Browse code

fixed file links in man pages

ataudt authored on 13/04/2018 08:36:17
Showing 38 changed files

... ...
@@ -1,7 +1,7 @@
1 1
 Package: chromstaR
2 2
 Type: Package
3 3
 Title: Combinatorial and Differential Chromatin State Analysis for ChIP-Seq Data
4
-Version: 1.5.1
4
+Version: 1.5.2
5 5
 Author: Aaron Taudt, Maria Colome Tatche, Matthias Heinig, Minh Anh Nguyen
6 6
 Maintainer: Aaron Taudt <aaron.taudt@gmail.com>
7 7
 Description: This package implements functions for combinatorial and differential analysis of ChIP-seq data. It includes uni- and multivariate peak-calling, export to genome browser viewable files, and functions for enrichment analyses.
... ...
@@ -4,23 +4,23 @@
4 4
 #'
5 5
 #' Convert aligned reads in .bam or .bed(.gz) format into read counts in equidistant windows.
6 6
 #'
7
-#' Convert aligned reads from .bam or .bed(.gz) files into read counts in equidistant windows (bins). This function uses \code{\link[GenomicRanges]{countOverlaps}} to calculate the read counts, or alternatively \code{\link[bamsignals]{bamProfile}} if option \code{use.bamsignals} is set (only effective for .bam files).
7
+#' Convert aligned reads from .bam or .bed(.gz) files into read counts in equidistant windows (bins). This function uses \code{GenomicRanges::countOverlaps} to calculate the read counts, or alternatively \code{bamsignals::bamProfile} if option \code{use.bamsignals} is set (only effective for .bam files).
8 8
 #'
9 9
 #' @aliases binning
10
-#' @param file A file with aligned reads. Alternatively a \code{\link{GRanges}} with aligned reads.
10
+#' @param file A file with aligned reads. Alternatively a \code{\link{GRanges-class}} with aligned reads.
11 11
 #' @param experiment.table An \code{\link{experiment.table}} containing the supplied \code{file}. This is necessary to uniquely identify the file in later steps of the workflow. Set to \code{NULL} if you don't have it (not recommended).
12 12
 #' @param ID Optional ID to select a row from the \code{experiment.table}. Only necessary if the experiment table contains the same file in multiple positions in column 'file'.
13 13
 #' @inheritParams readBamFileAsGRanges
14 14
 #' @inheritParams readBedFileAsGRanges
15 15
 #' @param binsizes An integer vector specifying the bin sizes to use.
16 16
 #' @param stepsizes An integer vector specifying the step size. One number can be given for each element in \code{binsizes}, \code{reads.per.bin} and \code{bins} (in that order).
17
-#' @param bins A \code{\link{GRanges}} or a named \code{list()} with \code{\link{GRanges}} containing precalculated bins produced by \code{\link{fixedWidthBins}} or \code{\link{variableWidthBins}}. Names of the list must correspond to the binsize. If the list is unnamed, an attempt is made to automatically determine the binsize.
17
+#' @param bins A \code{\link{GRanges-class}} or a named \code{list()} with \code{\link{GRanges-class}} containing precalculated bins produced by \code{\link{fixedWidthBins}} or \code{\link{variableWidthBins}}. Names of the list must correspond to the binsize. If the list is unnamed, an attempt is made to automatically determine the binsize.
18 18
 #' @param reads.per.bin Approximate number of desired reads per bin. The bin size will be selected accordingly.
19 19
 #' @param variable.width.reference A BAM file that is used as reference to produce variable width bins. See \code{\link{variableWidthBins}} for details.
20 20
 #' @param chromosomes If only a subset of the chromosomes should be binned, specify them here.
21 21
 #' @param use.bamsignals If \code{TRUE} the \pkg{\link[bamsignals]{bamsignals}} package is used for parsing of BAM files. This gives tremendous speed advantage for only one binsize but linearly increases for multiple binsizes, while \code{use.bamsignals=FALSE} has a binsize dependent runtime and might be faster if many binsizes are calculated.
22 22
 #' @param format One of \code{c('bed','bam','GRanges',NULL)}. With \code{NULL} the format is determined automatically from the file ending.
23
-#' @return If only one bin size was specified for option \code{binsizes}, the function returns a single \code{\link{GRanges}} object with meta data column 'counts' that contains the read count. If multiple \code{binsizes} were specified , the function returns a named \code{list()} of \link{GRanges} objects.
23
+#' @return If only one bin size was specified for option \code{binsizes}, the function returns a single \code{\link{GRanges-class}} object with meta data column 'counts' that contains the read count. If multiple \code{binsizes} were specified , the function returns a named \code{list()} of \link{GRanges-class} objects.
24 24
 #' @importFrom Rsamtools BamFile indexBam
25 25
 #' @importFrom bamsignals bamCount
26 26
 #' @export
... ...
@@ -4,8 +4,8 @@
4 4
 #'
5 5
 #' This function is similar to \code{\link{callPeaksUnivariateAllChr}} but allows to pre-fit on a single chromosome instead of the whole genome. This gives a significant performance increase and can help to converge into a better fit in case of unsteady quality for some chromosomes.
6 6
 #'
7
-#' @param binned.data A \code{\link{GRanges}} object with binned read counts or a file that contains such an object.
8
-#' @param control.data Input control for the experiment. A \code{\link{GRanges}} object with binned read counts or a file that contains such an object.
7
+#' @param binned.data A \code{\link{GRanges-class}} object with binned read counts or a file that contains such an object.
8
+#' @param control.data Input control for the experiment. A \code{\link{GRanges-class}} object with binned read counts or a file that contains such an object.
9 9
 #' @param prefit.on.chr A chromosome that is used to pre-fit the Hidden Markov Model. Set to \code{NULL} if you don't want to prefit but use the whole genome instead.
10 10
 #' @param short If \code{TRUE}, the second fitting step is only done with one iteration.
11 11
 #' @param eps Convergence threshold for the Baum-Welch algorithm.
... ...
@@ -121,8 +121,8 @@ callPeaksUnivariate <- function(binned.data, control.data=NULL, prefit.on.chr=NU
121 121
 #'
122 122
 #' The Hidden Markov Model which is used to classify the bins uses 3 states: state 'zero-inflation' with a delta function as emission densitiy (only zero read counts), 'unmodified' and 'modified' with Negative Binomials as emission densities. A Baum-Welch algorithm is employed to estimate the parameters of the distributions. Please refer to our manuscript at \url{http://dx.doi.org/10.1101/038612} for a detailed description of the method.
123 123
 #'
124
-#' @param binned.data A \code{\link{GRanges}} object with binned read counts or a file that contains such an object.
125
-#' @param control.data Input control for the experiment. A \code{\link{GRanges}} object with binned read counts or a file that contains such an object.
124
+#' @param binned.data A \code{\link{GRanges-class}} object with binned read counts or a file that contains such an object.
125
+#' @param control.data Input control for the experiment. A \code{\link{GRanges-class}} object with binned read counts or a file that contains such an object.
126 126
 #' @param eps Convergence threshold for the Baum-Welch algorithm.
127 127
 #' @param init One of the following initialization procedures:
128 128
 #' \describe{
... ...
@@ -84,7 +84,7 @@ NULL
84 84
 
85 85
 #' Binned read counts
86 86
 #'
87
-#' A \code{\link[GenomicRanges]{GRanges}} object which contains binned read counts as meta data column \code{counts}. It is output of the \code{\link{binReads}} function.
87
+#' A \code{\link[GenomicRanges]{GRanges-class}} object which contains binned read counts as meta data column \code{counts}. It is output of the \code{\link{binReads}} function.
88 88
 #' @name binned.data
89 89
 NULL
90 90
 
... ...
@@ -96,9 +96,9 @@ NULL
96 96
 #' @return
97 97
 #' A \code{list()} with the following entries:
98 98
 #' \item{info}{Experiment table for this object.}
99
-#' \item{bincounts}{A \code{\link[GenomicRanges]{GRanges}} object containing the genomic bin coordinates and original binned read count values for different offsets.}
100
-#' \item{bins}{A \code{\link[GenomicRanges]{GRanges}} object containing the genomic bin coordinates, their read count, (optional) posteriors and state classification.}
101
-#' \item{peaks}{A \code{list()} with \code{\link[GenomicRanges]{GRanges}} containing peak coordinates for each ID in \code{info}.}
99
+#' \item{bincounts}{A \code{\link[GenomicRanges]{GRanges-class}} object containing the genomic bin coordinates and original binned read count values for different offsets.}
100
+#' \item{bins}{A \code{\link[GenomicRanges]{GRanges-class}} object containing the genomic bin coordinates, their read count, (optional) posteriors and state classification.}
101
+#' \item{peaks}{A \code{list()} with \code{\link[GenomicRanges]{GRanges-class}} containing peak coordinates for each ID in \code{info}.}
102 102
 #' \item{weights}{Weight for each component. Same as \code{apply(hmm$posteriors,2,mean)}.}
103 103
 #' \item{transitionProbs}{Matrix of transition probabilities from each state (row) into each state (column).}
104 104
 #' \item{transitionProbs.initial}{Initial \code{transitionProbs} at the beginning of the Baum-Welch.}
... ...
@@ -127,10 +127,10 @@ NULL
127 127
 #' @return
128 128
 #' A \code{list()} with the following entries:
129 129
 #' \item{info}{Experiment table for this object.}
130
-#' \item{bincounts}{A \code{\link[GenomicRanges]{GRanges}} object containing the genomic bin coordinates and original binned read count values for different offsets.}
131
-#' \item{bins}{A \code{\link[GenomicRanges]{GRanges}} object containing the genomic bin coordinates, their read count, (optional) posteriors and state classification.}
130
+#' \item{bincounts}{A \code{\link[GenomicRanges]{GRanges-class}} object containing the genomic bin coordinates and original binned read count values for different offsets.}
131
+#' \item{bins}{A \code{\link[GenomicRanges]{GRanges-class}} object containing the genomic bin coordinates, their read count, (optional) posteriors and state classification.}
132 132
 #' \item{segments}{Same as \code{bins}, but consecutive bins with the same state are collapsed into segments.}
133
-#' \item{peaks}{A \code{list()} with \code{\link[GenomicRanges]{GRanges}} containing peak coordinates for each ID in \code{info}.}
133
+#' \item{peaks}{A \code{list()} with \code{\link[GenomicRanges]{GRanges-class}} containing peak coordinates for each ID in \code{info}.}
134 134
 #' \item{mapping}{A named vector giving the mapping from decimal combinatorial states to human readable combinations.}
135 135
 #' \item{weights}{Weight for each component. Same as \code{apply(hmm$posteriors,2,mean)}.}
136 136
 #' \item{weights.univariate}{Weights of the univariate HMMs.}
... ...
@@ -164,10 +164,10 @@ NULL
164 164
 #' @return
165 165
 #' A \code{list()} with the following entries:
166 166
 #' \item{info}{Experiment table for this object.}
167
-#' \item{bins}{A \code{\link[GenomicRanges]{GRanges}} object containing genomic bin coordinates and human readable combinations for the combined \code{\link{multiHMM}} objects.}
167
+#' \item{bins}{A \code{\link[GenomicRanges]{GRanges-class}} object containing genomic bin coordinates and human readable combinations for the combined \code{\link{multiHMM}} objects.}
168 168
 #' \item{segments}{Same as \code{bins}, but consecutive bins with the same state are collapsed into segments.}
169 169
 #' \item{segments.per.condition}{A \code{list()} with segments for each condition separately.}
170
-#' \item{peaks}{A \code{list()} with \code{\link[GenomicRanges]{GRanges}} containing peak coordinates for each ID in \code{info}.}
170
+#' \item{peaks}{A \code{list()} with \code{\link[GenomicRanges]{GRanges-class}} containing peak coordinates for each ID in \code{info}.}
171 171
 #' \item{frequencies}{Genomic frequencies of combinations.}
172 172
 #' \item{mode}{Mode of analysis.}
173 173
 #' @seealso \code{\link{combineMultivariates}}, \code{\link{uniHMM}}, \code{\link{multiHMM}}
... ...
@@ -1,6 +1,6 @@
1 1
 #' Enrichment analysis
2 2
 #' 
3
-#' Plotting functions for enrichment analysis of \code{\link{multiHMM}} or \code{\link{combinedMultiHMM}} objects with any annotation of interest, specified as a \code{\link[GenomicRanges]{GRanges}} object.
3
+#' Plotting functions for enrichment analysis of \code{\link{multiHMM}} or \code{\link{combinedMultiHMM}} objects with any annotation of interest, specified as a \code{\link[GenomicRanges]{GRanges-class}} object.
4 4
 #' 
5 5
 #' @name enrichment_analysis
6 6
 #' @param combinations A vector with combinations for which the enrichment will be calculated. If \code{NULL} all combinations will be considered.
... ...
@@ -64,7 +64,7 @@ NULL
64 64
 
65 65
 #' @describeIn enrichment_analysis Compute the fold enrichment of combinatorial states for multiple annotations.
66 66
 #' @param hmm A \code{\link{combinedMultiHMM}} or \code{\link{multiHMM}} object or a file that contains such an object.
67
-#' @param annotations A \code{list()} with \code{\link{GRanges}} objects containing coordinates of multiple annotations The names of the list entries will be used to name the return values.
67
+#' @param annotations A \code{list()} with \code{\link{GRanges-class}} objects containing coordinates of multiple annotations The names of the list entries will be used to name the return values.
68 68
 #' @param plot A logical indicating whether the plot or an array with the fold enrichment values is returned.
69 69
 #' @param what One of \code{c('combinations','peaks','counts','transitions')} specifying on which feature the statistic is calculated.
70 70
 #' @importFrom S4Vectors subjectHits queryHits
... ...
@@ -575,12 +575,12 @@ plotEnrichment <- function(hmm, annotation, bp.around.annotation=10000, region=c
575 575
 
576 576
 #' Enrichment of (combinatorial) states for genomic annotations
577 577
 #'
578
-#' The function calculates the enrichment of a genomic feature with peaks or combinatorial states. Input is a \code{\link{multiHMM}} object (containing the peak calls and combinatorial states) and a \code{\link{GRanges}} object containing the annotation of interest (e.g. transcription start sites or genes).
578
+#' The function calculates the enrichment of a genomic feature with peaks or combinatorial states. Input is a \code{\link{multiHMM}} object (containing the peak calls and combinatorial states) and a \code{\link{GRanges-class}} object containing the annotation of interest (e.g. transcription start sites or genes).
579 579
 #'
580 580
 #' @author Aaron Taudt
581 581
 #' @param bins The \code{$bins} entry from a \code{\link{multiHMM}} or \code{\link{combinedMultiHMM}} object.
582 582
 #' @param info The \code{$info} entry from a \code{\link{multiHMM}} or \code{\link{combinedMultiHMM}} object.
583
-#' @param annotation A \code{\link{GRanges}} object with the annotation of interest.
583
+#' @param annotation A \code{\link{GRanges-class}} object with the annotation of interest.
584 584
 #' @param bp.around.annotation An integer specifying the number of basepairs up- and downstream of the annotation for which the enrichment will be calculated.
585 585
 #' @param region A combination of \code{c('start','inside','end')} specifying the region of the annotation for which the enrichment will be calculated. Select \code{'start'} if you have a point-sized annotation like transcription start sites. Select \code{c('start','inside','end')} if you have long annotations like genes.
586 586
 #' @param what One of \code{c('combinations','peaks','counts')} specifying on which feature the statistic is calculated.
... ...
@@ -841,10 +841,10 @@ exportCombinedMultivariateCounts <- function(hmm, filename, header=TRUE, separat
841 841
 #'
842 842
 #' Export GRanges as genome browser viewable file
843 843
 #'
844
-#' Export regions from \code{\link{GRanges}} as a file which can be uploaded into a genome browser. Regions are exported in BED format (.bed.gz).
844
+#' Export regions from \code{\link{GRanges-class}} as a file which can be uploaded into a genome browser. Regions are exported in BED format (.bed.gz).
845 845
 #'
846 846
 #' @author Aaron Taudt
847
-#' @param gr A \code{\link{GRanges}} object.
847
+#' @param gr A \code{\link{GRanges-class}} object.
848 848
 #' @param trackname The name that will be used as track name and description in the header.
849 849
 #' @param filename The name of the file that will be written. The ending ".bed.gz". Any existing file will be overwritten.
850 850
 #' @param namecol A character specifying the column that is used as name-column.
... ...
@@ -3,7 +3,7 @@
3 3
 #' Get the expression values that overlap with each combinatorial state.
4 4
 #'
5 5
 #' @param hmm A \code{\link{multiHMM}} or \code{\link{combinedMultiHMM}} object or file that contains such an object.
6
-#' @param expression A \code{\link{GRanges}} object with metadata column 'expression', containing the expression value for each range.
6
+#' @param expression A \code{\link{GRanges-class}} object with metadata column 'expression', containing the expression value for each range.
7 7
 #' @param combinations A vector with combinations for which the expression overlap will be calculated. If \code{NULL} all combinations will be considered.
8 8
 #' @param return.marks Set to \code{TRUE} if expression values for marks instead of combinations should be returned.
9 9
 #' @return A \code{\link{ggplot2}} object if a \code{\link{multiHMM}} was given or a named list with \code{\link{ggplot2}} objects if a \code{\link{combinedMultiHMM}} was given.
... ...
@@ -109,7 +109,7 @@ plotExpression <- function(hmm, expression, combinations=NULL, return.marks=FALS
109 109
 # #' Get the average expression for each percentage of overlap of combinatorial state with feature.
110 110
 # #'
111 111
 # #' @param multi.hmm A \code{\link{multiHMM}} or a file that contains such an object.
112
-# #' @param expression A \code{\link{GRanges}} object with metadata column 'expression', containing the expression value for each range of the feature.
112
+# #' @param expression A \code{\link{GRanges-class}} object with metadata column 'expression', containing the expression value for each range of the feature.
113 113
 # #' @param combinations A vector with combinations for which the expression overlap will be calculated. If \code{NULL} all combinations will be considered.
114 114
 # #' @return A list with vectors of mean expression values per percentile for each combinatorial state. 
115 115
 # #' @author Aaron Taudt
... ...
@@ -1,8 +1,8 @@
1 1
 #' Get combinations
2 2
 #' 
3
-#' Get a DataFrame with combinations from a \code{\link[GenomicRanges]{GRanges}} object.
3
+#' Get a DataFrame with combinations from a \code{\link[GenomicRanges]{GRanges-class}} object.
4 4
 #' 
5
-#' @param gr A \code{\link[GenomicRanges]{GRanges}} object from which the meta-data columns containing combinations will be extracted.
5
+#' @param gr A \code{\link[GenomicRanges]{GRanges-class}} object from which the meta-data columns containing combinations will be extracted.
6 6
 #' @return A DataFrame.
7 7
 #' 
8 8
 #' @export
... ...
@@ -2,7 +2,7 @@
2 2
 
3 3
 #' Import BAM file into GRanges
4 4
 #'
5
-#' Import aligned reads from a BAM file into a \code{\link{GRanges}} object.
5
+#' Import aligned reads from a BAM file into a \code{\link{GRanges-class}} object.
6 6
 #'
7 7
 #' @param bamfile A sorted BAM file.
8 8
 #' @param bamindex BAM index file. Can be specified without the .bai ending. If the index file does not exist it will be created and a warning is issued.
... ...
@@ -11,9 +11,9 @@
11 11
 #' @param remove.duplicate.reads A logical indicating whether or not duplicate reads should be removed.
12 12
 #' @param min.mapq Minimum mapping quality when importing from BAM files. Set \code{min.mapq=0} to keep all reads.
13 13
 #' @param max.fragment.width Maximum allowed fragment length. This is to filter out erroneously wrong fragments due to mapping errors of paired end reads.
14
-#' @param blacklist A \code{\link{GRanges}} or a bed(.gz) file with blacklisted regions. Reads falling into those regions will be discarded.
15
-#' @param what A character vector of fields that are returned. Type \code{\link[Rsamtools]{scanBamWhat}} to see what is available.
16
-#' @return A \code{\link{GRanges}} object containing the reads.
14
+#' @param blacklist A \code{\link{GRanges-class}} or a bed(.gz) file with blacklisted regions. Reads falling into those regions will be discarded.
15
+#' @param what A character vector of fields that are returned. Uses the \code{Rsamtools::scanBamWhat} function. See \code{\link[Rsamtools]{ScanBamParam}} to see what is available.
16
+#' @return A \code{\link{GRanges-class}} object containing the reads.
17 17
 #' @importFrom Rsamtools indexBam BamFile ScanBamParam scanBamFlag
18 18
 #' @importFrom GenomicAlignments readGAlignmentPairs readGAlignments first
19 19
 #' @importFrom S4Vectors queryHits
... ...
@@ -178,7 +178,7 @@ readBamFileAsGRanges <- function(bamfile, bamindex=bamfile, chromosomes=NULL, pa
178 178
 
179 179
 #' Import BED file into GRanges
180 180
 #'
181
-#' Import aligned reads from a BED file into a \code{\link{GRanges}} object.
181
+#' Import aligned reads from a BED file into a \code{\link{GRanges-class}} object.
182 182
 #'
183 183
 #' @param bedfile A file with aligned reads in BED-6 format. The columns have to be c('chromosome','start','end','description','mapq','strand').
184 184
 #' @param assembly Please see \code{\link[GenomeInfoDb]{fetchExtendedChromInfoFromUCSC}} for available assemblies. Only necessary when importing BED files. BAM files are handled automatically. Alternatively a data.frame with columns 'chromosome' and 'length'.
... ...
@@ -186,8 +186,8 @@ readBamFileAsGRanges <- function(bamfile, bamindex=bamfile, chromosomes=NULL, pa
186 186
 #' @param remove.duplicate.reads A logical indicating whether or not duplicate reads should be removed.
187 187
 #' @param min.mapq Minimum mapping quality when importing from BAM files. Set \code{min.mapq=0} to keep all reads.
188 188
 #' @param max.fragment.width Maximum allowed fragment length. This is to filter out erroneously wrong fragments.
189
-#' @param blacklist A \code{\link{GRanges}} or a bed(.gz) file with blacklisted regions. Reads falling into those regions will be discarded.
190
-#' @return A \code{\link{GRanges}} object containing the reads.
189
+#' @param blacklist A \code{\link{GRanges-class}} or a bed(.gz) file with blacklisted regions. Reads falling into those regions will be discarded.
190
+#' @return A \code{\link{GRanges-class}} object containing the reads.
191 191
 #' @importFrom utils read.table
192 192
 #' @importFrom S4Vectors queryHits
193 193
 #' @export
... ...
@@ -8,7 +8,7 @@
8 8
 #' @param chromosome.format A character specifying the format of the chromosomes if \code{assembly} is specified. Either 'NCBI' for (1,2,3 ...) or 'UCSC' for (chr1,chr2,chr3 ...). If a \code{bamfile} or \code{chrom.lengths} is supplied, the format will be chosen automatically.
9 9
 #' @param binsizes A vector of bin sizes in base pairs.
10 10
 #' @param chromosomes A subset of chromosomes for which the bins are generated.
11
-#' @return A \code{list()} of \code{\link{GRanges}} objects with fixed-width bins.
11
+#' @return A \code{list()} of \code{\link{GRanges-class}} objects with fixed-width bins.
12 12
 #' @author Aaron Taudt
13 13
 #' @importFrom Rsamtools BamFile
14 14
 #' @export
... ...
@@ -116,10 +116,10 @@ fixedWidthBins <- function(bamfile=NULL, assembly=NULL, chrom.lengths=NULL, chro
116 116
 #' 
117 117
 #' Variable-width bins are produced by first binning the reference BAM file with fixed-width bins and selecting the desired number of reads per bin as the (non-zero) maximum of the histogram. A new set of bins is then generated such that every bin contains the desired number of reads.
118 118
 #' 
119
-#' @param reads A \code{\link{GRanges}} with reads. See \code{\link{readBamFileAsGRanges}} and \code{\link{readBedFileAsGRanges}}.
119
+#' @param reads A \code{\link{GRanges-class}} with reads. See \code{\link{readBamFileAsGRanges}} and \code{\link{readBedFileAsGRanges}}.
120 120
 #' @param binsizes A vector with binsizes. Resulting bins will be close to the specified binsizes.
121 121
 #' @param chromosomes A subset of chromosomes for which the bins are generated.
122
-#' @return A \code{list()} of \code{\link{GRanges}} objects with variable-width bins.
122
+#' @return A \code{list()} of \code{\link{GRanges-class}} objects with variable-width bins.
123 123
 #' @author Aaron Taudt
124 124
 #' @export
125 125
 #'
... ...
@@ -356,8 +356,8 @@ plotBoxplot <- function(model) {
356 356
 #' #' 
357 357
 #' #' Plot a simple genome browser view. This is useful for scripted genome browser snapshots.
358 358
 #' #' 
359
-#' #' @param counts A \code{\link[GenomicRanges]{GRanges}} object with meta-data column 'counts'.
360
-#' #' @param peaklist A named list() of \code{\link[GenomicRanges]{GRanges}} objects containing peak coordinates.
359
+#' #' @param counts A \code{\link[GenomicRanges]{GRanges-class}} object with meta-data column 'counts'.
360
+#' #' @param peaklist A named list() of \code{\link[GenomicRanges]{GRanges-class}} objects containing peak coordinates.
361 361
 #' #' @param chr,start,end Chromosome, start and end coordinates for the plot.
362 362
 #' #' @param countcol A character giving the color for the counts.
363 363
 #' #' @param peakcols A character vector with colors for the peaks in \code{peaklist}.
... ...
@@ -2,7 +2,7 @@
2 2
 
3 3
 #' Read bed-file into GRanges
4 4
 #'
5
-#' This is a simple convenience function to read a bed(.gz)-file into a \code{\link{GRanges}} object. The bed-file is expected to have the following fields: \code{chromosome, start, end, name, score, strand}.
5
+#' This is a simple convenience function to read a bed(.gz)-file into a \code{\link{GRanges-class}} object. The bed-file is expected to have the following fields: \code{chromosome, start, end, name, score, strand}.
6 6
 #'
7 7
 #' @param bedfile Filename of the bed or bed.gz file.
8 8
 #' @param col.names A character vector giving the names of the columns in the \code{bedfile}. Must contain at least \code{c('chromosome','start','end')}.
... ...
@@ -10,7 +10,7 @@
10 10
 #' @param skip Number of lines to skip at the beginning.
11 11
 #' @param chromosome.format Desired format of the chromosomes. Either 'NCBI' for (1,2,3 ...) or 'UCSC' for (chr1,chr2,chr3 ...) or \code{NULL} to keep the original names.
12 12
 #' @param sep Field separator from \code{\link{read.table}}.
13
-#' @return A \code{\link{GRanges}} object with the contents of the bed-file.
13
+#' @return A \code{\link{GRanges-class}} object with the contents of the bed-file.
14 14
 #' @author Aaron Taudt
15 15
 #' @importFrom utils read.table
16 16
 #' @export
... ...
@@ -2,9 +2,9 @@
2 2
 #'
3 3
 #' Make segmentation from bins for a \code{\link{multiHMM}} object.
4 4
 #'
5
-#' @param bins A \code{\link[GenomicRanges]{GRanges}} with binned read counts.
5
+#' @param bins A \code{\link[GenomicRanges]{GRanges-class}} with binned read counts.
6 6
 #' @inheritParams collapseBins
7
-#' @return A \code{\link[GenomicRanges]{GRanges}} with segmented regions.
7
+#' @return A \code{\link[GenomicRanges]{GRanges-class}} with segmented regions.
8 8
 #'
9 9
 multivariateSegmentation <- function(bins, column2collapseBy='state') {
10 10
 
... ...
@@ -2,7 +2,7 @@
2 2
 #' 
3 3
 #' Simulate known states, read counts and read coordinates using a univariate Hidden Markov Model with three states ("zero-inflation", "unmodified" and "modified").
4 4
 #' 
5
-#' @param bins A \code{\link[GenomicRanges]{GRanges}} object for which reads will be simulated.
5
+#' @param bins A \code{\link[GenomicRanges]{GRanges-class}} object for which reads will be simulated.
6 6
 #' @param transition A matrix with transition probabilities.
7 7
 #' @param emission A data.frame with emission distributions (see \code{\link{uniHMM}} entry 'distributions').
8 8
 #' @inheritParams simulateReadsFromCounts
... ...
@@ -70,9 +70,9 @@ simulateUnivariate <- function(bins, transition, emission, fragLen=50) {
70 70
 #' 
71 71
 #' Simulate read coordinates using read counts as input.
72 72
 #' 
73
-#' @param bins A \code{\link[GenomicRanges]{GRanges}} with read counts.
73
+#' @param bins A \code{\link[GenomicRanges]{GRanges-class}} with read counts.
74 74
 #' @param fragLen Length of the simulated read fragments.
75
-#' @return A \code{\link[GenomicRanges]{GRanges}} with read coordinates.
75
+#' @return A \code{\link[GenomicRanges]{GRanges-class}} with read coordinates.
76 76
 simulateReadsFromCounts <- function(bins, fragLen=50) {
77 77
     
78 78
     ptm <- startTimedMessage("Generating read coordinates ...")
... ...
@@ -115,7 +115,7 @@ simulateReadsFromCounts <- function(bins, fragLen=50) {
115 115
 #' 
116 116
 #' Simulate known states, read counts and read coordinates using a multivariate Hidden Markov Model.
117 117
 #' 
118
-#' @param bins A \code{\link[GenomicRanges]{GRanges}} object for which reads will be simulated.
118
+#' @param bins A \code{\link[GenomicRanges]{GRanges-class}} object for which reads will be simulated.
119 119
 #' @param transition A matrix with transition probabilities.
120 120
 #' @param emissions A list() with data.frames with emission distributions (see \code{\link{uniHMM}} entry 'distributions').
121 121
 #' @param weights A list() with weights for the three univariate states.
... ...
@@ -3,9 +3,9 @@
3 3
 #' Normalize read counts to a given read depth. Reads counts are randomly removed from the input to match the specified read depth.
4 4
 #'
5 5
 #' @author Aaron Taudt
6
-#' @param binned.data A \code{\link{GRanges}} object with meta data column 'reads' that contains the read count.
6
+#' @param binned.data A \code{\link{GRanges-class}} object with meta data column 'reads' that contains the read count.
7 7
 #' @param sample.reads The number of reads that will be retained.
8
-#' @return A \code{\link{GRanges}} object with downsampled read counts.
8
+#' @return A \code{\link{GRanges-class}} object with downsampled read counts.
9 9
 #' @importFrom stats rbinom
10 10
 subsample <- function(binned.data, sample.reads) {
11 11
 
... ...
@@ -13,7 +13,7 @@ binReads(file, experiment.table = NULL, ID = NULL, assembly,
13 13
   use.bamsignals = TRUE, format = NULL)
14 14
 }
15 15
 \arguments{
16
-\item{file}{A file with aligned reads. Alternatively a \code{\link{GRanges}} with aligned reads.}
16
+\item{file}{A file with aligned reads. Alternatively a \code{\link{GRanges-class}} with aligned reads.}
17 17
 
18 18
 \item{experiment.table}{An \code{\link{experiment.table}} containing the supplied \code{file}. This is necessary to uniquely identify the file in later steps of the workflow. Set to \code{NULL} if you don't have it (not recommended).}
19 19
 
... ...
@@ -33,7 +33,7 @@ binReads(file, experiment.table = NULL, ID = NULL, assembly,
33 33
 
34 34
 \item{max.fragment.width}{Maximum allowed fragment length. This is to filter out erroneously wrong fragments due to mapping errors of paired end reads.}
35 35
 
36
-\item{blacklist}{A \code{\link{GRanges}} or a bed(.gz) file with blacklisted regions. Reads falling into those regions will be discarded.}
36
+\item{blacklist}{A \code{\link{GRanges-class}} or a bed(.gz) file with blacklisted regions. Reads falling into those regions will be discarded.}
37 37
 
38 38
 \item{binsizes}{An integer vector specifying the bin sizes to use.}
39 39
 
... ...
@@ -41,7 +41,7 @@ binReads(file, experiment.table = NULL, ID = NULL, assembly,
41 41
 
42 42
 \item{reads.per.bin}{Approximate number of desired reads per bin. The bin size will be selected accordingly.}
43 43
 
44
-\item{bins}{A \code{\link{GRanges}} or a named \code{list()} with \code{\link{GRanges}} containing precalculated bins produced by \code{\link{fixedWidthBins}} or \code{\link{variableWidthBins}}. Names of the list must correspond to the binsize. If the list is unnamed, an attempt is made to automatically determine the binsize.}
44
+\item{bins}{A \code{\link{GRanges-class}} or a named \code{list()} with \code{\link{GRanges-class}} containing precalculated bins produced by \code{\link{fixedWidthBins}} or \code{\link{variableWidthBins}}. Names of the list must correspond to the binsize. If the list is unnamed, an attempt is made to automatically determine the binsize.}
45 45
 
46 46
 \item{variable.width.reference}{A BAM file that is used as reference to produce variable width bins. See \code{\link{variableWidthBins}} for details.}
47 47
 
... ...
@@ -50,13 +50,13 @@ binReads(file, experiment.table = NULL, ID = NULL, assembly,
50 50
 \item{format}{One of \code{c('bed','bam','GRanges',NULL)}. With \code{NULL} the format is determined automatically from the file ending.}
51 51
 }
52 52
 \value{
53
-If only one bin size was specified for option \code{binsizes}, the function returns a single \code{\link{GRanges}} object with meta data column 'counts' that contains the read count. If multiple \code{binsizes} were specified , the function returns a named \code{list()} of \link{GRanges} objects.
53
+If only one bin size was specified for option \code{binsizes}, the function returns a single \code{\link{GRanges-class}} object with meta data column 'counts' that contains the read count. If multiple \code{binsizes} were specified , the function returns a named \code{list()} of \link{GRanges-class} objects.
54 54
 }
55 55
 \description{
56 56
 Convert aligned reads in .bam or .bed(.gz) format into read counts in equidistant windows.
57 57
 }
58 58
 \details{
59
-Convert aligned reads from .bam or .bed(.gz) files into read counts in equidistant windows (bins). This function uses \code{\link[GenomicRanges]{countOverlaps}} to calculate the read counts, or alternatively \code{\link[bamsignals]{bamProfile}} if option \code{use.bamsignals} is set (only effective for .bam files).
59
+Convert aligned reads from .bam or .bed(.gz) files into read counts in equidistant windows (bins). This function uses \code{GenomicRanges::countOverlaps} to calculate the read counts, or alternatively \code{bamsignals::bamProfile} if option \code{use.bamsignals} is set (only effective for .bam files).
60 60
 }
61 61
 \examples{
62 62
 ## Get an example BAM file with ChIP-seq reads
... ...
@@ -4,5 +4,5 @@
4 4
 \alias{binned.data}
5 5
 \title{Binned read counts}
6 6
 \description{
7
-A \code{\link[GenomicRanges]{GRanges}} object which contains binned read counts as meta data column \code{counts}. It is output of the \code{\link{binReads}} function.
7
+A \code{\link[GenomicRanges]{GRanges-class}} object which contains binned read counts as meta data column \code{counts}. It is output of the \code{\link{binReads}} function.
8 8
 }
... ...
@@ -13,9 +13,9 @@ callPeaksUnivariate(binned.data, control.data = NULL, prefit.on.chr = NULL,
13 13
   verbosity = 1)
14 14
 }
15 15
 \arguments{
16
-\item{binned.data}{A \code{\link{GRanges}} object with binned read counts or a file that contains such an object.}
16
+\item{binned.data}{A \code{\link{GRanges-class}} object with binned read counts or a file that contains such an object.}
17 17
 
18
-\item{control.data}{Input control for the experiment. A \code{\link{GRanges}} object with binned read counts or a file that contains such an object.}
18
+\item{control.data}{Input control for the experiment. A \code{\link{GRanges-class}} object with binned read counts or a file that contains such an object.}
19 19
 
20 20
 \item{prefit.on.chr}{A chromosome that is used to pre-fit the Hidden Markov Model. Set to \code{NULL} if you don't want to prefit but use the whole genome instead.}
21 21
 
... ...
@@ -12,9 +12,9 @@ callPeaksUnivariateAllChr(binned.data, control.data = NULL, eps = 0.01,
12 12
   keep.densities = FALSE, verbosity = 1)
13 13
 }
14 14
 \arguments{
15
-\item{binned.data}{A \code{\link{GRanges}} object with binned read counts or a file that contains such an object.}
15
+\item{binned.data}{A \code{\link{GRanges-class}} object with binned read counts or a file that contains such an object.}
16 16
 
17
-\item{control.data}{Input control for the experiment. A \code{\link{GRanges}} object with binned read counts or a file that contains such an object.}
17
+\item{control.data}{Input control for the experiment. A \code{\link{GRanges-class}} object with binned read counts or a file that contains such an object.}
18 18
 
19 19
 \item{eps}{Convergence threshold for the Baum-Welch algorithm.}
20 20
 
... ...
@@ -7,10 +7,10 @@
7 7
 \value{
8 8
 A \code{list()} with the following entries:
9 9
 \item{info}{Experiment table for this object.}
10
-\item{bins}{A \code{\link[GenomicRanges]{GRanges}} object containing genomic bin coordinates and human readable combinations for the combined \code{\link{multiHMM}} objects.}
10
+\item{bins}{A \code{\link[GenomicRanges]{GRanges-class}} object containing genomic bin coordinates and human readable combinations for the combined \code{\link{multiHMM}} objects.}
11 11
 \item{segments}{Same as \code{bins}, but consecutive bins with the same state are collapsed into segments.}
12 12
 \item{segments.per.condition}{A \code{list()} with segments for each condition separately.}
13
-\item{peaks}{A \code{list()} with \code{\link[GenomicRanges]{GRanges}} containing peak coordinates for each ID in \code{info}.}
13
+\item{peaks}{A \code{list()} with \code{\link[GenomicRanges]{GRanges-class}} containing peak coordinates for each ID in \code{info}.}
14 14
 \item{frequencies}{Genomic frequencies of combinations.}
15 15
 \item{mode}{Mode of analysis.}
16 16
 }
... ...
@@ -13,7 +13,7 @@ enrichmentAtAnnotation(bins, info, annotation, bp.around.annotation = 10000,
13 13
 
14 14
 \item{info}{The \code{$info} entry from a \code{\link{multiHMM}} or \code{\link{combinedMultiHMM}} object.}
15 15
 
16
-\item{annotation}{A \code{\link{GRanges}} object with the annotation of interest.}
16
+\item{annotation}{A \code{\link{GRanges-class}} object with the annotation of interest.}
17 17
 
18 18
 \item{bp.around.annotation}{An integer specifying the number of basepairs up- and downstream of the annotation for which the enrichment will be calculated.}
19 19
 
... ...
@@ -29,7 +29,7 @@ enrichmentAtAnnotation(bins, info, annotation, bp.around.annotation = 10000,
29 29
 A \code{list()} containing \code{data.frame()}s for enrichment of combinatorial states and binary states at the start, end and inside of the annotation.
30 30
 }
31 31
 \description{
32
-The function calculates the enrichment of a genomic feature with peaks or combinatorial states. Input is a \code{\link{multiHMM}} object (containing the peak calls and combinatorial states) and a \code{\link{GRanges}} object containing the annotation of interest (e.g. transcription start sites or genes).
32
+The function calculates the enrichment of a genomic feature with peaks or combinatorial states. Input is a \code{\link{multiHMM}} object (containing the peak calls and combinatorial states) and a \code{\link{GRanges-class}} object containing the annotation of interest (e.g. transcription start sites or genes).
33 33
 }
34 34
 \author{
35 35
 Aaron Taudt
... ...
@@ -23,7 +23,7 @@ plotEnrichment(hmm, annotation, bp.around.annotation = 10000,
23 23
 \arguments{
24 24
 \item{hmm}{A \code{\link{combinedMultiHMM}} or \code{\link{multiHMM}} object or a file that contains such an object.}
25 25
 
26
-\item{annotations}{A \code{list()} with \code{\link{GRanges}} objects containing coordinates of multiple annotations The names of the list entries will be used to name the return values.}
26
+\item{annotations}{A \code{list()} with \code{\link{GRanges-class}} objects containing coordinates of multiple annotations The names of the list entries will be used to name the return values.}
27 27
 
28 28
 \item{what}{One of \code{c('combinations','peaks','counts','transitions')} specifying on which feature the statistic is calculated.}
29 29
 
... ...
@@ -35,7 +35,7 @@ plotEnrichment(hmm, annotation, bp.around.annotation = 10000,
35 35
 
36 36
 \item{logscale}{Set to \code{TRUE} to plot fold enrichment on log-scale. Ignored if \code{statistic = 'fraction'}.}
37 37
 
38
-\item{annotation}{A \code{\link{GRanges}} object with the annotation of interest.}
38
+\item{annotation}{A \code{\link{GRanges-class}} object with the annotation of interest.}
39 39
 
40 40
 \item{bp.around.annotation}{An integer specifying the number of basepairs up- and downstream of the annotation for which the enrichment will be calculated.}
41 41
 
... ...
@@ -57,7 +57,7 @@ plotEnrichment(hmm, annotation, bp.around.annotation = 10000,
57 57
 A \code{\link[ggplot2:ggplot]{ggplot}} object containing the plot or a list() with \code{\link[ggplot2:ggplot]{ggplot}} objects if several plots are returned. For \code{plotFoldEnrichHeatmap} a named array with fold enrichments if \code{plot=FALSE}.
58 58
 }
59 59
 \description{
60
-Plotting functions for enrichment analysis of \code{\link{multiHMM}} or \code{\link{combinedMultiHMM}} objects with any annotation of interest, specified as a \code{\link[GenomicRanges]{GRanges}} object.
60
+Plotting functions for enrichment analysis of \code{\link{multiHMM}} or \code{\link{combinedMultiHMM}} objects with any annotation of interest, specified as a \code{\link[GenomicRanges]{GRanges-class}} object.
61 61
 }
62 62
 \section{Functions}{
63 63
 \itemize{
... ...
@@ -9,7 +9,7 @@ exportGRangesAsBedFile(gr, trackname, filename, namecol = "combination",
9 9
   append = FALSE)
10 10
 }
11 11
 \arguments{
12
-\item{gr}{A \code{\link{GRanges}} object.}
12
+\item{gr}{A \code{\link{GRanges-class}} object.}
13 13
 
14 14
 \item{trackname}{The name that will be used as track name and description in the header.}
15 15
 
... ...
@@ -34,7 +34,7 @@ exportGRangesAsBedFile(gr, trackname, filename, namecol = "combination",
34 34
 Export GRanges as genome browser viewable file
35 35
 }
36 36
 \details{
37
-Export regions from \code{\link{GRanges}} as a file which can be uploaded into a genome browser. Regions are exported in BED format (.bed.gz).
37
+Export regions from \code{\link{GRanges-class}} as a file which can be uploaded into a genome browser. Regions are exported in BED format (.bed.gz).
38 38
 }
39 39
 \examples{
40 40
 ### Export regions with read counts above 20 ###
... ...
@@ -21,7 +21,7 @@ fixedWidthBins(bamfile = NULL, assembly = NULL, chrom.lengths = NULL,
21 21
 \item{chromosomes}{A subset of chromosomes for which the bins are generated.}
22 22
 }
23 23
 \value{
24
-A \code{list()} of \code{\link{GRanges}} objects with fixed-width bins.
24
+A \code{list()} of \code{\link{GRanges-class}} objects with fixed-width bins.
25 25
 }
26 26
 \description{
27 27
 Make fixed-width bins based on given bin size.
... ...
@@ -7,13 +7,13 @@
7 7
 getCombinations(gr)
8 8
 }
9 9
 \arguments{
10
-\item{gr}{A \code{\link[GenomicRanges]{GRanges}} object from which the meta-data columns containing combinations will be extracted.}
10
+\item{gr}{A \code{\link[GenomicRanges]{GRanges-class}} object from which the meta-data columns containing combinations will be extracted.}
11 11
 }
12 12
 \value{
13 13
 A DataFrame.
14 14
 }
15 15
 \description{
16
-Get a DataFrame with combinations from a \code{\link[GenomicRanges]{GRanges}} object.
16
+Get a DataFrame with combinations from a \code{\link[GenomicRanges]{GRanges-class}} object.
17 17
 }
18 18
 \examples{
19 19
 ### Get an example multiHMM ###
... ...
@@ -7,10 +7,10 @@
7 7
 \value{
8 8
 A \code{list()} with the following entries:
9 9
 \item{info}{Experiment table for this object.}
10
-\item{bincounts}{A \code{\link[GenomicRanges]{GRanges}} object containing the genomic bin coordinates and original binned read count values for different offsets.}
11
-\item{bins}{A \code{\link[GenomicRanges]{GRanges}} object containing the genomic bin coordinates, their read count, (optional) posteriors and state classification.}
10
+\item{bincounts}{A \code{\link[GenomicRanges]{GRanges-class}} object containing the genomic bin coordinates and original binned read count values for different offsets.}
11
+\item{bins}{A \code{\link[GenomicRanges]{GRanges-class}} object containing the genomic bin coordinates, their read count, (optional) posteriors and state classification.}
12 12
 \item{segments}{Same as \code{bins}, but consecutive bins with the same state are collapsed into segments.}
13
-\item{peaks}{A \code{list()} with \code{\link[GenomicRanges]{GRanges}} containing peak coordinates for each ID in \code{info}.}
13
+\item{peaks}{A \code{list()} with \code{\link[GenomicRanges]{GRanges-class}} containing peak coordinates for each ID in \code{info}.}
14 14
 \item{mapping}{A named vector giving the mapping from decimal combinatorial states to human readable combinations.}
15 15
 \item{weights}{Weight for each component. Same as \code{apply(hmm$posteriors,2,mean)}.}
16 16
 \item{weights.univariate}{Weights of the univariate HMMs.}
... ...
@@ -7,12 +7,12 @@
7 7
 multivariateSegmentation(bins, column2collapseBy = "state")
8 8
 }
9 9
 \arguments{
10
-\item{bins}{A \code{\link[GenomicRanges]{GRanges}} with binned read counts.}
10
+\item{bins}{A \code{\link[GenomicRanges]{GRanges-class}} with binned read counts.}
11 11
 
12 12
 \item{column2collapseBy}{The number of the column which will be used to collapse all other inputs. If a set of consecutive bins has the same value in this column, they will be aggregated into one bin with adjusted genomic coordinates.}
13 13
 }
14 14
 \value{
15
-A \code{\link[GenomicRanges]{GRanges}} with segmented regions.
15
+A \code{\link[GenomicRanges]{GRanges-class}} with segmented regions.
16 16
 }
17 17
 \description{
18 18
 Make segmentation from bins for a \code{\link{multiHMM}} object.
... ...
@@ -9,7 +9,7 @@ plotExpression(hmm, expression, combinations = NULL, return.marks = FALSE)
9 9
 \arguments{
10 10
 \item{hmm}{A \code{\link{multiHMM}} or \code{\link{combinedMultiHMM}} object or file that contains such an object.}
11 11
 
12
-\item{expression}{A \code{\link{GRanges}} object with metadata column 'expression', containing the expression value for each range.}
12
+\item{expression}{A \code{\link{GRanges-class}} object with metadata column 'expression', containing the expression value for each range.}
13 13
 
14 14
 \item{combinations}{A vector with combinations for which the expression overlap will be calculated. If \code{NULL} all combinations will be considered.}
15 15
 
... ...
@@ -6,8 +6,8 @@
6 6
 #' 
7 7
 #' Plot a simple genome browser view. This is useful for scripted genome browser snapshots.
8 8
 #' 
9
-#' @param counts A \code{\link[GenomicRanges]{GRanges}} object with meta-data column 'counts'.
10
-#' @param peaklist A named list() of \code{\link[GenomicRanges]{GRanges}} objects containing peak coordinates.
9
+#' @param counts A \code{\link[GenomicRanges]{GRanges-class}} object with meta-data column 'counts'.
10
+#' @param peaklist A named list() of \code{\link[GenomicRanges]{GRanges-class}} objects containing peak coordinates.
11 11
 #' @param chr,start,end Chromosome, start and end coordinates for the plot.
12 12
 #' @param countcol A character giving the color for the counts.
13 13
 #' @param peakcols A character vector with colors for the peaks in \code{peaklist}.
... ...
@@ -23,15 +23,15 @@ readBamFileAsGRanges(bamfile, bamindex = bamfile, chromosomes = NULL,
23 23
 
24 24
 \item{max.fragment.width}{Maximum allowed fragment length. This is to filter out erroneously wrong fragments due to mapping errors of paired end reads.}
25 25
 
26
-\item{blacklist}{A \code{\link{GRanges}} or a bed(.gz) file with blacklisted regions. Reads falling into those regions will be discarded.}
26
+\item{blacklist}{A \code{\link{GRanges-class}} or a bed(.gz) file with blacklisted regions. Reads falling into those regions will be discarded.}
27 27
 
28
-\item{what}{A character vector of fields that are returned. Type \code{\link[Rsamtools]{scanBamWhat}} to see what is available.}
28
+\item{what}{A character vector of fields that are returned. Uses the \code{Rsamtools::scanBamWhat} function. See \code{\link[Rsamtools]{ScanBamParam}} to see what is available.}
29 29
 }
30 30
 \value{
31
-A \code{\link{GRanges}} object containing the reads.
31
+A \code{\link{GRanges-class}} object containing the reads.
32 32
 }
33 33
 \description{
34
-Import aligned reads from a BAM file into a \code{\link{GRanges}} object.
34
+Import aligned reads from a BAM file into a \code{\link{GRanges-class}} object.
35 35
 }
36 36
 \examples{
37 37
 ## Get an example BAM file with ChIP-seq reads
... ...
@@ -21,13 +21,13 @@ readBedFileAsGRanges(bedfile, assembly, chromosomes = NULL,
21 21
 
22 22
 \item{max.fragment.width}{Maximum allowed fragment length. This is to filter out erroneously wrong fragments.}
23 23
 
24
-\item{blacklist}{A \code{\link{GRanges}} or a bed(.gz) file with blacklisted regions. Reads falling into those regions will be discarded.}
24
+\item{blacklist}{A \code{\link{GRanges-class}} or a bed(.gz) file with blacklisted regions. Reads falling into those regions will be discarded.}
25 25
 }
26 26
 \value{
27
-A \code{\link{GRanges}} object containing the reads.
27
+A \code{\link{GRanges-class}} object containing the reads.
28 28
 }
29 29
 \description{
30
-Import aligned reads from a BED file into a \code{\link{GRanges}} object.
30
+Import aligned reads from a BED file into a \code{\link{GRanges-class}} object.
31 31
 }
32 32
 \examples{
33 33
 ## Get an example BED file with single-cell-sequencing reads
... ...
@@ -22,10 +22,10 @@ readCustomBedFile(bedfile, col.names = c("chromosome", "start", "end", "name",
22 22
 \item{sep}{Field separator from \code{\link{read.table}}.}
23 23
 }
24 24
 \value{
25
-A \code{\link{GRanges}} object with the contents of the bed-file.
25
+A \code{\link{GRanges-class}} object with the contents of the bed-file.
26 26
 }
27 27
 \description{
28
-This is a simple convenience function to read a bed(.gz)-file into a \code{\link{GRanges}} object. The bed-file is expected to have the following fields: \code{chromosome, start, end, name, score, strand}.
28
+This is a simple convenience function to read a bed(.gz)-file into a \code{\link{GRanges-class}} object. The bed-file is expected to have the following fields: \code{chromosome, start, end, name, score, strand}.
29 29
 }
30 30
 \examples{
31 31
 ## Get an example BED file
... ...
@@ -8,7 +8,7 @@ simulateMultivariate(bins, transition, emissions, weights, correlationMatrices,
8 8
   combstates, IDs, fragLen = 50)
9 9
 }
10 10
 \arguments{
11
-\item{bins}{A \code{\link[GenomicRanges]{GRanges}} object for which reads will be simulated.}
11
+\item{bins}{A \code{\link[GenomicRanges]{GRanges-class}} object for which reads will be simulated.}
12 12
 
13 13
 \item{transition}{A matrix with transition probabilities.}
14 14
 
... ...
@@ -7,12 +7,12 @@
7 7
 simulateReadsFromCounts(bins, fragLen = 50)
8 8
 }
9 9
 \arguments{
10
-\item{bins}{A \code{\link[GenomicRanges]{GRanges}} with read counts.}
10
+\item{bins}{A \code{\link[GenomicRanges]{GRanges-class}} with read counts.}
11 11
 
12 12
 \item{fragLen}{Length of the simulated read fragments.}
13 13
 }
14 14
 \value{
15
-A \code{\link[GenomicRanges]{GRanges}} with read coordinates.
15
+A \code{\link[GenomicRanges]{GRanges-class}} with read coordinates.
16 16
 }
17 17
 \description{
18 18
 Simulate read coordinates using read counts as input.
... ...
@@ -7,7 +7,7 @@
7 7
 simulateUnivariate(bins, transition, emission, fragLen = 50)
8 8
 }
9 9
 \arguments{
10
-\item{bins}{A \code{\link[GenomicRanges]{GRanges}} object for which reads will be simulated.}
10
+\item{bins}{A \code{\link[GenomicRanges]{GRanges-class}} object for which reads will be simulated.}
11 11
 
12 12
 \item{transition}{A matrix with transition probabilities.}
13 13
 
... ...
@@ -7,12 +7,12 @@
7 7
 subsample(binned.data, sample.reads)
8 8
 }
9 9
 \arguments{
10
-\item{binned.data}{A \code{\link{GRanges}} object with meta data column 'reads' that contains the read count.}
10
+\item{binned.data}{A \code{\link{GRanges-class}} object with meta data column 'reads' that contains the read count.}
11 11
 
12 12
 \item{sample.reads}{The number of reads that will be retained.}
13 13
 }
14 14
 \value{
15
-A \code{\link{GRanges}} object with downsampled read counts.
15
+A \code{\link{GRanges-class}} object with downsampled read counts.
16 16
 }
17 17
 \description{
18 18
 Normalize read counts to a given read depth. Reads counts are randomly removed from the input to match the specified read depth.
... ...
@@ -7,9 +7,9 @@
7 7
 \value{
8 8
 A \code{list()} with the following entries:
9 9
 \item{info}{Experiment table for this object.}
10
-\item{bincounts}{A \code{\link[GenomicRanges]{GRanges}} object containing the genomic bin coordinates and original binned read count values for different offsets.}
11
-\item{bins}{A \code{\link[GenomicRanges]{GRanges}} object containing the genomic bin coordinates, their read count, (optional) posteriors and state classification.}
12
-\item{peaks}{A \code{list()} with \code{\link[GenomicRanges]{GRanges}} containing peak coordinates for each ID in \code{info}.}
10
+\item{bincounts}{A \code{\link[GenomicRanges]{GRanges-class}} object containing the genomic bin coordinates and original binned read count values for different offsets.}
11
+\item{bins}{A \code{\link[GenomicRanges]{GRanges-class}} object containing the genomic bin coordinates, their read count, (optional) posteriors and state classification.}
12
+\item{peaks}{A \code{list()} with \code{\link[GenomicRanges]{GRanges-class}} containing peak coordinates for each ID in \code{info}.}
13 13
 \item{weights}{Weight for each component. Same as \code{apply(hmm$posteriors,2,mean)}.}
14 14
 \item{transitionProbs}{Matrix of transition probabilities from each state (row) into each state (column).}
15 15
 \item{transitionProbs.initial}{Initial \code{transitionProbs} at the beginning of the Baum-Welch.}
... ...
@@ -7,14 +7,14 @@
7 7
 variableWidthBins(reads, binsizes, chromosomes = NULL)
8 8
 }
9 9
 \arguments{
10
-\item{reads}{A \code{\link{GRanges}} with reads. See \code{\link{readBamFileAsGRanges}} and \code{\link{readBedFileAsGRanges}}.}
10
+\item{reads}{A \code{\link{GRanges-class}} with reads. See \code{\link{readBamFileAsGRanges}} and \code{\link{readBedFileAsGRanges}}.}
11 11
 
12 12
 \item{binsizes}{A vector with binsizes. Resulting bins will be close to the specified binsizes.}
13 13
 
14 14
 \item{chromosomes}{A subset of chromosomes for which the bins are generated.}
15 15
 }
16 16
 \value{
17
-A \code{list()} of \code{\link{GRanges}} objects with variable-width bins.
17
+A \code{list()} of \code{\link{GRanges-class}} objects with variable-width bins.
18 18
 }
19 19
 \description{
20 20
 Make variable-width bins based on a reference BAM file. This can be a simulated file (produced by TODO: insert link and aligned with your favourite aligner) or a real reference.