Name Mode Size
R 040000
README_files 040000
data 040000
inst 040000
man 040000
tests 040000
vignettes 040000
.Rbuildignore 100644 0 kb
.gitignore 100644 0 kb
DESCRIPTION 100644 1 kb
NAMESPACE 100644 1 kb
README.Rmd 100644 3 kb
README.md 100644 3 kb
README.md
Manual for the use of the combi package ======================================= Install and load packages ------------------------- This repo contains R-code to fit and plot the mode-based integration models for compositional omics data using the *combi* package (Compositional Omics Model-Based Integration). The basic usage is demonstrated here. The package can be installed loaded using the following commands: ``` r library(devtools) install_github("CenterForStatistics-UGent/combi") ``` for R version 3.6 or lower use: ``` r install_github("CenterForStatistics-UGent/combi", ref = ‘review’) ``` Alternatively, via BioConductor: ``` r library(BiocManager) BiocManager::install("combi") ``` ``` r suppressPackageStartupMessages(library(combi)) cat("combi package version", as.character(packageVersion("combi")), "\n") ``` ## combi package version 0.99.13 <!-- Alternatively, the latest version can be installed directly from this GitHub repo as follows: --> Unconstrained integration ------------------------- For an unconstrained ordination, a named list of data matrices with overlapping samples must be supplied. In addition, information on the required distribution ("quasi" for quasi-likelihood fitting, "gaussian" for normal data) and compositional nature should be supplied. ``` r data(Zhang) microMetaboInt = combi( list("microbiome" = zhangMicrobio, "metabolomics" = zhangMetabo), distributions = c("quasi", "gaussian"), compositional = c(TRUE, FALSE), logTransformGaussian = FALSE) ``` A simple plot function is available for the result, for samples and shapes, a data frame should also be supplied ``` r plot(microMetaboInt) ``` ![](README_files/figure-markdown_github/simplePlot-1.png) ``` r plot(microMetaboInt, samDf = zhangMetavars, samCol = "ABX") ``` ![](README_files/figure-markdown_github/colourPlot-1.png) Constrained integration ----------------------- For a constrained ordination also a data frame of sample variables should be supplied ``` r microMetaboIntConstr = combi( list("microbiome" = zhangMicrobio, "metabolomics" = zhangMetabo), distributions = c("quasi", "gaussian"), compositional = c(TRUE, FALSE), logTransformGaussian = FALSE, covariates = zhangMetavars) ``` ## Warning in buildCovMat(covariates): Integer values treated as numeric! ``` r plot(microMetaboIntConstr, samDf = zhangMetavars, samCol = "ABX") ``` ![](README_files/figure-markdown_github/colourPlotConstr-1.png) Diagnostics ----------- Convergence of the iterative algorithm can be assessed as follows: ``` r convPlot(microMetaboInt) ``` ![](README_files/figure-markdown_github/convPlot-1.png) Influence of the different views can be investigated through ``` r inflPlot(microMetaboInt, samples = 1:20, plotType = "boxplot") ``` ![](README_files/figure-markdown_github/inflPlot-1.png)