Tptr; int *Yptr; int rows, cols; PROTECT(dim1 = getAttrib(X,R_DimSymbol)); rows = INTEGER(dim1)[0]; cols = INTEGER(dim1)[1]; Xptr = NUMERIC_POINTER(AS_NUMERIC(X)); Yptr = INTEGER_POINTER(AS_INTEGER(Y)); Tptr = NUMERIC_POINTER(AS_NUMERIC(trim)); PROTECT(estimates1 = allocMatrix(REALSXP, rows, 3)); PROTECT(estimates2 = allocMatrix(REALSXP, rows, 3)); PROTECT(estimates3 = allocMatrix(REALSXP, rows, 3)); Mptr1 = NUMERIC_POINTER(estimates1); Mptr2 = NUMERIC_POINTER(estimates2); Mptr3 = NUMERIC_POINTER(estimates3); mad_stats(Xptr, Mptr1, Mptr2, Mptr3, Yptr, rows, cols, Tptr); PROTECT(output = allocVector(VECSXP,3)); SET_VECTOR_ELT(output, 0, estimates1); SET_VECTOR_ELT(output, 1, estimates2); SET_VECTOR_ELT(output, 2, estimates3); UNPROTECT(5); return output; }