... | ... |
@@ -273,7 +273,7 @@ void univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* max |
273 | 273 |
// ===================================================================================================================================================== |
274 | 274 |
// This function takes parameters from R, creates a multivariate HMM object, creates the distributions, runs the Baum-Welch and returns the result to R. |
275 | 275 |
// ===================================================================================================================================================== |
276 |
-void multivariate_hmm(int* O, int* T, int* N, int *Nmod, double* comb_states, double* size, double* prob, double* w, double* cor_matrix_inv, double* det, int* maxiter, int* maxtime, double* eps, double* posteriors, bool* keep_posteriors, double* densities, bool* keep_densities, int* states, double* maxPosterior, double* A, double* proba, double* loglik, double* initial_A, double* initial_proba, bool* use_initial_params, int* num_threads, int* error, int* verbosity) |
|
276 |
+void multivariate_hmm(int* O, int* T, int* N, int *Nmod, double* comb_states, double* size, double* prob, double* w, double* cor_matrix_inv, double* det, int* maxiter, int* maxtime, double* eps, double* posteriors, bool* keep_posteriors, double* densities, bool* keep_densities, double* states, double* maxPosterior, double* A, double* proba, double* loglik, double* initial_A, double* initial_proba, bool* use_initial_params, int* num_threads, int* error, int* verbosity) |
|
277 | 277 |
{ |
278 | 278 |
|
279 | 279 |
// Define logging level {"ERROR", "WARNING", "INFO", "ITERATION", "DEBUG", "DEBUG1", "DEBUG2", "DEBUG3", "DEBUG4"} |
... | ... |
@@ -6,7 +6,7 @@ static int** multiO; |
6 | 6 |
// =================================================================================================================================================== |
7 | 7 |
// This function takes parameters from R, creates a univariate HMM object, creates the distributions, runs the Baum-Welch and returns the result to R. |
8 | 8 |
// =================================================================================================================================================== |
9 |
-void univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* maxiter, int* maxtime, double* eps, double* posteriors, double* densities, bool* keep_densities, double* A, double* proba, double* loglik, double* weights, int* iniproc, double* initial_size, double* initial_prob, double* initial_A, double* initial_proba, bool* use_initial_params, int* num_threads, int* error, int* read_cutoff, int* verbosity) |
|
9 |
+void univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* maxiter, int* maxtime, double* eps, double* posteriors, double* densities, bool* keep_densities, int* states, double* maxPosterior, double* A, double* proba, double* loglik, double* weights, int* iniproc, double* initial_size, double* initial_prob, double* initial_A, double* initial_proba, bool* use_initial_params, int* num_threads, int* error, int* read_cutoff, int* verbosity) |
|
10 | 10 |
{ |
11 | 11 |
|
12 | 12 |
// Define logging level |
... | ... |
@@ -220,6 +220,21 @@ void univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* max |
220 | 220 |
} |
221 | 221 |
} |
222 | 222 |
|
223 |
+ // Compute the states from posteriors |
|
224 |
+ //FILE_LOG(logDEBUG1) << "Computing states from posteriors"; |
|
225 |
+ int ind_max; |
|
226 |
+ std::vector<double> posterior_per_t(*N); |
|
227 |
+ for (int t=0; t<*T; t++) |
|
228 |
+ { |
|
229 |
+ for (int iN=0; iN<*N; iN++) |
|
230 |
+ { |
|
231 |
+ posterior_per_t[iN] = hmm->get_posterior(iN, t); |
|
232 |
+ } |
|
233 |
+ ind_max = std::distance(posterior_per_t.begin(), std::max_element(posterior_per_t.begin(), posterior_per_t.end())); |
|
234 |
+ states[t] = ind_max + 1; |
|
235 |
+ maxPosterior[t] = posterior_per_t[ind_max]; |
|
236 |
+ } |
|
237 |
+ |
|
223 | 238 |
//FILE_LOG(logDEBUG1) << "Return parameters"; |
224 | 239 |
// also return the estimated transition matrix and the initial probs |
225 | 240 |
for (int i=0; i<*N; i++) |
... | ... |
@@ -258,7 +273,7 @@ void univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* max |
258 | 273 |
// ===================================================================================================================================================== |
259 | 274 |
// This function takes parameters from R, creates a multivariate HMM object, creates the distributions, runs the Baum-Welch and returns the result to R. |
260 | 275 |
// ===================================================================================================================================================== |
261 |
-void multivariate_hmm(int* O, int* T, int* N, int *Nmod, double* comb_states, double* size, double* prob, double* w, double* cor_matrix_inv, double* det, int* maxiter, int* maxtime, double* eps, double* posteriors, bool* keep_posteriors, double* densities, bool* keep_densities, int* states, double* A, double* proba, double* loglik, double* initial_A, double* initial_proba, bool* use_initial_params, int* num_threads, int* error, int* verbosity) |
|
276 |
+void multivariate_hmm(int* O, int* T, int* N, int *Nmod, double* comb_states, double* size, double* prob, double* w, double* cor_matrix_inv, double* det, int* maxiter, int* maxtime, double* eps, double* posteriors, bool* keep_posteriors, double* densities, bool* keep_densities, int* states, double* maxPosterior, double* A, double* proba, double* loglik, double* initial_A, double* initial_proba, bool* use_initial_params, int* num_threads, int* error, int* verbosity) |
|
262 | 277 |
{ |
263 | 278 |
|
264 | 279 |
// Define logging level {"ERROR", "WARNING", "INFO", "ITERATION", "DEBUG", "DEBUG1", "DEBUG2", "DEBUG3", "DEBUG4"} |
... | ... |
@@ -432,6 +447,7 @@ void multivariate_hmm(int* O, int* T, int* N, int *Nmod, double* comb_states, do |
432 | 447 |
} |
433 | 448 |
ind_max = std::distance(posterior_per_t.begin(), std::max_element(posterior_per_t.begin(), posterior_per_t.end())); |
434 | 449 |
states[t] = comb_states[ind_max]; |
450 |
+ maxPosterior[t] = posterior_per_t[ind_max]; |
|
435 | 451 |
} |
436 | 452 |
// } |
437 | 453 |
// else |
... | ... |
@@ -506,46 +522,22 @@ void array3D_which_max(double* array3D, int* dim, int* ind_max) |
506 | 522 |
|
507 | 523 |
} |
508 | 524 |
|
509 |
- |
|
510 |
-// ==================================================================================== |
|
511 |
-// C version of apply(array2D, MARGIN = 1, FUN = mean) |
|
512 |
-// ==================================================================================== |
|
513 |
-void array2D_mean(double* array2D, int* dim, double* mean) |
|
525 |
+// ==================================================================== |
|
526 |
+// C version of apply(array2D, 1, which.max) and apply(array2D, 1, max) |
|
527 |
+// ==================================================================== |
|
528 |
+void array2D_which_max(double* array2D, int* dim, int* ind_max, double* value_max) |
|
514 | 529 |
{ |
515 |
- // array2D is actually a vector, but is intended to originate from a matrix in R |
|
516 |
- double sum=0; |
|
530 |
+ // array2D is actually a vector, but is intended to originate from a 2D array in R |
|
531 |
+ std::vector<double> value_per_i0(dim[1]); |
|
517 | 532 |
for (int i0=0; i0<dim[0]; i0++) |
518 | 533 |
{ |
519 |
- sum = 0; |
|
520 | 534 |
for (int i1=0; i1<dim[1]; i1++) |
521 | 535 |
{ |
522 |
- sum += array2D[i1*dim[0] + i0]; |
|
523 |
- } |
|
524 |
- mean[i0] = sum / dim[1]; |
|
525 |
- } |
|
526 |
- |
|
527 |
-} |
|
528 |
- |
|
529 |
- |
|
530 |
-// ==================================================================================== |
|
531 |
-// C version of apply(array3D, MARGIN = c(1,2), FUN = mean) |
|
532 |
-// ==================================================================================== |
|
533 |
-void array3D_mean(double* array3D, int* dim, double* mean) |
|
534 |
-{ |
|
535 |
- // array3D is actually a vector, but is intended to originate from a 3D array in R |
|
536 |
- double sum=0; |
|
537 |
- for (int i0=0; i0<dim[0]; i0++) |
|
538 |
- { |
|
539 |
- for (int i1=0; i1<dim[1]; i1++) |
|
540 |
- { |
|
541 |
- sum = 0; |
|
542 |
- for (int i2=0; i2<dim[2]; i2++) |
|
543 |
- { |
|
544 |
- sum += array3D[(i2*dim[1] + i1)*dim[0] + i0]; |
|
545 |
- // Rprintf("i0=%d, i1=%d, i2=%d, array3D[(i2*dim[1] + i1)*dim[0] + i0 = %d] = %g\n", i0, i1, i2, (i2*dim[1] + i1)*dim[0] + i0, array3D[(i2*dim[1] + i1)*dim[0] + i0]); |
|
546 |
- } |
|
547 |
- mean[i1*dim[0] + i0] = sum / dim[2]; |
|
536 |
+ value_per_i0[i1] = array2D[i1 * dim[0] + i0]; |
|
537 |
+ // Rprintf("i0=%d, i1=%d, value_per_i0[%d] = %g\n", i0, i1, i1, value_per_i0[i1]); |
|
548 | 538 |
} |
539 |
+ ind_max[i0] = 1 + std::distance(value_per_i0.begin(), std::max_element(value_per_i0.begin(), value_per_i0.end())); |
|
540 |
+ value_max[i0] = *std::max_element(value_per_i0.begin(), value_per_i0.end()); |
|
549 | 541 |
} |
550 | 542 |
|
551 | 543 |
} |
552 | 544 |
\ No newline at end of file |
... | ... |
@@ -483,3 +483,69 @@ void multivariate_cleanup(int* Nmod) |
483 | 483 |
FreeIntMatrix(multiO, *Nmod); |
484 | 484 |
} |
485 | 485 |
|
486 |
+ |
|
487 |
+// ======================================================= |
|
488 |
+// C version of apply(array3D, 1, which.max) |
|
489 |
+// ======================================================= |
|
490 |
+void array3D_which_max(double* array3D, int* dim, int* ind_max) |
|
491 |
+{ |
|
492 |
+ // array3D is actually a vector, but is intended to originate from a 3D array in R |
|
493 |
+ std::vector<double> value_per_i0(dim[1] * dim[2]); |
|
494 |
+ for (int i0=0; i0<dim[0]; i0++) |
|
495 |
+ { |
|
496 |
+ for (int i1=0; i1<dim[1]; i1++) |
|
497 |
+ { |
|
498 |
+ for (int i2=0; i2<dim[2]; i2++) |
|
499 |
+ { |
|
500 |
+ value_per_i0[i1*dim[2]+i2] = array3D[(i1*dim[2]+i2) * dim[0] + i0]; |
|
501 |
+ // Rprintf("i0=%d, i1=%d, i2=%d, value_per_i0[%d] = %g\n", i0, i1, i2, i1*dim[2]+i2, value_per_i0[i1*dim[2]+i2]); |
|
502 |
+ } |
|
503 |
+ } |
|
504 |
+ ind_max[i0] = 1 + std::distance(value_per_i0.begin(), std::max_element(value_per_i0.begin(), value_per_i0.end())); |
|
505 |
+ } |
|
506 |
+ |
|
507 |
+} |
|
508 |
+ |
|
509 |
+ |
|
510 |
+// ==================================================================================== |
|
511 |
+// C version of apply(array2D, MARGIN = 1, FUN = mean) |
|
512 |
+// ==================================================================================== |
|
513 |
+void array2D_mean(double* array2D, int* dim, double* mean) |
|
514 |
+{ |
|
515 |
+ // array2D is actually a vector, but is intended to originate from a matrix in R |
|
516 |
+ double sum=0; |
|
517 |
+ for (int i0=0; i0<dim[0]; i0++) |
|
518 |
+ { |
|
519 |
+ sum = 0; |
|
520 |
+ for (int i1=0; i1<dim[1]; i1++) |
|
521 |
+ { |
|
522 |
+ sum += array2D[i1*dim[0] + i0]; |
|
523 |
+ } |
|
524 |
+ mean[i0] = sum / dim[1]; |
|
525 |
+ } |
|
526 |
+ |
|
527 |
+} |
|
528 |
+ |
|
529 |
+ |
|
530 |
+// ==================================================================================== |
|
531 |
+// C version of apply(array3D, MARGIN = c(1,2), FUN = mean) |
|
532 |
+// ==================================================================================== |
|
533 |
+void array3D_mean(double* array3D, int* dim, double* mean) |
|
534 |
+{ |
|
535 |
+ // array3D is actually a vector, but is intended to originate from a 3D array in R |
|
536 |
+ double sum=0; |
|
537 |
+ for (int i0=0; i0<dim[0]; i0++) |
|
538 |
+ { |
|
539 |
+ for (int i1=0; i1<dim[1]; i1++) |
|
540 |
+ { |
|
541 |
+ sum = 0; |
|
542 |
+ for (int i2=0; i2<dim[2]; i2++) |
|
543 |
+ { |
|
544 |
+ sum += array3D[(i2*dim[1] + i1)*dim[0] + i0]; |
|
545 |
+ // Rprintf("i0=%d, i1=%d, i2=%d, array3D[(i2*dim[1] + i1)*dim[0] + i0 = %d] = %g\n", i0, i1, i2, (i2*dim[1] + i1)*dim[0] + i0, array3D[(i2*dim[1] + i1)*dim[0] + i0]); |
|
546 |
+ } |
|
547 |
+ mean[i1*dim[0] + i0] = sum / dim[2]; |
|
548 |
+ } |
|
549 |
+ } |
|
550 |
+ |
|
551 |
+} |
|
486 | 552 |
\ No newline at end of file |
... | ... |
@@ -258,7 +258,7 @@ void univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* max |
258 | 258 |
// ===================================================================================================================================================== |
259 | 259 |
// This function takes parameters from R, creates a multivariate HMM object, creates the distributions, runs the Baum-Welch and returns the result to R. |
260 | 260 |
// ===================================================================================================================================================== |
261 |
-void multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, double* size, double* prob, double* w, double* cor_matrix_inv, double* det, int* maxiter, int* maxtime, double* eps, double* posteriors, bool* keep_posteriors, double* densities, bool* keep_densities, int* states, double* A, double* proba, double* loglik, double* initial_A, double* initial_proba, bool* use_initial_params, int* num_threads, int* error, int* verbosity) |
|
261 |
+void multivariate_hmm(int* O, int* T, int* N, int *Nmod, double* comb_states, double* size, double* prob, double* w, double* cor_matrix_inv, double* det, int* maxiter, int* maxtime, double* eps, double* posteriors, bool* keep_posteriors, double* densities, bool* keep_densities, int* states, double* A, double* proba, double* loglik, double* initial_A, double* initial_proba, bool* use_initial_params, int* num_threads, int* error, int* verbosity) |
|
262 | 262 |
{ |
263 | 263 |
|
264 | 264 |
// Define logging level {"ERROR", "WARNING", "INFO", "ITERATION", "DEBUG", "DEBUG1", "DEBUG2", "DEBUG3", "DEBUG4"} |
... | ... |
@@ -334,14 +334,15 @@ void multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, doubl |
334 | 334 |
|
335 | 335 |
// Prepare the binary_states (univariate) vector: binary_states[N][Nmod], e.g., binary_states[iN][imod] tells me at state comb_states[iN], modification imod is non-enriched (0) or enriched (1) |
336 | 336 |
//FILE_LOG(logDEBUG1) << "Preparing the binary_states vector"; |
337 |
+ double res; |
|
337 | 338 |
bool **binary_states = CallocBoolMatrix(*N, *Nmod); |
338 |
- for(int iN=0; iN < *N; iN++) //for each comb state considered |
|
339 |
+ for (int iN=0; iN < *N; iN++) //for each comb state considered |
|
339 | 340 |
{ |
340 |
- for(int imod=0; imod < *Nmod; imod++) //for each modification of this comb state |
|
341 |
+ res = comb_states[iN]; |
|
342 |
+ for (int imod=(*Nmod-1); imod >= 0; imod--) //for each modification of this comb state |
|
341 | 343 |
{ |
342 |
- binary_states[iN][imod] = comb_states[iN]&(int)pow(2,*Nmod-imod-1);//if =0->hidden state comb_states[iN] has modification imod non enriched; if !=0->enriched |
|
343 |
- if (binary_states[iN][imod] != 0 ) |
|
344 |
- binary_states[iN][imod] = 1; |
|
344 |
+ binary_states[iN][imod] = (bool)fmod(res,2); |
|
345 |
+ res = (res - (double)binary_states[iN][imod]) / 2.0; |
|
345 | 346 |
} |
346 | 347 |
} |
347 | 348 |
|
... | ... |
@@ -17,7 +17,9 @@ void univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* max |
17 | 17 |
|
18 | 18 |
//FILE_LOG(logDEBUG2) << __PRETTY_FUNCTION__; |
19 | 19 |
// Parallelization settings |
20 |
+ #ifdef _OPENMP |
|
20 | 21 |
omp_set_num_threads(*num_threads); |
22 |
+ #endif |
|
21 | 23 |
|
22 | 24 |
// Print some information |
23 | 25 |
//FILE_LOG(logINFO) << "number of states = " << *N; |
... | ... |
@@ -267,7 +269,9 @@ void multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, doubl |
267 | 269 |
|
268 | 270 |
//FILE_LOG(logDEBUG2) << __PRETTY_FUNCTION__; |
269 | 271 |
// Parallelization settings |
272 |
+ #ifdef _OPENMP |
|
270 | 273 |
omp_set_num_threads(*num_threads); |
274 |
+ #endif |
|
271 | 275 |
|
272 | 276 |
// Print some information |
273 | 277 |
//FILE_LOG(logINFO) << "number of states = " << *N; |
... | ... |
@@ -1,13 +1,4 @@ |
1 |
-#include "utility.h" |
|
2 |
-#include "scalehmm.h" |
|
3 |
-#include <vector> // storing density functions in multivariate |
|
4 |
-#include <string> // strcmp |
|
5 |
- |
|
6 |
-#if defined TARGET_OS_MAC || defined __APPLE__ |
|
7 |
-#include <libiomp/omp.h> // parallelization options on mac |
|
8 |
-#elif defined __linux__ || defined _WIN32 || defined _WIN64 |
|
9 |
-#include <omp.h> // parallelization options |
|
10 |
-#endif |
|
1 |
+#include "R_interface.h" |
|
11 | 2 |
|
12 | 3 |
static ScaleHMM* hmm; // declare as static outside the function because we only need one and this enables memory-cleanup on R_CheckUserInterrupt() |
13 | 4 |
static int** multiO; |
... | ... |
@@ -15,8 +6,7 @@ static int** multiO; |
15 | 6 |
// =================================================================================================================================================== |
16 | 7 |
// This function takes parameters from R, creates a univariate HMM object, creates the distributions, runs the Baum-Welch and returns the result to R. |
17 | 8 |
// =================================================================================================================================================== |
18 |
-extern "C" { |
|
19 |
-void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* maxiter, int* maxtime, double* eps, double* posteriors, double* densities, bool* keep_densities, double* A, double* proba, double* loglik, double* weights, int* iniproc, double* initial_size, double* initial_prob, double* initial_A, double* initial_proba, bool* use_initial_params, int* num_threads, int* error, int* read_cutoff, int* verbosity) |
|
9 |
+void univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* maxiter, int* maxtime, double* eps, double* posteriors, double* densities, bool* keep_densities, double* A, double* proba, double* loglik, double* weights, int* iniproc, double* initial_size, double* initial_prob, double* initial_A, double* initial_proba, bool* use_initial_params, int* num_threads, int* error, int* read_cutoff, int* verbosity) |
|
20 | 10 |
{ |
21 | 11 |
|
22 | 12 |
// Define logging level |
... | ... |
@@ -130,15 +120,8 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
130 | 120 |
// Disturb mean and variance for use as randomized initial parameters |
131 | 121 |
//FILE_LOG(logINFO) << "Using random initialization for size and prob"; |
132 | 122 |
if (*verbosity>=1) Rprintf("HMM: Using random initialization for size and prob\n"); |
133 |
- srand (clock()); |
|
134 |
- int rand1, rand2; |
|
135 |
- rand1 = rand(); |
|
136 |
- rand2 = rand(); |
|
137 |
- imean = (double)rand1/(double)RAND_MAX * 10*mean; |
|
138 |
- ivariance = imean + (double)rand2/(double)RAND_MAX * 20*imean; // variance has to be greater than mean, otherwise r will be negative |
|
139 |
- //FILE_LOG(logDEBUG2) << "RAND_MAX = " << RAND_MAX; |
|
140 |
- //FILE_LOG(logDEBUG2) << "rand1 = " << rand1; |
|
141 |
- //FILE_LOG(logDEBUG2) << "rand2 = " << rand2; |
|
123 |
+ imean = runif(0, 10*mean); |
|
124 |
+ ivariance = imean + runif(0, 20*imean); // variance has to be greater than mean, otherwise r will be negative |
|
142 | 125 |
//FILE_LOG(logDEBUG2) << "imean = " << imean; |
143 | 126 |
//FILE_LOG(logDEBUG2) << "ivariance = " << ivariance; |
144 | 127 |
} |
... | ... |
@@ -269,20 +252,18 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
269 | 252 |
delete hmm; |
270 | 253 |
hmm = NULL; // assign NULL to defuse the additional delete in on.exit() call |
271 | 254 |
} |
272 |
-} // extern C |
|
273 | 255 |
|
274 | 256 |
// ===================================================================================================================================================== |
275 | 257 |
// This function takes parameters from R, creates a multivariate HMM object, creates the distributions, runs the Baum-Welch and returns the result to R. |
276 | 258 |
// ===================================================================================================================================================== |
277 |
-extern "C" { |
|
278 |
-void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, double* size, double* prob, double* w, double* cor_matrix_inv, double* det, int* maxiter, int* maxtime, double* eps, double* posteriors, bool* keep_posteriors, double* densities, bool* keep_densities, int* states, double* A, double* proba, double* loglik, double* initial_A, double* initial_proba, bool* use_initial_params, int* num_threads, int* error, int* verbosity) |
|
259 |
+void multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, double* size, double* prob, double* w, double* cor_matrix_inv, double* det, int* maxiter, int* maxtime, double* eps, double* posteriors, bool* keep_posteriors, double* densities, bool* keep_densities, int* states, double* A, double* proba, double* loglik, double* initial_A, double* initial_proba, bool* use_initial_params, int* num_threads, int* error, int* verbosity) |
|
279 | 260 |
{ |
280 | 261 |
|
281 | 262 |
// Define logging level {"ERROR", "WARNING", "INFO", "ITERATION", "DEBUG", "DEBUG1", "DEBUG2", "DEBUG3", "DEBUG4"} |
282 | 263 |
//FILE* pFile = fopen("chromStar.log", "w"); |
283 | 264 |
//Output2FILE::Stream() = pFile; |
284 | 265 |
//FILELog::ReportingLevel() = FILELog::FromString("ERROR"); |
285 |
- FILELog::ReportingLevel() = FILELog::FromString("DEBUG3"); |
|
266 |
+ //FILELog::ReportingLevel() = FILELog::FromString("DEBUG3"); |
|
286 | 267 |
|
287 | 268 |
//FILE_LOG(logDEBUG2) << __PRETTY_FUNCTION__; |
288 | 269 |
// Parallelization settings |
... | ... |
@@ -480,25 +461,20 @@ void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, dou |
480 | 461 |
hmm = NULL; // assign NULL to defuse the additional delete in on.exit() call |
481 | 462 |
// FreeIntMatrix(multiO, *Nmod); // free on.exit() in R code |
482 | 463 |
} |
483 |
-} // extern C |
|
484 | 464 |
|
485 | 465 |
|
486 | 466 |
// ======================================================= |
487 | 467 |
// This function make a cleanup if anything was left over |
488 | 468 |
// ======================================================= |
489 |
-extern "C" { |
|
490 |
-void R_univariate_cleanup() |
|
469 |
+void univariate_cleanup() |
|
491 | 470 |
{ |
492 | 471 |
// //FILE_LOG(logDEBUG2) << __PRETTY_FUNCTION__; // This message will be shown if interrupt happens before start of C-code |
493 | 472 |
delete hmm; |
494 | 473 |
} |
495 |
-} |
|
496 | 474 |
|
497 |
-extern "C" { |
|
498 |
-void R_multivariate_cleanup(int* Nmod) |
|
475 |
+void multivariate_cleanup(int* Nmod) |
|
499 | 476 |
{ |
500 | 477 |
delete hmm; |
501 | 478 |
FreeIntMatrix(multiO, *Nmod); |
502 | 479 |
} |
503 |
-} |
|
504 | 480 |
|
... | ... |
@@ -116,7 +116,7 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
116 | 116 |
else if (i_state == 2) |
117 | 117 |
{ |
118 | 118 |
//FILE_LOG(logDEBUG) << "Initializing size and prob for state 2"; |
119 |
- imean = mean*2; |
|
119 |
+ imean = mean*1.5; |
|
120 | 120 |
ivariance = variance*2; |
121 | 121 |
} |
122 | 122 |
// Make sure variance is greater than mean |
... | ... |
@@ -116,7 +116,7 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
116 | 116 |
else if (i_state == 2) |
117 | 117 |
{ |
118 | 118 |
//FILE_LOG(logDEBUG) << "Initializing size and prob for state 2"; |
119 |
- imean = mean+1; |
|
119 |
+ imean = mean*2; |
|
120 | 120 |
ivariance = variance*2; |
121 | 121 |
} |
122 | 122 |
// Make sure variance is greater than mean |
... | ... |
@@ -70,17 +70,24 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
70 | 70 |
hmm->initialize_proba(initial_proba, *use_initial_params); |
71 | 71 |
|
72 | 72 |
// Calculate mean and variance of data |
73 |
- double mean = 0, variance = 0; |
|
73 |
+ double Tadjust = 0, mean = 0, variance = 0; |
|
74 | 74 |
for(int t=0; t<*T; t++) |
75 | 75 |
{ |
76 |
- mean+= O[t]; |
|
76 |
+ if (O[t]>0) |
|
77 |
+ { |
|
78 |
+ mean += O[t]; |
|
79 |
+ Tadjust += 1; |
|
80 |
+ } |
|
77 | 81 |
} |
78 |
- mean = mean / *T; |
|
82 |
+ mean = mean / Tadjust; |
|
79 | 83 |
for(int t=0; t<*T; t++) |
80 | 84 |
{ |
81 |
- variance+= pow(O[t] - mean, 2); |
|
85 |
+ if (O[t]>0) |
|
86 |
+ { |
|
87 |
+ variance += pow(O[t] - mean, 2); |
|
88 |
+ } |
|
82 | 89 |
} |
83 |
- variance = variance / *T; |
|
90 |
+ variance = variance / Tadjust; |
|
84 | 91 |
//FILE_LOG(logINFO) << "data mean = " << mean << ", data variance = " << variance; |
85 | 92 |
if (*verbosity>=1) Rprintf("HMM: data mean = %g, data variance = %g\n", mean, variance); |
86 | 93 |
|
... | ... |
@@ -110,7 +110,7 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
110 | 110 |
{ |
111 | 111 |
//FILE_LOG(logDEBUG) << "Initializing size and prob for state 2"; |
112 | 112 |
imean = mean+1; |
113 |
- ivariance = variance; |
|
113 |
+ ivariance = variance*2; |
|
114 | 114 |
} |
115 | 115 |
// Make sure variance is greater than mean |
116 | 116 |
if (imean >= ivariance) |
... | ... |
@@ -20,10 +20,10 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
20 | 20 |
{ |
21 | 21 |
|
22 | 22 |
// Define logging level |
23 |
-// //FILE* pFile = fopen("chromStar.log", "w"); |
|
24 |
-// Output2//FILE::Stream() = pFile; |
|
25 |
- //FILELog::ReportingLevel() = //FILELog::FromString("ERROR"); |
|
26 |
-// //FILELog::ReportingLevel() = //FILELog::FromString("DEBUG2"); |
|
23 |
+ //FILE* pFile = fopen("chromStar.log", "w"); |
|
24 |
+ //Output2FILE::Stream() = pFile; |
|
25 |
+ //FILELog::ReportingLevel() = FILELog::FromString("ERROR"); |
|
26 |
+ //FILELog::ReportingLevel() = FILELog::FromString("DEBUG2"); |
|
27 | 27 |
|
28 | 28 |
//FILE_LOG(logDEBUG2) << __PRETTY_FUNCTION__; |
29 | 29 |
// Parallelization settings |
... | ... |
@@ -272,10 +272,10 @@ void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, dou |
272 | 272 |
{ |
273 | 273 |
|
274 | 274 |
// Define logging level {"ERROR", "WARNING", "INFO", "ITERATION", "DEBUG", "DEBUG1", "DEBUG2", "DEBUG3", "DEBUG4"} |
275 |
-// //FILE* pFile = fopen("chromStar.log", "w"); |
|
276 |
-// Output2//FILE::Stream() = pFile; |
|
277 |
- //FILELog::ReportingLevel() = //FILELog::FromString("ERROR"); |
|
278 |
-// //FILELog::ReportingLevel() = //FILELog::FromString("DEBUG3"); |
|
275 |
+ //FILE* pFile = fopen("chromStar.log", "w"); |
|
276 |
+ //Output2FILE::Stream() = pFile; |
|
277 |
+ //FILELog::ReportingLevel() = FILELog::FromString("ERROR"); |
|
278 |
+ FILELog::ReportingLevel() = FILELog::FromString("DEBUG3"); |
|
279 | 279 |
|
280 | 280 |
//FILE_LOG(logDEBUG2) << __PRETTY_FUNCTION__; |
281 | 281 |
// Parallelization settings |
... | ... |
@@ -304,8 +304,8 @@ void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, dou |
304 | 304 |
} |
305 | 305 |
//FILE_LOG(logINFO) << "epsilon = " << *eps; |
306 | 306 |
if (*verbosity>=1) Rprintf("HMM: epsilon = %g\n", *eps); |
307 |
- //FILE_LOG(logINFO) << "number of modifications = " << *Nmod; |
|
308 |
- if (*verbosity>=1) Rprintf("HMM: number of modifications = %d\n", *Nmod); |
|
307 |
+ //FILE_LOG(logINFO) << "number of experiments = " << *Nmod; |
|
308 |
+ if (*verbosity>=1) Rprintf("HMM: number of experiments = %d\n", *Nmod); |
|
309 | 309 |
|
310 | 310 |
// Flush Rprintf statements to console |
311 | 311 |
R_FlushConsole(); |
... | ... |
@@ -1,9 +1,14 @@ |
1 | 1 |
#include "utility.h" |
2 | 2 |
#include "scalehmm.h" |
3 | 3 |
#include <vector> // storing density functions in multivariate |
4 |
-#include <omp.h> // parallelization options |
|
5 | 4 |
#include <string> // strcmp |
6 | 5 |
|
6 |
+#if defined TARGET_OS_MAC || defined __APPLE__ |
|
7 |
+#include <libiomp/omp.h> // parallelization options on mac |
|
8 |
+#elif defined __linux__ || defined _WIN32 || defined _WIN64 |
|
9 |
+#include <omp.h> // parallelization options |
|
10 |
+#endif |
|
11 |
+ |
|
7 | 12 |
static ScaleHMM* hmm; // declare as static outside the function because we only need one and this enables memory-cleanup on R_CheckUserInterrupt() |
8 | 13 |
static int** multiO; |
9 | 14 |
|
... | ... |
@@ -1,7 +1,7 @@ |
1 | 1 |
#include "utility.h" |
2 | 2 |
#include "scalehmm.h" |
3 | 3 |
#include <vector> // storing density functions in multivariate |
4 |
-// #include <omp.h> // parallelization options |
|
4 |
+#include <omp.h> // parallelization options |
|
5 | 5 |
#include <string> // strcmp |
6 | 6 |
|
7 | 7 |
static ScaleHMM* hmm; // declare as static outside the function because we only need one and this enables memory-cleanup on R_CheckUserInterrupt() |
... | ... |
@@ -22,7 +22,7 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
22 | 22 |
|
23 | 23 |
//FILE_LOG(logDEBUG2) << __PRETTY_FUNCTION__; |
24 | 24 |
// Parallelization settings |
25 |
-// omp_set_num_threads(*num_threads); |
|
25 |
+ omp_set_num_threads(*num_threads); |
|
26 | 26 |
|
27 | 27 |
// Print some information |
28 | 28 |
//FILE_LOG(logINFO) << "number of states = " << *N; |
... | ... |
@@ -274,7 +274,7 @@ void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, dou |
274 | 274 |
|
275 | 275 |
//FILE_LOG(logDEBUG2) << __PRETTY_FUNCTION__; |
276 | 276 |
// Parallelization settings |
277 |
-// omp_set_num_threads(*num_threads); |
|
277 |
+ omp_set_num_threads(*num_threads); |
|
278 | 278 |
|
279 | 279 |
// Print some information |
280 | 280 |
//FILE_LOG(logINFO) << "number of states = " << *N; |
... | ... |
@@ -1,7 +1,7 @@ |
1 | 1 |
#include "utility.h" |
2 | 2 |
#include "scalehmm.h" |
3 | 3 |
#include <vector> // storing density functions in multivariate |
4 |
-#include <omp.h> // parallelization options |
|
4 |
+// #include <omp.h> // parallelization options |
|
5 | 5 |
#include <string> // strcmp |
6 | 6 |
|
7 | 7 |
static ScaleHMM* hmm; // declare as static outside the function because we only need one and this enables memory-cleanup on R_CheckUserInterrupt() |
... | ... |
@@ -22,7 +22,7 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
22 | 22 |
|
23 | 23 |
//FILE_LOG(logDEBUG2) << __PRETTY_FUNCTION__; |
24 | 24 |
// Parallelization settings |
25 |
- omp_set_num_threads(*num_threads); |
|
25 |
+// omp_set_num_threads(*num_threads); |
|
26 | 26 |
|
27 | 27 |
// Print some information |
28 | 28 |
//FILE_LOG(logINFO) << "number of states = " << *N; |
... | ... |
@@ -274,7 +274,7 @@ void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, dou |
274 | 274 |
|
275 | 275 |
//FILE_LOG(logDEBUG2) << __PRETTY_FUNCTION__; |
276 | 276 |
// Parallelization settings |
277 |
- omp_set_num_threads(*num_threads); |
|
277 |
+// omp_set_num_threads(*num_threads); |
|
278 | 278 |
|
279 | 279 |
// Print some information |
280 | 280 |
//FILE_LOG(logINFO) << "number of states = " << *N; |
... | ... |
@@ -1,7 +1,7 @@ |
1 | 1 |
#include "utility.h" |
2 | 2 |
#include "scalehmm.h" |
3 | 3 |
#include <vector> // storing density functions in multivariate |
4 |
-// #include <omp.h> // parallelization options |
|
4 |
+#include <omp.h> // parallelization options |
|
5 | 5 |
#include <string> // strcmp |
6 | 6 |
|
7 | 7 |
static ScaleHMM* hmm; // declare as static outside the function because we only need one and this enables memory-cleanup on R_CheckUserInterrupt() |
... | ... |
@@ -22,7 +22,7 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
22 | 22 |
|
23 | 23 |
//FILE_LOG(logDEBUG2) << __PRETTY_FUNCTION__; |
24 | 24 |
// Parallelization settings |
25 |
-// omp_set_num_threads(*num_threads); |
|
25 |
+ omp_set_num_threads(*num_threads); |
|
26 | 26 |
|
27 | 27 |
// Print some information |
28 | 28 |
//FILE_LOG(logINFO) << "number of states = " << *N; |
... | ... |
@@ -274,7 +274,7 @@ void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, dou |
274 | 274 |
|
275 | 275 |
//FILE_LOG(logDEBUG2) << __PRETTY_FUNCTION__; |
276 | 276 |
// Parallelization settings |
277 |
-// omp_set_num_threads(*num_threads); |
|
277 |
+ omp_set_num_threads(*num_threads); |
|
278 | 278 |
|
279 | 279 |
// Print some information |
280 | 280 |
//FILE_LOG(logINFO) << "number of states = " << *N; |
... | ... |
@@ -1,7 +1,7 @@ |
1 | 1 |
#include "utility.h" |
2 | 2 |
#include "scalehmm.h" |
3 | 3 |
#include <vector> // storing density functions in multivariate |
4 |
-#include <omp.h> // parallelization options |
|
4 |
+// #include <omp.h> // parallelization options |
|
5 | 5 |
#include <string> // strcmp |
6 | 6 |
|
7 | 7 |
static ScaleHMM* hmm; // declare as static outside the function because we only need one and this enables memory-cleanup on R_CheckUserInterrupt() |
... | ... |
@@ -22,7 +22,7 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
22 | 22 |
|
23 | 23 |
//FILE_LOG(logDEBUG2) << __PRETTY_FUNCTION__; |
24 | 24 |
// Parallelization settings |
25 |
- omp_set_num_threads(*num_threads); |
|
25 |
+// omp_set_num_threads(*num_threads); |
|
26 | 26 |
|
27 | 27 |
// Print some information |
28 | 28 |
//FILE_LOG(logINFO) << "number of states = " << *N; |
... | ... |
@@ -274,7 +274,7 @@ void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, dou |
274 | 274 |
|
275 | 275 |
//FILE_LOG(logDEBUG2) << __PRETTY_FUNCTION__; |
276 | 276 |
// Parallelization settings |
277 |
- omp_set_num_threads(*num_threads); |
|
277 |
+// omp_set_num_threads(*num_threads); |
|
278 | 278 |
|
279 | 279 |
// Print some information |
280 | 280 |
//FILE_LOG(logINFO) << "number of states = " << *N; |
... | ... |
@@ -434,7 +434,6 @@ void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, dou |
434 | 434 |
} |
435 | 435 |
ind_max = std::distance(posterior_per_t.begin(), std::max_element(posterior_per_t.begin(), posterior_per_t.end())); |
436 | 436 |
states[t] = comb_states[ind_max]; |
437 |
-// if (*verbosity>=1) Rprintf("HMM: comb_states[t=%d, ind_max=%d] = %d\n", t, ind_max, states[t]); |
|
438 | 437 |
} |
439 | 438 |
// } |
440 | 439 |
// else |
... | ... |
@@ -11,7 +11,7 @@ static int** multiO; |
11 | 11 |
// This function takes parameters from R, creates a univariate HMM object, creates the distributions, runs the Baum-Welch and returns the result to R. |
12 | 12 |
// =================================================================================================================================================== |
13 | 13 |
extern "C" { |
14 |
-void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* maxiter, int* maxtime, double* eps, double* posteriors, double* A, double* proba, double* loglik, double* weights, int* iniproc, double* initial_size, double* initial_prob, double* initial_A, double* initial_proba, bool* use_initial_params, int* num_threads, int* error, int* read_cutoff) |
|
14 |
+void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* maxiter, int* maxtime, double* eps, double* posteriors, double* densities, bool* keep_densities, double* A, double* proba, double* loglik, double* weights, int* iniproc, double* initial_size, double* initial_prob, double* initial_A, double* initial_proba, bool* use_initial_params, int* num_threads, int* error, int* read_cutoff, int* verbosity) |
|
15 | 15 |
{ |
16 | 16 |
|
17 | 17 |
// Define logging level |
... | ... |
@@ -26,27 +26,27 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
26 | 26 |
|
27 | 27 |
// Print some information |
28 | 28 |
//FILE_LOG(logINFO) << "number of states = " << *N; |
29 |
- Rprintf("number of states = %d\n", *N); |
|
29 |
+ if (*verbosity>=1) Rprintf("HMM: number of states = %d\n", *N); |
|
30 | 30 |
//FILE_LOG(logINFO) << "number of bins = " << *T; |
31 |
- Rprintf("number of bins = %d\n", *T); |
|
31 |
+ if (*verbosity>=1) Rprintf("HMM: number of bins = %d\n", *T); |
|
32 | 32 |
if (*maxiter < 0) |
33 | 33 |
{ |
34 | 34 |
//FILE_LOG(logINFO) << "maximum number of iterations = none"; |
35 |
- Rprintf("maximum number of iterations = none\n"); |
|
35 |
+ if (*verbosity>=1) Rprintf("HMM: maximum number of iterations = none\n"); |
|
36 | 36 |
} else { |
37 | 37 |
//FILE_LOG(logINFO) << "maximum number of iterations = " << *maxiter; |
38 |
- Rprintf("maximum number of iterations = %d\n", *maxiter); |
|
38 |
+ if (*verbosity>=1) Rprintf("HMM: maximum number of iterations = %d\n", *maxiter); |
|
39 | 39 |
} |
40 | 40 |
if (*maxtime < 0) |
41 | 41 |
{ |
42 | 42 |
//FILE_LOG(logINFO) << "maximum running time = none"; |
43 |
- Rprintf("maximum running time = none\n"); |
|
43 |
+ if (*verbosity>=1) Rprintf("HMM: maximum running time = none\n"); |
|
44 | 44 |
} else { |
45 | 45 |
//FILE_LOG(logINFO) << "maximum running time = " << *maxtime << " sec"; |
46 |
- Rprintf("maximum running time = %d sec\n", *maxtime); |
|
46 |
+ if (*verbosity>=1) Rprintf("HMM: maximum running time = %d sec\n", *maxtime); |
|
47 | 47 |
} |
48 | 48 |
//FILE_LOG(logINFO) << "epsilon = " << *eps; |
49 |
- Rprintf("epsilon = %g\n", *eps); |
|
49 |
+ if (*verbosity>=1) Rprintf("HMM: epsilon = %g\n", *eps); |
|
50 | 50 |
|
51 | 51 |
//FILE_LOG(logDEBUG3) << "observation vector"; |
52 | 52 |
for (int t=0; t<50; t++) { |
... | ... |
@@ -58,7 +58,7 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
58 | 58 |
|
59 | 59 |
// Create the HMM |
60 | 60 |
//FILE_LOG(logDEBUG1) << "Creating a univariate HMM"; |
61 |
- hmm = new ScaleHMM(*T, *N); |
|
61 |
+ hmm = new ScaleHMM(*T, *N, *verbosity); |
|
62 | 62 |
hmm->set_cutoff(*read_cutoff); |
63 | 63 |
// Initialize the transition probabilities and proba |
64 | 64 |
hmm->initialize_transition_probs(initial_A, *use_initial_params); |
... | ... |
@@ -77,7 +77,7 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
77 | 77 |
} |
78 | 78 |
variance = variance / *T; |
79 | 79 |
//FILE_LOG(logINFO) << "data mean = " << mean << ", data variance = " << variance; |
80 |
- Rprintf("data mean = %g, data variance = %g\n", mean, variance); |
|
80 |
+ if (*verbosity>=1) Rprintf("HMM: data mean = %g, data variance = %g\n", mean, variance); |
|
81 | 81 |
|
82 | 82 |
// Go through all states of the hmm and assign the density functions |
83 | 83 |
double imean=0, ivariance=0; |
... | ... |
@@ -85,7 +85,7 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
85 | 85 |
{ |
86 | 86 |
if (*use_initial_params) { |
87 | 87 |
//FILE_LOG(logINFO) << "Using given parameters for size and prob"; |
88 |
- Rprintf("Using given parameters for size and prob\n"); |
|
88 |
+ if (*verbosity>=1) Rprintf("HMM: Using given parameters for size and prob\n"); |
|
89 | 89 |
imean = (1-initial_prob[i_state])*initial_size[i_state] / initial_prob[i_state]; |
90 | 90 |
ivariance = imean / initial_prob[i_state]; |
91 | 91 |
//FILE_LOG(logDEBUG2) << "imean = " << imean; |
... | ... |
@@ -117,7 +117,7 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
117 | 117 |
{ |
118 | 118 |
// Disturb mean and variance for use as randomized initial parameters |
119 | 119 |
//FILE_LOG(logINFO) << "Using random initialization for size and prob"; |
120 |
- Rprintf("Using random initialization for size and prob\n"); |
|
120 |
+ if (*verbosity>=1) Rprintf("HMM: Using random initialization for size and prob\n"); |
|
121 | 121 |
srand (clock()); |
122 | 122 |
int rand1, rand2; |
123 | 123 |
rand1 = rand(); |
... | ... |
@@ -136,14 +136,14 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
136 | 136 |
if (i_state == 1) |
137 | 137 |
{ |
138 | 138 |
//FILE_LOG(logINFO) << "Initializing r and p empirically for state 1"; |
139 |
- Rprintf("Initializing r and p empirically for state 1\n"); |
|
139 |
+ if (*verbosity>=1) Rprintf("HMM: Initializing r and p empirically for state 1\n"); |
|
140 | 140 |
imean = mean/2; |
141 | 141 |
ivariance = imean*2; |
142 | 142 |
} |
143 | 143 |
else if (i_state == 2) |
144 | 144 |
{ |
145 | 145 |
//FILE_LOG(logINFO) << "Initializing r and p empirically for state 2"; |
146 |
- Rprintf("Initializing r and p empirically for state 2\n"); |
|
146 |
+ if (*verbosity>=1) Rprintf("HMM: Initializing r and p empirically for state 2\n"); |
|
147 | 147 |
imean = mean*2; |
148 | 148 |
ivariance = imean*2; |
149 | 149 |
} |
... | ... |
@@ -187,15 +187,16 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
187 | 187 |
catch (std::exception& e) |
188 | 188 |
{ |
189 | 189 |
//FILE_LOG(logERROR) << "Error in Baum-Welch: " << e.what(); |
190 |
- Rprintf("Error in Baum-Welch: %s\n", e.what()); |
|
190 |
+ if (*verbosity>=1) Rprintf("HMM: Error in Baum-Welch: %s\n", e.what()); |
|
191 | 191 |
if (strcmp(e.what(),"nan detected")==0) { *error = 1; } |
192 | 192 |
else { *error = 2; } |
193 | 193 |
} |
194 | 194 |
|
195 | 195 |
//FILE_LOG(logDEBUG1) << "Finished with Baum-Welch estimation"; |
196 |
- // Compute the posteriors and save results directly to the R pointer |
|
196 |
+ |
|
197 |
+ // Get the posteriors and save results directly to the R pointer |
|
197 | 198 |
//FILE_LOG(logDEBUG1) << "Recode posteriors into column representation"; |
198 |
- Rprintf("Recoding posteriors ...\n"); |
|
199 |
+ if (*verbosity>=1) Rprintf("HMM: Recoding posteriors ...\n"); |
|
199 | 200 |
R_FlushConsole(); |
200 | 201 |
#pragma omp parallel for |
201 | 202 |
for (int iN=0; iN<*N; iN++) |
... | ... |
@@ -206,6 +207,22 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
206 | 207 |
} |
207 | 208 |
} |
208 | 209 |
|
210 |
+ // Get the densities and save results directly to the R pointer |
|
211 |
+ if (*keep_densities == true) |
|
212 |
+ { |
|
213 |
+ //FILE_LOG(logDEBUG1) << "Recode posteriors into column representation"; |
|
214 |
+ if (*verbosity>=1) Rprintf("HMM: Recoding densities ...\n"); |
|
215 |
+ R_FlushConsole(); |
|
216 |
+ #pragma omp parallel for |
|
217 |
+ for (int iN=0; iN<*N; iN++) |
|
218 |
+ { |
|
219 |
+ for (int t=0; t<*T; t++) |
|
220 |
+ { |
|
221 |
+ densities[t + iN * (*T)] = hmm->get_density(iN, t); |
|
222 |
+ } |
|
223 |
+ } |
|
224 |
+ } |
|
225 |
+ |
|
209 | 226 |
//FILE_LOG(logDEBUG1) << "Return parameters"; |
210 | 227 |
// also return the estimated transition matrix and the initial probs |
211 | 228 |
for (int i=0; i<*N; i++) |
... | ... |
@@ -246,7 +263,7 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
246 | 263 |
// This function takes parameters from R, creates a multivariate HMM object, creates the distributions, runs the Baum-Welch and returns the result to R. |
247 | 264 |
// ===================================================================================================================================================== |
248 | 265 |
extern "C" { |
249 |
-void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, double* size, double* prob, double* w, double* cor_matrix_inv, double* det, int* maxiter, int* maxtime, double* eps, double* posteriors, bool* keep_posteriors, int* states, double* A, double* proba, double* loglik, double* initial_A, double* initial_proba, bool* use_initial_params, int* num_threads, int* error) |
|
266 |
+void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, double* size, double* prob, double* w, double* cor_matrix_inv, double* det, int* maxiter, int* maxtime, double* eps, double* posteriors, bool* keep_posteriors, double* densities, bool* keep_densities, int* states, double* A, double* proba, double* loglik, double* initial_A, double* initial_proba, bool* use_initial_params, int* num_threads, int* error, int* verbosity) |
|
250 | 267 |
{ |
251 | 268 |
|
252 | 269 |
// Define logging level {"ERROR", "WARNING", "INFO", "ITERATION", "DEBUG", "DEBUG1", "DEBUG2", "DEBUG3", "DEBUG4"} |
... | ... |
@@ -261,29 +278,29 @@ void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, dou |
261 | 278 |
|
262 | 279 |
// Print some information |
263 | 280 |
//FILE_LOG(logINFO) << "number of states = " << *N; |
264 |
- Rprintf("number of states = %d\n", *N); |
|
281 |
+ if (*verbosity>=1) Rprintf("HMM: number of states = %d\n", *N); |
|
265 | 282 |
//FILE_LOG(logINFO) << "number of bins = " << *T; |
266 |
- Rprintf("number of bins = %d\n", *T); |
|
283 |
+ if (*verbosity>=1) Rprintf("HMM: number of bins = %d\n", *T); |
|
267 | 284 |
if (*maxiter < 0) |
268 | 285 |
{ |
269 | 286 |
//FILE_LOG(logINFO) << "maximum number of iterations = none"; |
270 |
- Rprintf("maximum number of iterations = none\n"); |
|
287 |
+ if (*verbosity>=1) Rprintf("HMM: maximum number of iterations = none\n"); |
|
271 | 288 |
} else { |
272 | 289 |
//FILE_LOG(logINFO) << "maximum number of iterations = " << *maxiter; |
273 |
- Rprintf("maximum number of iterations = %d\n", *maxiter); |
|
290 |
+ if (*verbosity>=1) Rprintf("HMM: maximum number of iterations = %d\n", *maxiter); |
|
274 | 291 |
} |
275 | 292 |
if (*maxtime < 0) |
276 | 293 |
{ |
277 | 294 |
//FILE_LOG(logINFO) << "maximum running time = none"; |
278 |
- Rprintf("maximum running time = none\n"); |
|
295 |
+ if (*verbosity>=1) Rprintf("HMM: maximum running time = none\n"); |
|
279 | 296 |
} else { |
280 | 297 |
//FILE_LOG(logINFO) << "maximum running time = " << *maxtime << " sec"; |
281 |
- Rprintf("maximum running time = %d sec\n", *maxtime); |
|
298 |
+ if (*verbosity>=1) Rprintf("HMM: maximum running time = %d sec\n", *maxtime); |
|
282 | 299 |
} |
283 | 300 |
//FILE_LOG(logINFO) << "epsilon = " << *eps; |
284 |
- Rprintf("epsilon = %g\n", *eps); |
|
301 |
+ if (*verbosity>=1) Rprintf("HMM: epsilon = %g\n", *eps); |
|
285 | 302 |
//FILE_LOG(logINFO) << "number of modifications = " << *Nmod; |
286 |
- Rprintf("number of modifications = %d\n", *Nmod); |
|
303 |
+ if (*verbosity>=1) Rprintf("HMM: number of modifications = %d\n", *Nmod); |
|
287 | 304 |
|
288 | 305 |
// Flush Rprintf statements to console |
289 | 306 |
R_FlushConsole(); |
... | ... |
@@ -303,7 +320,7 @@ void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, dou |
303 | 320 |
|
304 | 321 |
// Create the HMM |
305 | 322 |
//FILE_LOG(logDEBUG1) << "Creating the multivariate HMM"; |
306 |
- hmm = new ScaleHMM(*T, *N, *Nmod); |
|
323 |
+ hmm = new ScaleHMM(*T, *N, *Nmod, *verbosity); |
|
307 | 324 |
// Initialize the transition probabilities and proba |
308 | 325 |
hmm->initialize_transition_probs(initial_A, *use_initial_params); |
309 | 326 |
hmm->initialize_proba(initial_proba, *use_initial_params); |
... | ... |
@@ -365,17 +382,17 @@ void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, dou |
365 | 382 |
catch (std::exception& e) |
366 | 383 |
{ |
367 | 384 |
//FILE_LOG(logERROR) << "Error in Baum-Welch: " << e.what(); |
368 |
- Rprintf("Error in Baum-Welch: %s\n", e.what()); |
|
385 |
+ if (*verbosity>=1) Rprintf("HMM: Error in Baum-Welch: %s\n", e.what()); |
|
369 | 386 |
if (strcmp(e.what(),"nan detected")==0) { *error = 1; } |
370 | 387 |
else { *error = 2; } |
371 | 388 |
} |
372 | 389 |
//FILE_LOG(logDEBUG1) << "Finished with Baum-Welch estimation"; |
373 | 390 |
|
374 |
- // Compute the posteriors and save results directly to the R pointer |
|
391 |
+ // Get the posteriors and save results directly to the R pointer |
|
375 | 392 |
if (*keep_posteriors == true) |
376 | 393 |
{ |
377 | 394 |
//FILE_LOG(logDEBUG1) << "Recode posteriors into column representation"; |
378 |
- Rprintf("Recoding posteriors ...\n"); |
|
395 |
+ if (*verbosity>=1) Rprintf("HMM: Recoding posteriors ...\n"); |
|
379 | 396 |
R_FlushConsole(); |
380 | 397 |
#pragma omp parallel for |
381 | 398 |
for (int iN=0; iN<*N; iN++) |
... | ... |
@@ -387,6 +404,22 @@ void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, dou |
387 | 404 |
} |
388 | 405 |
} |
389 | 406 |
|
407 |
+ // Get the densities and save results directly to the R pointer |
|
408 |
+ if (*keep_densities == true) |
|
409 |
+ { |
|
410 |
+ //FILE_LOG(logDEBUG1) << "Recode posteriors into column representation"; |
|
411 |
+ if (*verbosity>=1) Rprintf("HMM: Recoding densities ...\n"); |
|
412 |
+ R_FlushConsole(); |
|
413 |
+ #pragma omp parallel for |
|
414 |
+ for (int iN=0; iN<*N; iN++) |
|
415 |
+ { |
|
416 |
+ for (int t=0; t<*T; t++) |
|
417 |
+ { |
|
418 |
+ densities[t + iN * (*T)] = hmm->get_density(iN, t); |
|
419 |
+ } |
|
420 |
+ } |
|
421 |
+ } |
|
422 |
+ |
|
390 | 423 |
// Compute the states from posteriors |
391 | 424 |
//FILE_LOG(logDEBUG1) << "Computing states from posteriors"; |
392 | 425 |
// if (*fdr == -1) |
... | ... |
@@ -401,7 +434,7 @@ void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, dou |
401 | 434 |
} |
402 | 435 |
ind_max = std::distance(posterior_per_t.begin(), std::max_element(posterior_per_t.begin(), posterior_per_t.end())); |
403 | 436 |
states[t] = comb_states[ind_max]; |
404 |
-// Rprintf("comb_states[t=%d, ind_max=%d] = %d\n", t, ind_max, states[t]); |
|
437 |
+// if (*verbosity>=1) Rprintf("HMM: comb_states[t=%d, ind_max=%d] = %d\n", t, ind_max, states[t]); |
|
405 | 438 |
} |
406 | 439 |
// } |
407 | 440 |
// else |
... | ... |
@@ -391,6 +391,7 @@ void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, dou |
391 | 391 |
//FILE_LOG(logDEBUG1) << "Computing states from posteriors"; |
392 | 392 |
// if (*fdr == -1) |
393 | 393 |
// { |
394 |
+ int ind_max; |
|
394 | 395 |
std::vector<double> posterior_per_t(*N); |
395 | 396 |
for (int t=0; t<*T; t++) |
396 | 397 |
{ |
... | ... |
@@ -398,7 +399,9 @@ void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, dou |
398 | 399 |
{ |
399 | 400 |
posterior_per_t[iN] = hmm->get_posterior(iN, t); |
400 | 401 |
} |
401 |
- states[t] = comb_states[(int)*std::max_element(posterior_per_t.begin(), posterior_per_t.end())]; |
|
402 |
+ ind_max = std::distance(posterior_per_t.begin(), std::max_element(posterior_per_t.begin(), posterior_per_t.end())); |
|
403 |
+ states[t] = comb_states[ind_max]; |
|
404 |
+// Rprintf("comb_states[t=%d, ind_max=%d] = %d\n", t, ind_max, states[t]); |
|
402 | 405 |
} |
403 | 406 |
// } |
404 | 407 |
// else |
... | ... |
@@ -15,49 +15,49 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
15 | 15 |
{ |
16 | 16 |
|
17 | 17 |
// Define logging level |
18 |
-// FILE* pFile = fopen("chromStar.log", "w"); |
|
19 |
-// Output2FILE::Stream() = pFile; |
|
20 |
- FILELog::ReportingLevel() = FILELog::FromString("ERROR"); |
|
21 |
-// FILELog::ReportingLevel() = FILELog::FromString("DEBUG2"); |
|
18 |
+// //FILE* pFile = fopen("chromStar.log", "w"); |
|
19 |
+// Output2//FILE::Stream() = pFile; |
|
20 |
+ //FILELog::ReportingLevel() = //FILELog::FromString("ERROR"); |
|
21 |
+// //FILELog::ReportingLevel() = //FILELog::FromString("DEBUG2"); |
|
22 | 22 |
|
23 |
- FILE_LOG(logDEBUG2) << __PRETTY_FUNCTION__; |
|
23 |
+ //FILE_LOG(logDEBUG2) << __PRETTY_FUNCTION__; |
|
24 | 24 |
// Parallelization settings |
25 | 25 |
omp_set_num_threads(*num_threads); |
26 | 26 |
|
27 | 27 |
// Print some information |
28 |
- FILE_LOG(logINFO) << "number of states = " << *N; |
|
28 |
+ //FILE_LOG(logINFO) << "number of states = " << *N; |
|
29 | 29 |
Rprintf("number of states = %d\n", *N); |
30 |
- FILE_LOG(logINFO) << "number of bins = " << *T; |
|
30 |
+ //FILE_LOG(logINFO) << "number of bins = " << *T; |
|
31 | 31 |
Rprintf("number of bins = %d\n", *T); |
32 | 32 |
if (*maxiter < 0) |
33 | 33 |
{ |
34 |
- FILE_LOG(logINFO) << "maximum number of iterations = none"; |
|
34 |
+ //FILE_LOG(logINFO) << "maximum number of iterations = none"; |
|
35 | 35 |
Rprintf("maximum number of iterations = none\n"); |
36 | 36 |
} else { |
37 |
- FILE_LOG(logINFO) << "maximum number of iterations = " << *maxiter; |
|
37 |
+ //FILE_LOG(logINFO) << "maximum number of iterations = " << *maxiter; |
|
38 | 38 |
Rprintf("maximum number of iterations = %d\n", *maxiter); |
39 | 39 |
} |
40 | 40 |
if (*maxtime < 0) |
41 | 41 |
{ |
42 |
- FILE_LOG(logINFO) << "maximum running time = none"; |
|
42 |
+ //FILE_LOG(logINFO) << "maximum running time = none"; |
|
43 | 43 |
Rprintf("maximum running time = none\n"); |
44 | 44 |
} else { |
45 |
- FILE_LOG(logINFO) << "maximum running time = " << *maxtime << " sec"; |
|
45 |
+ //FILE_LOG(logINFO) << "maximum running time = " << *maxtime << " sec"; |
|
46 | 46 |
Rprintf("maximum running time = %d sec\n", *maxtime); |
47 | 47 |
} |
48 |
- FILE_LOG(logINFO) << "epsilon = " << *eps; |
|
48 |
+ //FILE_LOG(logINFO) << "epsilon = " << *eps; |
|
49 | 49 |
Rprintf("epsilon = %g\n", *eps); |
50 | 50 |
|
51 |
- FILE_LOG(logDEBUG3) << "observation vector"; |
|
51 |
+ //FILE_LOG(logDEBUG3) << "observation vector"; |
|
52 | 52 |
for (int t=0; t<50; t++) { |
53 |
- FILE_LOG(logDEBUG3) << "O["<<t<<"] = " << O[t]; |
|
53 |
+ //FILE_LOG(logDEBUG3) << "O["<<t<<"] = " << O[t]; |
|
54 | 54 |
} |
55 | 55 |
|
56 | 56 |
// Flush Rprintf statements to console |
57 | 57 |
R_FlushConsole(); |
58 | 58 |
|
59 | 59 |
// Create the HMM |
60 |
- FILE_LOG(logDEBUG1) << "Creating a univariate HMM"; |
|
60 |
+ //FILE_LOG(logDEBUG1) << "Creating a univariate HMM"; |
|
61 | 61 |
hmm = new ScaleHMM(*T, *N); |
62 | 62 |
hmm->set_cutoff(*read_cutoff); |
63 | 63 |
// Initialize the transition probabilities and proba |
... | ... |
@@ -76,7 +76,7 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
76 | 76 |
variance+= pow(O[t] - mean, 2); |
77 | 77 |
} |
78 | 78 |
variance = variance / *T; |
79 |
- FILE_LOG(logINFO) << "data mean = " << mean << ", data variance = " << variance; |
|
79 |
+ //FILE_LOG(logINFO) << "data mean = " << mean << ", data variance = " << variance; |
|
80 | 80 |
Rprintf("data mean = %g, data variance = %g\n", mean, variance); |
81 | 81 |
|
82 | 82 |
// Go through all states of the hmm and assign the density functions |
... | ... |
@@ -84,12 +84,12 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
84 | 84 |
for (int i_state=0; i_state<*N; i_state++) |
85 | 85 |
{ |
86 | 86 |
if (*use_initial_params) { |
87 |
- FILE_LOG(logINFO) << "Using given parameters for size and prob"; |
|
87 |
+ //FILE_LOG(logINFO) << "Using given parameters for size and prob"; |
|
88 | 88 |
Rprintf("Using given parameters for size and prob\n"); |
89 | 89 |
imean = (1-initial_prob[i_state])*initial_size[i_state] / initial_prob[i_state]; |
90 | 90 |
ivariance = imean / initial_prob[i_state]; |
91 |
- FILE_LOG(logDEBUG2) << "imean = " << imean; |
|
92 |
- FILE_LOG(logDEBUG2) << "ivariance = " << ivariance; |
|
91 |
+ //FILE_LOG(logDEBUG2) << "imean = " << imean; |
|
92 |
+ //FILE_LOG(logDEBUG2) << "ivariance = " << ivariance; |
|
93 | 93 |
} else { |
94 | 94 |
|
95 | 95 |
if (*iniproc == 1) |
... | ... |
@@ -97,13 +97,13 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
97 | 97 |
// Simple initialization, seems to give the fastest convergence |
98 | 98 |
if (i_state == 1) |
99 | 99 |
{ |
100 |
- FILE_LOG(logDEBUG) << "Initializing size and prob for state 1"; |
|
100 |
+ //FILE_LOG(logDEBUG) << "Initializing size and prob for state 1"; |
|
101 | 101 |
imean = mean; |
102 | 102 |
ivariance = variance; |
103 | 103 |
} |
104 | 104 |
else if (i_state == 2) |
105 | 105 |
{ |
106 |
- FILE_LOG(logDEBUG) << "Initializing size and prob for state 2"; |
|
106 |
+ //FILE_LOG(logDEBUG) << "Initializing size and prob for state 2"; |
|
107 | 107 |
imean = mean+1; |
108 | 108 |
ivariance = variance; |
109 | 109 |
} |
... | ... |
@@ -116,7 +116,7 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
116 | 116 |
else if (*iniproc == 2) |
117 | 117 |
{ |
118 | 118 |
// Disturb mean and variance for use as randomized initial parameters |
119 |
- FILE_LOG(logINFO) << "Using random initialization for size and prob"; |
|
119 |
+ //FILE_LOG(logINFO) << "Using random initialization for size and prob"; |
|
120 | 120 |
Rprintf("Using random initialization for size and prob\n"); |
121 | 121 |
srand (clock()); |
122 | 122 |
int rand1, rand2; |
... | ... |
@@ -124,25 +124,25 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
124 | 124 |
rand2 = rand(); |
125 | 125 |
imean = (double)rand1/(double)RAND_MAX * 10*mean; |
126 | 126 |
ivariance = imean + (double)rand2/(double)RAND_MAX * 20*imean; // variance has to be greater than mean, otherwise r will be negative |
127 |
- FILE_LOG(logDEBUG2) << "RAND_MAX = " << RAND_MAX; |
|
128 |
- FILE_LOG(logDEBUG2) << "rand1 = " << rand1; |
|
129 |
- FILE_LOG(logDEBUG2) << "rand2 = " << rand2; |
|
130 |
- FILE_LOG(logDEBUG2) << "imean = " << imean; |
|
131 |
- FILE_LOG(logDEBUG2) << "ivariance = " << ivariance; |
|
127 |
+ //FILE_LOG(logDEBUG2) << "RAND_MAX = " << RAND_MAX; |
|
128 |
+ //FILE_LOG(logDEBUG2) << "rand1 = " << rand1; |
|
129 |
+ //FILE_LOG(logDEBUG2) << "rand2 = " << rand2; |
|
130 |
+ //FILE_LOG(logDEBUG2) << "imean = " << imean; |
|
131 |
+ //FILE_LOG(logDEBUG2) << "ivariance = " << ivariance; |
|
132 | 132 |
} |
133 | 133 |
else if (*iniproc == 3) |
134 | 134 |
{ |
135 | 135 |
// Empirical initialization |
136 | 136 |
if (i_state == 1) |
137 | 137 |
{ |
138 |
- FILE_LOG(logINFO) << "Initializing r and p empirically for state 1"; |
|
138 |
+ //FILE_LOG(logINFO) << "Initializing r and p empirically for state 1"; |
|
139 | 139 |
Rprintf("Initializing r and p empirically for state 1\n"); |
140 | 140 |
imean = mean/2; |
141 | 141 |
ivariance = imean*2; |
142 | 142 |
} |
143 | 143 |
else if (i_state == 2) |
144 | 144 |
{ |
145 |
- FILE_LOG(logINFO) << "Initializing r and p empirically for state 2"; |
|
145 |
+ //FILE_LOG(logINFO) << "Initializing r and p empirically for state 2"; |
|
146 | 146 |
Rprintf("Initializing r and p empirically for state 2\n"); |
147 | 147 |
imean = mean*2; |
148 | 148 |
ivariance = imean*2; |
... | ... |
@@ -157,19 +157,19 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
157 | 157 |
|
158 | 158 |
if (i_state >= 1) |
159 | 159 |
{ |
160 |
- FILE_LOG(logDEBUG1) << "Using negative binomial for state " << i_state; |
|
160 |
+ //FILE_LOG(logDEBUG1) << "Using negative binomial for state " << i_state; |
|
161 | 161 |
NegativeBinomial *d = new NegativeBinomial(O, *T, initial_size[i_state], initial_prob[i_state]); // delete is done inside ~ScaleHMM() |
162 | 162 |
hmm->densityFunctions.push_back(d); |
163 | 163 |
} |
164 | 164 |
else if (i_state == 0) |
165 | 165 |
{ |
166 |
- FILE_LOG(logDEBUG1) << "Using only zeros for state " << i_state; |
|
166 |
+ //FILE_LOG(logDEBUG1) << "Using only zeros for state " << i_state; |
|
167 | 167 |
ZeroInflation *d = new ZeroInflation(O, *T); // delete is done inside ~ScaleHMM() |
168 | 168 |
hmm->densityFunctions.push_back(d); |
169 | 169 |
} |
170 | 170 |
else |
171 | 171 |
{ |
172 |
- FILE_LOG(logWARNING) << "Density not specified, using default negative binomial for state " << i_state; |
|
172 |
+ //FILE_LOG(logWARNING) << "Density not specified, using default negative binomial for state " << i_state; |
|
173 | 173 |
NegativeBinomial *d = new NegativeBinomial(O, *T, initial_size[i_state], initial_prob[i_state]); |
174 | 174 |
hmm->densityFunctions.push_back(d); |
175 | 175 |
} |
... | ... |
@@ -179,22 +179,22 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
179 | 179 |
R_FlushConsole(); |
180 | 180 |
|
181 | 181 |
// Do the Baum-Welch to estimate the parameters |
182 |
- FILE_LOG(logDEBUG1) << "Starting Baum-Welch estimation"; |
|
182 |
+ //FILE_LOG(logDEBUG1) << "Starting Baum-Welch estimation"; |
|
183 | 183 |
try |
184 | 184 |
{ |
185 | 185 |
hmm->baumWelch(maxiter, maxtime, eps); |
186 | 186 |
} |
187 | 187 |
catch (std::exception& e) |
188 | 188 |
{ |
189 |
- FILE_LOG(logERROR) << "Error in Baum-Welch: " << e.what(); |
|
189 |
+ //FILE_LOG(logERROR) << "Error in Baum-Welch: " << e.what(); |
|
190 | 190 |
Rprintf("Error in Baum-Welch: %s\n", e.what()); |
191 | 191 |
if (strcmp(e.what(),"nan detected")==0) { *error = 1; } |
192 | 192 |
else { *error = 2; } |
193 | 193 |
} |
194 | 194 |
|
195 |
- FILE_LOG(logDEBUG1) << "Finished with Baum-Welch estimation"; |
|
195 |
+ //FILE_LOG(logDEBUG1) << "Finished with Baum-Welch estimation"; |
|
196 | 196 |
// Compute the posteriors and save results directly to the R pointer |
197 |
- FILE_LOG(logDEBUG1) << "Recode posteriors into column representation"; |
|
197 |
+ //FILE_LOG(logDEBUG1) << "Recode posteriors into column representation"; |
|
198 | 198 |
Rprintf("Recoding posteriors ...\n"); |
199 | 199 |
R_FlushConsole(); |
200 | 200 |
#pragma omp parallel for |
... | ... |
@@ -206,7 +206,7 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
206 | 206 |
} |
207 | 207 |
} |
208 | 208 |
|
209 |
- FILE_LOG(logDEBUG1) << "Return parameters"; |
|
209 |
+ //FILE_LOG(logDEBUG1) << "Return parameters"; |
|
210 | 210 |
// also return the estimated transition matrix and the initial probs |
211 | 211 |
for (int i=0; i<*N; i++) |
212 | 212 |
{ |
... | ... |
@@ -236,7 +236,7 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
236 | 236 |
*loglik = hmm->get_logP(); |
237 | 237 |
hmm->calc_weights(weights); |
238 | 238 |
|
239 |
- FILE_LOG(logDEBUG1) << "Deleting the hmm"; |
|
239 |
+ //FILE_LOG(logDEBUG1) << "Deleting the hmm"; |
|
240 | 240 |
delete hmm; |
241 | 241 |
hmm = NULL; // assign NULL to defuse the additional delete in on.exit() call |
242 | 242 |
} |
... | ... |
@@ -250,39 +250,39 @@ void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, dou |
250 | 250 |
{ |
251 | 251 |
|
252 | 252 |
// Define logging level {"ERROR", "WARNING", "INFO", "ITERATION", "DEBUG", "DEBUG1", "DEBUG2", "DEBUG3", "DEBUG4"} |
253 |
-// FILE* pFile = fopen("chromStar.log", "w"); |
|
254 |
-// Output2FILE::Stream() = pFile; |
|
255 |
- FILELog::ReportingLevel() = FILELog::FromString("ERROR"); |
|
256 |
-// FILELog::ReportingLevel() = FILELog::FromString("DEBUG3"); |
|
253 |
+// //FILE* pFile = fopen("chromStar.log", "w"); |
|
254 |
+// Output2//FILE::Stream() = pFile; |
|
255 |
+ //FILELog::ReportingLevel() = //FILELog::FromString("ERROR"); |
|
256 |
+// //FILELog::ReportingLevel() = //FILELog::FromString("DEBUG3"); |
|
257 | 257 |
|
258 |
- FILE_LOG(logDEBUG2) << __PRETTY_FUNCTION__; |
|
258 |
+ //FILE_LOG(logDEBUG2) << __PRETTY_FUNCTION__; |
|
259 | 259 |
// Parallelization settings |
260 | 260 |
omp_set_num_threads(*num_threads); |
261 | 261 |
|
262 | 262 |
// Print some information |
263 |
- FILE_LOG(logINFO) << "number of states = " << *N; |
|
263 |
+ //FILE_LOG(logINFO) << "number of states = " << *N; |
|
264 | 264 |
Rprintf("number of states = %d\n", *N); |
265 |
- FILE_LOG(logINFO) << "number of bins = " << *T; |
|
265 |
+ //FILE_LOG(logINFO) << "number of bins = " << *T; |
|
266 | 266 |
Rprintf("number of bins = %d\n", *T); |
267 | 267 |
if (*maxiter < 0) |
268 | 268 |
{ |
269 |
- FILE_LOG(logINFO) << "maximum number of iterations = none"; |
|
269 |
+ //FILE_LOG(logINFO) << "maximum number of iterations = none"; |
|
270 | 270 |
Rprintf("maximum number of iterations = none\n"); |
271 | 271 |
} else { |
272 |
- FILE_LOG(logINFO) << "maximum number of iterations = " << *maxiter; |
|
272 |
+ //FILE_LOG(logINFO) << "maximum number of iterations = " << *maxiter; |
|
273 | 273 |
Rprintf("maximum number of iterations = %d\n", *maxiter); |
274 | 274 |
} |
275 | 275 |
if (*maxtime < 0) |
276 | 276 |
{ |
277 |
- FILE_LOG(logINFO) << "maximum running time = none"; |
|
277 |
+ //FILE_LOG(logINFO) << "maximum running time = none"; |
|
278 | 278 |
Rprintf("maximum running time = none\n"); |
279 | 279 |
} else { |
280 |
- FILE_LOG(logINFO) << "maximum running time = " << *maxtime << " sec"; |
|
280 |
+ //FILE_LOG(logINFO) << "maximum running time = " << *maxtime << " sec"; |
|
281 | 281 |
Rprintf("maximum running time = %d sec\n", *maxtime); |
282 | 282 |
} |
283 |
- FILE_LOG(logINFO) << "epsilon = " << *eps; |
|
283 |
+ //FILE_LOG(logINFO) << "epsilon = " << *eps; |
|
284 | 284 |
Rprintf("epsilon = %g\n", *eps); |
285 |
- FILE_LOG(logINFO) << "number of modifications = " << *Nmod; |
|
285 |
+ //FILE_LOG(logINFO) << "number of modifications = " << *Nmod; |
|
286 | 286 |
Rprintf("number of modifications = %d\n", *Nmod); |
287 | 287 |
|
288 | 288 |
// Flush Rprintf statements to console |
... | ... |
@@ -299,10 +299,10 @@ void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, dou |
299 | 299 |
} |
300 | 300 |
} |
301 | 301 |
// dtime = clock() - clocktime; |
302 |
-// FILE_LOG(logDEBUG1) << "recoding observation vector to matrix representation: " << dtime << " clicks"; |
|
302 |
+// //FILE_LOG(logDEBUG1) << "recoding observation vector to matrix representation: " << dtime << " clicks"; |
|
303 | 303 |
|
304 | 304 |
// Create the HMM |
305 |
- FILE_LOG(logDEBUG1) << "Creating the multivariate HMM"; |
|
305 |
+ //FILE_LOG(logDEBUG1) << "Creating the multivariate HMM"; |
|
306 | 306 |
hmm = new ScaleHMM(*T, *N, *Nmod); |
307 | 307 |
// Initialize the transition probabilities and proba |
308 | 308 |
hmm->initialize_transition_probs(initial_A, *use_initial_params); |
... | ... |
@@ -311,15 +311,15 @@ void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, dou |
311 | 311 |
// Print logproba and A |
312 | 312 |
// for (int iN=0; iN<*N; iN++) |
313 | 313 |
// { |
314 |
-// FILE_LOG(logDEBUG) << "proba["<<iN<<"] = " <<exp(hmm->logproba[iN]); |
|
314 |
+// //FILE_LOG(logDEBUG) << "proba["<<iN<<"] = " <<exp(hmm->logproba[iN]); |
|
315 | 315 |
// for (int jN=0; jN<*N; jN++) |
316 | 316 |
// { |
317 |
-// FILE_LOG(logDEBUG) << "A["<<iN<<"]["<<jN<<"] = " << hmm->A[iN][jN]; |
|
317 |
+// //FILE_LOG(logDEBUG) << "A["<<iN<<"]["<<jN<<"] = " << hmm->A[iN][jN]; |
|
318 | 318 |
// } |
319 | 319 |
// } |
320 | 320 |
|
321 | 321 |
// Prepare the binary_states (univariate) vector: binary_states[N][Nmod], e.g., binary_states[iN][imod] tells me at state comb_states[iN], modification imod is non-enriched (0) or enriched (1) |
322 |
- FILE_LOG(logDEBUG1) << "Preparing the binary_states vector"; |
|
322 |
+ //FILE_LOG(logDEBUG1) << "Preparing the binary_states vector"; |
|
323 | 323 |
bool **binary_states = CallocBoolMatrix(*N, *Nmod); |
324 | 324 |
for(int iN=0; iN < *N; iN++) //for each comb state considered |
325 | 325 |
{ |
... | ... |
@@ -332,7 +332,7 @@ void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, dou |
332 | 332 |
} |
333 | 333 |
|
334 | 334 |
/* initialize the distributions */ |
335 |
- FILE_LOG(logDEBUG1) << "Initializing the distributions"; |
|
335 |
+ //FILE_LOG(logDEBUG1) << "Initializing the distributions"; |
|
336 | 336 |
for (int iN=0; iN<*N; iN++) //for each combinatorial state |
337 | 337 |
{ |
338 | 338 |
std::vector <Density*> tempMarginals; |
... | ... |
@@ -350,31 +350,31 @@ void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, dou |
350 | 350 |
tempMarginals.push_back(d); |
351 | 351 |
} |
352 | 352 |
//MVCopulaApproximation *tempMVdens = new MVCopulaApproximation(O, tempMarginals, &(cor_matrix_inv[iN*Nmod*Nmod]), det[iN]); |
353 |
- FILE_LOG(logDEBUG1) << "Calling MVCopulaApproximation for state " << iN; |
|
353 |
+ //FILE_LOG(logDEBUG1) << "Calling MVCopulaApproximation for state " << iN; |
|
354 | 354 |
MVCopulaApproximation *tempMVdens = new MVCopulaApproximation(multiO, *T, tempMarginals, &(cor_matrix_inv[iN**Nmod**Nmod]), det[iN]); // delete is done inside ~ScaleHMM() |
355 | 355 |
hmm->densityFunctions.push_back(tempMVdens); |
356 | 356 |
} |
357 | 357 |
FreeBoolMatrix(binary_states, *N); |
358 | 358 |
|
359 | 359 |
// Estimate the parameters |
360 |
- FILE_LOG(logDEBUG1) << "Starting Baum-Welch estimation"; |
|
360 |
+ //FILE_LOG(logDEBUG1) << "Starting Baum-Welch estimation"; |
|
361 | 361 |
try |
362 | 362 |
{ |
363 | 363 |
hmm->baumWelch(maxiter, maxtime, eps); |
364 | 364 |
} |
365 | 365 |
catch (std::exception& e) |
366 | 366 |
{ |
367 |
- FILE_LOG(logERROR) << "Error in Baum-Welch: " << e.what(); |
|
367 |
+ //FILE_LOG(logERROR) << "Error in Baum-Welch: " << e.what(); |
|
368 | 368 |
Rprintf("Error in Baum-Welch: %s\n", e.what()); |
369 | 369 |
if (strcmp(e.what(),"nan detected")==0) { *error = 1; } |
370 | 370 |
else { *error = 2; } |
371 | 371 |
} |
372 |
- FILE_LOG(logDEBUG1) << "Finished with Baum-Welch estimation"; |
|
372 |
+ //FILE_LOG(logDEBUG1) << "Finished with Baum-Welch estimation"; |
|
373 | 373 |
|
374 | 374 |
// Compute the posteriors and save results directly to the R pointer |
375 | 375 |
if (*keep_posteriors == true) |
376 | 376 |
{ |
377 |
- FILE_LOG(logDEBUG1) << "Recode posteriors into column representation"; |
|
377 |
+ //FILE_LOG(logDEBUG1) << "Recode posteriors into column representation"; |
|
378 | 378 |
Rprintf("Recoding posteriors ...\n"); |
379 | 379 |
R_FlushConsole(); |
380 | 380 |
#pragma omp parallel for |
... | ... |
@@ -388,7 +388,7 @@ void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, dou |
388 | 388 |
} |
389 | 389 |
|
390 | 390 |
// Compute the states from posteriors |
391 |
- FILE_LOG(logDEBUG1) << "Computing states from posteriors"; |
|
391 |
+ //FILE_LOG(logDEBUG1) << "Computing states from posteriors"; |
|
392 | 392 |
// if (*fdr == -1) |
393 | 393 |
// { |
394 | 394 |
std::vector<double> posterior_per_t(*N); |
... | ... |
@@ -416,7 +416,7 @@ void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, dou |
416 | 416 |
// } |
417 | 417 |
// } |
418 | 418 |
|
419 |
- FILE_LOG(logDEBUG1) << "Return parameters"; |
|
419 |
+ //FILE_LOG(logDEBUG1) << "Return parameters"; |
|
420 | 420 |
// also return the estimated transition matrix and the initial probs |
421 | 421 |
for (int i=0; i<*N; i++) |
422 | 422 |
{ |
... | ... |
@@ -428,7 +428,7 @@ void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, dou |
428 | 428 |
} |
429 | 429 |
*loglik = hmm->get_logP(); |
430 | 430 |
|
431 |
- FILE_LOG(logDEBUG1) << "Deleting the hmm"; |
|
431 |
+ //FILE_LOG(logDEBUG1) << "Deleting the hmm"; |
|
432 | 432 |
delete hmm; |
433 | 433 |
hmm = NULL; // assign NULL to defuse the additional delete in on.exit() call |
434 | 434 |
// FreeIntMatrix(multiO, *Nmod); // free on.exit() in R code |
... | ... |
@@ -442,7 +442,7 @@ void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, dou |
442 | 442 |
extern "C" { |
443 | 443 |
void R_univariate_cleanup() |
444 | 444 |
{ |
445 |
-// FILE_LOG(logDEBUG2) << __PRETTY_FUNCTION__; // This message will be shown if interrupt happens before start of C-code |
|
445 |
+// //FILE_LOG(logDEBUG2) << __PRETTY_FUNCTION__; // This message will be shown if interrupt happens before start of C-code |
|
446 | 446 |
delete hmm; |
447 | 447 |
} |
448 | 448 |
} |
... | ... |
@@ -2,6 +2,7 @@ |
2 | 2 |
#include "scalehmm.h" |
3 | 3 |
#include <vector> // storing density functions in multivariate |
4 | 4 |
#include <omp.h> // parallelization options |
5 |
+#include <string> // strcmp |
|
5 | 6 |
|
6 | 7 |
static ScaleHMM* hmm; // declare as static outside the function because we only need one and this enables memory-cleanup on R_CheckUserInterrupt() |
7 | 8 |
static int** multiO; |
... | ... |
@@ -79,7 +80,7 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
79 | 80 |
Rprintf("data mean = %g, data variance = %g\n", mean, variance); |
80 | 81 |
|
81 | 82 |
// Go through all states of the hmm and assign the density functions |
82 |
- double imean, ivariance; |
|
83 |
+ double imean=0, ivariance=0; |
|
83 | 84 |
for (int i_state=0; i_state<*N; i_state++) |
84 | 85 |
{ |
85 | 86 |
if (*use_initial_params) { |
... | ... |
@@ -187,7 +188,7 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
187 | 188 |
{ |
188 | 189 |
FILE_LOG(logERROR) << "Error in Baum-Welch: " << e.what(); |
189 | 190 |
Rprintf("Error in Baum-Welch: %s\n", e.what()); |
190 |
- if (e.what()=="nan detected") { *error = 1; } |
|
191 |
+ if (strcmp(e.what(),"nan detected")==0) { *error = 1; } |
|
191 | 192 |
else { *error = 2; } |
192 | 193 |
} |
193 | 194 |
|
... | ... |
@@ -365,7 +366,7 @@ void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, dou |
365 | 366 |
{ |
366 | 367 |
FILE_LOG(logERROR) << "Error in Baum-Welch: " << e.what(); |
367 | 368 |
Rprintf("Error in Baum-Welch: %s\n", e.what()); |
368 |
- if (e.what()=="nan detected") { *error = 1; } |
|
369 |
+ if (strcmp(e.what(),"nan detected")==0) { *error = 1; } |
|
369 | 370 |
else { *error = 2; } |
370 | 371 |
} |
371 | 372 |
FILE_LOG(logDEBUG1) << "Finished with Baum-Welch estimation"; |
... | ... |
@@ -390,14 +391,14 @@ void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, dou |
390 | 391 |
FILE_LOG(logDEBUG1) << "Computing states from posteriors"; |
391 | 392 |
// if (*fdr == -1) |
392 | 393 |
// { |
393 |
- double posterior_per_t [*N]; |
|
394 |
+ std::vector<double> posterior_per_t(*N); |
|
394 | 395 |
for (int t=0; t<*T; t++) |
395 | 396 |
{ |
396 | 397 |
for (int iN=0; iN<*N; iN++) |
397 | 398 |
{ |
398 | 399 |
posterior_per_t[iN] = hmm->get_posterior(iN, t); |
399 | 400 |
} |
400 |
- states[t] = comb_states[argMax(posterior_per_t, *N)]; |
|
401 |
+ states[t] = comb_states[(int)*std::max_element(posterior_per_t.begin(), posterior_per_t.end())]; |
|
401 | 402 |
} |
402 | 403 |
// } |
403 | 404 |
// else |
... | ... |
@@ -388,15 +388,32 @@ void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, dou |
388 | 388 |
|
389 | 389 |
// Compute the states from posteriors |
390 | 390 |
FILE_LOG(logDEBUG1) << "Computing states from posteriors"; |
391 |
- double posterior_per_t [*N]; |
|
392 |
- for (int t=0; t<*T; t++) |
|
393 |
- { |
|
394 |
- for (int iN=0; iN<*N; iN++) |
|
391 |
+// if (*fdr == -1) |
|
392 |
+// { |
|
393 |
+ double posterior_per_t [*N]; |
|
394 |
+ for (int t=0; t<*T; t++) |
|
395 | 395 |
{ |
396 |
- posterior_per_t[iN] = hmm->get_posterior(iN, t); |
|
396 |
+ for (int iN=0; iN<*N; iN++) |
|
397 |
+ { |
|
398 |
+ posterior_per_t[iN] = hmm->get_posterior(iN, t); |
|
399 |
+ } |
|
400 |
+ states[t] = comb_states[argMax(posterior_per_t, *N)]; |
|
397 | 401 |
} |
398 |
- states[t] = comb_states[argMax(posterior_per_t, *N)]; |
|
399 |
- } |
|
402 |
+// } |
|
403 |
+// else |
|
404 |
+// { |
|
405 |
+// double** transformed_posteriors = CallocDoubleMatrix(*T, *Nmod); |
|
406 |
+// for (int t=0; t<*T; t++) |
|
407 |
+// { |
|
408 |
+// for (int iN=0; iN<*N; iN++) |
|
409 |
+// { |
|
410 |
+// for (int iNmod=0; iNmod<*Nmod; iNmod++) |
|
411 |
+// { |
|
412 |
+// transformed_posteriors[t][iNmod] += (double)binary_states[iN][iNmod] * hmm->get_posterior(iN, t); |
|
413 |
+// } |
|
414 |
+// } |
|
415 |
+// } |
|
416 |
+// } |
|
400 | 417 |
|
401 | 418 |
FILE_LOG(logDEBUG1) << "Return parameters"; |
402 | 419 |
// also return the estimated transition matrix and the initial probs |
... | ... |
@@ -245,7 +245,7 @@ void R_univariate_hmm(int* O, int* T, int* N, double* size, double* prob, int* m |
245 | 245 |
// This function takes parameters from R, creates a multivariate HMM object, creates the distributions, runs the Baum-Welch and returns the result to R. |
246 | 246 |
// ===================================================================================================================================================== |
247 | 247 |
extern "C" { |
248 |
-void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, double* size, double* prob, double* w, double* cor_matrix_inv, double* det, int* maxiter, int* maxtime, double* eps, int* states, double* A, double* proba, double* loglik, double* initial_A, double* initial_proba, bool* use_initial_params, int* num_threads, int* error) |
|
248 |
+void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, double* size, double* prob, double* w, double* cor_matrix_inv, double* det, int* maxiter, int* maxtime, double* eps, double* posteriors, bool* keep_posteriors, int* states, double* A, double* proba, double* loglik, double* initial_A, double* initial_proba, bool* use_initial_params, int* num_threads, int* error) |
|
249 | 249 |
{ |
250 | 250 |
|
251 | 251 |
// Define logging level {"ERROR", "WARNING", "INFO", "ITERATION", "DEBUG", "DEBUG1", "DEBUG2", "DEBUG3", "DEBUG4"} |
... | ... |
@@ -370,15 +370,21 @@ void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, dou |
370 | 370 |
} |
371 | 371 |
FILE_LOG(logDEBUG1) << "Finished with Baum-Welch estimation"; |
372 | 372 |
|
373 |
-// // Compute the posteriors and save results directly to the R pointer |
|
374 |
-// FILE_LOG(logDEBUG1) << "Recode posteriors into column representation"; |
|
375 |
-// for (int iN=0; iN<*N; iN++) |
|
376 |
-// { |
|
377 |
-// for (int t=0; t<*T; t++) |
|
378 |
-// { |
|
379 |
-// posteriors[t + iN * (*T)] = hmm->get_posterior(iN, t); |
|
380 |
-// } |
|
381 |
-// } |
|
373 |
+ // Compute the posteriors and save results directly to the R pointer |
|
374 |
+ if (*keep_posteriors == true) |
|
375 |
+ { |
|
376 |
+ FILE_LOG(logDEBUG1) << "Recode posteriors into column representation"; |
|
377 |
+ Rprintf("Recoding posteriors ...\n"); |
|
378 |
+ R_FlushConsole(); |
|
379 |
+ #pragma omp parallel for |
|
380 |
+ for (int iN=0; iN<*N; iN++) |
|
381 |
+ { |
|
382 |
+ for (int t=0; t<*T; t++) |
|
383 |
+ { |
|
384 |
+ posteriors[t + iN * (*T)] = hmm->get_posterior(iN, t); |
|
385 |
+ } |
|
386 |
+ } |
|
387 |
+ } |
|
382 | 388 |
|
383 | 389 |
// Compute the states from posteriors |
384 | 390 |
FILE_LOG(logDEBUG1) << "Computing states from posteriors"; |
... | ... |
@@ -418,7 +424,7 @@ void R_multivariate_hmm(int* O, int* T, int* N, int *Nmod, int* comb_states, dou |
418 | 424 |
extern "C" { |
419 | 425 |
void R_univariate_cleanup() |
420 | 426 |
{ |
421 |
- FILE_LOG(logDEBUG2) << __PRETTY_FUNCTION__; |
|
427 |
+// FILE_LOG(logDEBUG2) << __PRETTY_FUNCTION__; // This message will be shown if interrupt happens before start of C-code |
|
422 | 428 |
delete hmm; |
423 | 429 |
} |
424 | 430 |
} |
... | ... |
@@ -426,7 +432,6 @@ void R_univariate_cleanup() |
426 | 432 |
extern "C" { |
427 | 433 |
void R_multivariate_cleanup(int* Nmod) |
428 | 434 |
{ |
429 |
- FILE_LOG(logDEBUG2) << __PRETTY_FUNCTION__; |
|
430 | 435 |