% Generated by roxygen2: do not edit by hand % Please edit documentation in R/findMarkersTree.R \name{plotMarkerDendro} \alias{plotMarkerDendro} \title{Plots dendrogram of \emph{findMarkersTree} output} \usage{ plotMarkerDendro( tree, classLabel = NULL, addSensPrec = FALSE, maxFeaturePrint = 4, leafSize = 10, boxSize = 2, boxColor = "black" ) } \arguments{ \item{tree}{List object. The output of findMarkersTree()} \item{classLabel}{A character value. The name of a specific label to draw the path and rules. If NULL (default), the tree for all clusters is shown.} \item{addSensPrec}{Logical. Print training sensitivities and precisions for each cluster below leaf label? Default is FALSE.} \item{maxFeaturePrint}{Numeric value. Maximum number of markers to print at a given split. Default is 4.} \item{leafSize}{Numeric value. Size of text below each leaf. Default is 24.} \item{boxSize}{Numeric value. Size of rule labels. Default is 7.} \item{boxColor}{Character value. Color of rule labels. Default is black.} } \value{ A ggplot2 object } \description{ Generates a dendrogram of the rules and performance (optional) of the decision tree generated by findMarkersTree(). } \examples{ \dontrun{ # Generate simulated single-cell dataset using celda sim_counts <- celda::simulateCells("celda_CG", K = 4, L = 10, G = 100) # Celda clustering into 5 clusters & 10 modules cm <- celda_CG(sim_counts$counts, K = 5, L = 10, verbose = FALSE) # Get features matrix and cluster assignments factorized <- factorizeMatrix(sim_counts$counts, cm) features <- factorized$proportions$cell class <- celdaClusters(cm) # Generate Decision Tree DecTree <- findMarkersTree(features, class, threshold = 1) # Plot dendrogram plotMarkerDendro(DecTree) } }