# Introduction to cellxgenedp
The cellxgene data portal <https://cellxgene.cziscience.com/> provides
a graphical user interface to collections of single-cell sequence data
processed in standard ways to 'count matrix' summaries. The
cellxgenedp package provides an alternative, R-based inteface,
allowind data discovery, viewing, and downloading.
## Installation
This package is available in *Bioconductor* version 3.15 and
later. The following code installs
[cellxgenedp](https://bioconductor.org/packages/cellxgenedp)
``` r
if (!"BiocManager" %in% rownames(installed.packages()))
install.packages("BiocManager", repos = "https://CRAN.R-project.org")
BiocManager::install("cellxgenedp")
```
Alternatively, install the 'development' version from GitHub
``` r
if (!"remotes" %in% rownames(installed.packages()))
install.packages("remotes", repos = "https://CRAN.R-project.org")
remotes::install_github("mtmorgan/cellxgenedp")
```
To also install additional packages required for this vignette, use
``` r
pkgs <- c("tidyr", "zellkonverter", "SingleCellExperiment", "HDF5Array")
required_pkgs <- pkgs[!pkgs %in% rownames(installed.packages())]
BiocManager::install(required_pkgs)
```
## Use
Load the package into your current *R* session. We make extensive use of
the dplyr packages, and at the end of the vignette use
SingleCellExperiment and zellkonverter, so load those as well.
``` r
suppressPackageStartupMessages({
library(dplyr)
library(cellxgenedp)
})
```
## Shiny
`cxg()` provides a ‘shiny’ interface allowing discovery of collections
and datasets, visualization of selected datasets in the cellxgene data
portal, and download of datasets for use in R.
## Next steps
View the artcle [Discover and download datasets and files from the
cellxgene data portal][article].
[article]: https://mtmorgan.github.io/cellxgenedp/articles/using_cellxgenedp.html