Browse code

Updated version to match Bioconductor

Joshua D. Campbell authored on 28/12/2021 19:47:07
Showing 1 changed files
... ...
@@ -18,12 +18,19 @@ if (!requireNamespace("BiocManager", quietly = TRUE))
18 18
 BiocManager::install("celda")
19 19
 ```
20 20
 
21
-To install the development version (R >= 3.6) of **celda** from GitHub using `devtools`:
21
+The latest stable version  of **celda** can be installed from GitHub using `devtools`:
22
+
22 23
 ```
23 24
 library(devtools)
24 25
 install_github("campbio/celda")
25 26
 ```
26 27
 
28
+The development version of **celda** can also be installed from GitHub using `devtools`:
29
+```
30
+library(devtools)
31
+install_github("campbio/celda@devel")
32
+```
33
+
27 34
 **NOTE** For MAC OSX users, `devtools::install_github()` requires installation of **libgit2.** This can be installed via homebrew:
28 35
 ```
29 36
 brew install libgit2
Browse code

Added GitHub workflows and removed Travis yml

Joshua D. Campbell authored on 12/09/2021 16:05:59
Showing 1 changed files
... ...
@@ -1,5 +1,7 @@
1
-[![Build Status](https://travis-ci.com/campbio/celda.svg?branch=master)](https://travis-ci.com/campbio/celda)
1
+<!-- badges: start -->
2
+[![R-CMD-check](https://github.com/campbio/celda/workflows/R-CMD-check/badge.svg)](https://github.com/campbio/celda/actions)
2 3
 [![Coverage Status](https://coveralls.io/repos/github/campbio/celda/badge.svg?branch=master)](https://coveralls.io/github/campbio/celda?branch=master)
4
+<!-- badges: end -->
3 5
 
4 6
 # celda: CEllular Latent Dirichlet Allocation
5 7
 
Browse code

minor tweaks to pkgdown docs

Joshua D. Campbell authored on 19/07/2021 17:40:48
Showing 1 changed files
... ...
@@ -1,4 +1,4 @@
1
-[![Build Status](https://travis-ci.org/campbio/celda.svg?branch=master)](https://travis-ci.org/campbio/celda)
1
+[![Build Status](https://travis-ci.com/campbio/celda.svg?branch=master)](https://travis-ci.com/campbio/celda)
2 2
 [![Coverage Status](https://coveralls.io/repos/github/campbio/celda/badge.svg?branch=master)](https://coveralls.io/github/campbio/celda?branch=master)
3 3
 
4 4
 # celda: CEllular Latent Dirichlet Allocation
Browse code

Update README.md

Zhe Wang authored on 31/08/2020 00:30:19 • GitHub committed on 31/08/2020 00:30:19
Showing 1 changed files
... ...
@@ -31,6 +31,10 @@ Also, if you receive installation errors when Rcpp is being installed and compil
31 31
 
32 32
 https://thecoatlessprofessor.com/programming/cpp/r-compiler-tools-for-rcpp-on-macos/
33 33
 
34
+If you are running R 4.0.0 or later version on MacOS Catalina and you see error `'wchar.h' file not found`, you can try the method in this link:
35
+
36
+https://discourse.mc-stan.org/t/dealing-with-catalina-iii/12731/5
37
+
34 38
 **NOTE** If you are trying to install **celda** using Rstudio and get this error: `could not find tools necessary to compile a package`, you can try this:
35 39
 ```
36 40
 options(buildtools.check = function(action) TRUE)
Browse code

Added TENxPBMCData install to decontX vignette and updated README

Joshua D. Campbell authored on 19/04/2020 18:08:18
Showing 1 changed files
... ...
@@ -3,12 +3,7 @@
3 3
 
4 4
 # celda: CEllular Latent Dirichlet Allocation
5 5
 
6
-"celda" stands for "**CE**llular **L**atent **D**irichlet **A**llocation". It is a suite of Bayesian hierarchical models and supporting functions to perform gene and cell clustering for count data generated by single cell RNA-seq platforms. This algorithm is an extension of the Latent Dirichlet Allocation (LDA) topic modeling framework that has been popular in text mining applications. Celda has advantages over other clustering frameworks:
7
-
8
-1. Celda can simultaneously cluster genes into transcriptional states and cells into subpopulations
9
-2. Celda uses count-based Dirichlet-multinomial distributions so no additional normalization is required for 3' DGE single cell RNA-seq
10
-3. These types of models have shown good performance with sparse data.
11
-4. **Celda now includes DecontX, a computational algorithm for decontamination of droplet based scRNA-seq data.**
6
+"celda" stands for "**CE**llular **L**atent **D**irichlet **A**llocation". It is a suite of Bayesian hierarchical models and supporting functions to perform gene and cell clustering for count data generated by single cell RNA-seq platforms. This algorithm is an extension of the Latent Dirichlet Allocation (LDA) topic modeling framework that has been popular in text mining applications. This package also includes a method called **DecontX** which can be used to estimate and remove contamination in single cell genomic data. 
12 7
 
13 8
 
14 9
 ## Installation Instructions
... ...
@@ -27,32 +22,34 @@ library(devtools)
27 22
 install_github("campbio/celda")
28 23
 ```
29 24
 
30
-For `R-3.5` users, please install from the `R_3_5` branch. This version of **celda** is identical to the most recent release of **celda** (`master` branch) except it also works on `R-3.5`.
25
+**NOTE** For MAC OSX users, `devtools::install_github()` requires installation of **libgit2.** This can be installed via homebrew:
31 26
 ```
32
-library(devtools)
33
-install_github("campbio/celda@R_3_5")
27
+brew install libgit2
34 28
 ```
35 29
 
36
-There has recently been a major update to variable/function names in the **celda** package. For backward compatibility with results (`celda_CG` and `celda_list` objects) generated from older versions of **celda**, please install from the mirror branch `20190409_master` which is the release before package reformatting:
37
-```
38
-library(devtools)
39
-install_github("campbio/celda@20190409_master")
40
-```
30
+Also, if you receive installation errors when Rcpp is being installed and compiled, try following the steps outlined here to solve the issue:
31
+
32
+https://thecoatlessprofessor.com/programming/cpp/r-compiler-tools-for-rcpp-on-macos/
41 33
 
42
-**NOTE** On OSX, `devtools::install_github()` requires installation of **libgit2.** This can be installed via homebrew:
43
-```
44
-brew install libgit2
45
-```
46 34
 **NOTE** If you are trying to install **celda** using Rstudio and get this error: `could not find tools necessary to compile a package`, you can try this:
47 35
 ```
48 36
 options(buildtools.check = function(action) TRUE)
49 37
 ```
50 38
 
51
-## Examples and vignettes
39
+## Vignettes and examples
52 40
 
53
-The vignette in HTML format showing how to use **celda** is available on Bioconductor [here](http://bioconductor.org/packages/release/bioc/vignettes/celda/inst/doc/celda-analysis.html).
41
+To build the vignettes for Celda and DecontX during installation from GitHub, use the following command:
42
+
43
+```
44
+library(devtools)
45
+install_github("campbio/celda", build_vignettes = TRUE)
46
+```
54 47
 
55
-Example vignette of doing single-cell RNA-seq data decontamination using DecontX is available [here](http://bioconductor.org/packages/release/bioc/vignettes/celda/inst/doc/DecontX-analysis.html).
48
+Note that installation may take an extra 5-10 minutes for building of the vignettes. The Celda and DecontX vignettes can then be accessed via the following commands:
49
+```
50
+vignette("celda")
51
+vignette("decontX")
52
+```
56 53
 
57 54
 ## For developers
58 55
 Check out our [Wiki](https://github.com/campbio/celda/wiki) for developer's guide if you want to contribute!
Browse code

Update README.md

Zhe Wang authored on 23/05/2019 16:58:18 • GitHub committed on 23/05/2019 16:58:18
Showing 1 changed files
... ...
@@ -55,4 +55,9 @@ The vignette in HTML format showing how to use **celda** is available on Biocond
55 55
 Example vignette of doing single-cell RNA-seq data decontamination using DecontX is available [here](http://bioconductor.org/packages/release/bioc/vignettes/celda/inst/doc/DecontX-analysis.html).
56 56
 
57 57
 ## For developers
58
-Check out our [Wiki](https://github.com/campbio/celda/wiki) for [coding style guide](https://github.com/campbio/celda/wiki/Celda-Development-Coding-Style-Guide) if you want to contribute!
58
+Check out our [Wiki](https://github.com/campbio/celda/wiki) for developer's guide if you want to contribute!
59
+- [Celda Development Coding Style Guide](https://github.com/campbio/celda/wiki/Celda-Development-Coding-Style-Guide)
60
+- [Celda Development Robust and Efficient Code](https://github.com/campbio/celda/wiki/Celda-Development-Robust-and-Efficient-Code)
61
+- [Celda Development Rstudio configuration](https://github.com/campbio/celda/wiki/Celda-Development-Rstudio-configuration)
62
+- [FAQ on how to use celda](https://github.com/campbio/celda/wiki/FAQ-on-how-to-use-celda)
63
+- [FAQ on package development](https://github.com/campbio/celda/wiki/FAQ-on-package-development)
Browse code

Update R-3.5 version

Zhe Wang authored on 23/05/2019 02:36:34 • GitHub committed on 23/05/2019 02:36:34
Showing 1 changed files
... ...
@@ -27,7 +27,7 @@ library(devtools)
27 27
 install_github("campbio/celda")
28 28
 ```
29 29
 
30
-For `R-3.5` users, please install from the `R_3_5` branch. This version of **celda** is identical to the most recent release of **celda** (`master` branch) except it also works on `R-3.5`. **NOTE:** This branch is no longer updated. Please use `R-3.6` versions.
30
+For `R-3.5` users, please install from the `R_3_5` branch. This version of **celda** is identical to the most recent release of **celda** (`master` branch) except it also works on `R-3.5`.
31 31
 ```
32 32
 library(devtools)
33 33
 install_github("campbio/celda@R_3_5")
Browse code

Update README.md

Zhe Wang authored on 14/05/2019 16:06:55 • GitHub committed on 14/05/2019 16:06:55
Showing 1 changed files
... ...
@@ -27,7 +27,7 @@ library(devtools)
27 27
 install_github("campbio/celda")
28 28
 ```
29 29
 
30
-For `R-3.5` users, please install from the `R_3_5` branch. This version of **celda** is identical to the most recent release of **celda** (`master` branch) except it also works on `R-3.5`.
30
+For `R-3.5` users, please install from the `R_3_5` branch. This version of **celda** is identical to the most recent release of **celda** (`master` branch) except it also works on `R-3.5`. **NOTE:** This branch is no longer updated. Please use `R-3.6` versions.
31 31
 ```
32 32
 library(devtools)
33 33
 install_github("campbio/celda@R_3_5")
Browse code

Update README.md

Zhe Wang authored on 04/05/2019 02:21:01 • GitHub committed on 04/05/2019 02:21:01
Showing 1 changed files
... ...
@@ -50,7 +50,7 @@ options(buildtools.check = function(action) TRUE)
50 50
 
51 51
 ## Examples and vignettes
52 52
 
53
-The vignette in HTML format is available on Bioconductor [here](http://bioconductor.org/packages/release/bioc/vignettes/celda/inst/doc/celda-analysis.html).
53
+The vignette in HTML format showing how to use **celda** is available on Bioconductor [here](http://bioconductor.org/packages/release/bioc/vignettes/celda/inst/doc/celda-analysis.html).
54 54
 
55 55
 Example vignette of doing single-cell RNA-seq data decontamination using DecontX is available [here](http://bioconductor.org/packages/release/bioc/vignettes/celda/inst/doc/DecontX-analysis.html).
56 56
 
Browse code

Update README.md

Zhe Wang authored on 04/05/2019 02:18:21 • GitHub committed on 04/05/2019 02:18:21
Showing 1 changed files
... ...
@@ -13,19 +13,27 @@
13 13
 
14 14
 ## Installation Instructions
15 15
 
16
-To install the most recent release of celda (R >= 3.6) via devtools:
16
+To install the latest stable release of **celda** from [Bioconductor](http://bioconductor.org/packages/celda/) (requires R version >= 3.6):
17
+
18
+```
19
+if (!requireNamespace("BiocManager", quietly = TRUE))
20
+    install.packages("BiocManager")
21
+BiocManager::install("celda")
22
+```
23
+
24
+To install the development version (R >= 3.6) of **celda** from GitHub using `devtools`:
17 25
 ```
18 26
 library(devtools)
19 27
 install_github("campbio/celda")
20 28
 ```
21 29
 
22
-For R3.5 users, please install from the R_3_5 branch. This version of celda is identical to the most recent release of celda except it also works on R3.5.
30
+For `R-3.5` users, please install from the `R_3_5` branch. This version of **celda** is identical to the most recent release of **celda** (`master` branch) except it also works on `R-3.5`.
23 31
 ```
24 32
 library(devtools)
25 33
 install_github("campbio/celda@R_3_5")
26 34
 ```
27 35
 
28
-There has recently been a major update to variable/function names in the celda package. For backward compatibility with results (`celda_CG` and `celda_list` objects) generated from older versions of celda, please install from the mirror branch `20190409_master` which is the release before package reformatting:
36
+There has recently been a major update to variable/function names in the **celda** package. For backward compatibility with results (`celda_CG` and `celda_list` objects) generated from older versions of **celda**, please install from the mirror branch `20190409_master` which is the release before package reformatting:
29 37
 ```
30 38
 library(devtools)
31 39
 install_github("campbio/celda@20190409_master")
... ...
@@ -35,16 +43,16 @@ install_github("campbio/celda@20190409_master")
35 43
 ```
36 44
 brew install libgit2
37 45
 ```
38
-**NOTE** If you are trying to install celda using Rstudio and get this error: "could not find tools necessary to compile a package", you can try this:
46
+**NOTE** If you are trying to install **celda** using Rstudio and get this error: `could not find tools necessary to compile a package`, you can try this:
39 47
 ```
40 48
 options(buildtools.check = function(action) TRUE)
41 49
 ```
42 50
 
43 51
 ## Examples and vignettes
44 52
 
45
-Uncompiled vignettes are available in the package. 
53
+The vignette in HTML format is available on Bioconductor [here](http://bioconductor.org/packages/release/bioc/vignettes/celda/inst/doc/celda-analysis.html).
46 54
 
47
-Examples of doing single-cell RNA-seq data analysis using celda and DecontX is available in files vignettes/celda-analysis.Rmd and vignettes/DecontX-analysis.Rmd.
55
+Example vignette of doing single-cell RNA-seq data decontamination using DecontX is available [here](http://bioconductor.org/packages/release/bioc/vignettes/celda/inst/doc/DecontX-analysis.html).
48 56
 
49 57
 ## For developers
50 58
 Check out our [Wiki](https://github.com/campbio/celda/wiki) for [coding style guide](https://github.com/campbio/celda/wiki/Celda-Development-Coding-Style-Guide) if you want to contribute!
Browse code

Update README.md

Zhe Wang authored on 21/04/2019 21:30:59 • GitHub committed on 21/04/2019 21:30:59
Showing 1 changed files
... ...
@@ -19,7 +19,7 @@ library(devtools)
19 19
 install_github("campbio/celda")
20 20
 ```
21 21
 
22
-For R3.5 users, please install from the R_3_5 branch. This version of celda is identical to the most recent release of celda except it works on R3.5.
22
+For R3.5 users, please install from the R_3_5 branch. This version of celda is identical to the most recent release of celda except it also works on R3.5.
23 23
 ```
24 24
 library(devtools)
25 25
 install_github("campbio/celda@R_3_5")
Browse code

Update README.md

Zhe Wang authored on 21/04/2019 21:30:01 • GitHub committed on 21/04/2019 21:30:01
Showing 1 changed files
... ...
@@ -3,7 +3,7 @@
3 3
 
4 4
 # celda: CEllular Latent Dirichlet Allocation
5 5
 
6
-"celda" stands for "**CE**llular **L**atent **D**irichlet **A**llocation", which is a suite of Bayesian hierarchical models and supporting functions to perform gene and cell clustering for count data generated by single cell RNA-seq platforms. This algorithm is an extension of the Latent Dirichlet Allocation (LDA) topic modeling framework that has been popular in text mining applications. Celda has advantages over other clustering frameworks:
6
+"celda" stands for "**CE**llular **L**atent **D**irichlet **A**llocation". It is a suite of Bayesian hierarchical models and supporting functions to perform gene and cell clustering for count data generated by single cell RNA-seq platforms. This algorithm is an extension of the Latent Dirichlet Allocation (LDA) topic modeling framework that has been popular in text mining applications. Celda has advantages over other clustering frameworks:
7 7
 
8 8
 1. Celda can simultaneously cluster genes into transcriptional states and cells into subpopulations
9 9
 2. Celda uses count-based Dirichlet-multinomial distributions so no additional normalization is required for 3' DGE single cell RNA-seq
Browse code

Update README.md

Zhe Wang authored on 11/04/2019 19:03:23 • GitHub committed on 11/04/2019 19:03:23
Showing 1 changed files
... ...
@@ -19,13 +19,13 @@ library(devtools)
19 19
 install_github("campbio/celda")
20 20
 ```
21 21
 
22
-For R3.5 users, please install from the R_3_5 branch:
22
+For R3.5 users, please install from the R_3_5 branch. This version of celda is identical to the most recent release of celda except it works on R3.5.
23 23
 ```
24 24
 library(devtools)
25 25
 install_github("campbio/celda@R_3_5")
26 26
 ```
27 27
 
28
-For backward compatibility with results (`celda_CG` and `celda_list` objects) generated from older versions of celda, please install from the mirror branch 20190409_master:
28
+There has recently been a major update to variable/function names in the celda package. For backward compatibility with results (`celda_CG` and `celda_list` objects) generated from older versions of celda, please install from the mirror branch `20190409_master` which is the release before package reformatting:
29 29
 ```
30 30
 library(devtools)
31 31
 install_github("campbio/celda@20190409_master")
Browse code

Update Readme

Add installation instructions for R3.5 users and backward compatibility for results generated by older celda versions.

Zhe Wang authored on 11/04/2019 18:58:52 • GitHub committed on 11/04/2019 18:58:52
Showing 1 changed files
... ...
@@ -13,12 +13,24 @@
13 13
 
14 14
 ## Installation Instructions
15 15
 
16
-To install the most recent release of celda via devtools:
16
+To install the most recent release of celda (R >= 3.6) via devtools:
17 17
 ```
18 18
 library(devtools)
19 19
 install_github("campbio/celda")
20 20
 ```
21 21
 
22
+For R3.5 users, please install from the R_3_5 branch:
23
+```
24
+library(devtools)
25
+install_github("campbio/celda@R_3_5")
26
+```
27
+
28
+For backward compatibility with results (`celda_CG` and `celda_list` objects) generated from older versions of celda, please install from the mirror branch 20190409_master:
29
+```
30
+library(devtools)
31
+install_github("campbio/celda@20190409_master")
32
+```
33
+
22 34
 **NOTE** On OSX, `devtools::install_github()` requires installation of **libgit2.** This can be installed via homebrew:
23 35
 ```
24 36
 brew install libgit2
Browse code

Update README.md

Zhe Wang authored on 11/04/2019 16:35:50 • GitHub committed on 11/04/2019 16:35:50
Showing 1 changed files
... ...
@@ -19,7 +19,7 @@ library(devtools)
19 19
 install_github("campbio/celda")
20 20
 ```
21 21
 
22
-**NOTE** On OSX, devtools::install_github() requires installation of **libgit2.** This can be installed via homebrew:
22
+**NOTE** On OSX, `devtools::install_github()` requires installation of **libgit2.** This can be installed via homebrew:
23 23
 ```
24 24
 brew install libgit2
25 25
 ```
Browse code

Update README.md

Zhe Wang authored on 11/04/2019 16:35:12 • GitHub committed on 11/04/2019 16:35:12
Showing 1 changed files
... ...
@@ -8,71 +8,31 @@
8 8
 1. Celda can simultaneously cluster genes into transcriptional states and cells into subpopulations
9 9
 2. Celda uses count-based Dirichlet-multinomial distributions so no additional normalization is required for 3' DGE single cell RNA-seq
10 10
 3. These types of models have shown good performance with sparse data.
11
+4. **Celda now includes DecontX, a computational algorithm for decontamination of droplet based scRNA-seq data.**
11 12
 
12 13
 
13 14
 ## Installation Instructions
14 15
 
15
-To install the most recent release of celda (used in the preprint version of the celda paper) via devtools:
16
+To install the most recent release of celda via devtools:
16 17
 ```
17 18
 library(devtools)
18
-install_github("campbio/celda@v0.6")
19
-```
20
-The most up-to-date (but potentially less stable) version of celda can similarly be installed with:
21
-```
22
-install_github("campbio/celda@devel")
19
+install_github("campbio/celda")
23 20
 ```
24 21
 
25 22
 **NOTE** On OSX, devtools::install_github() requires installation of **libgit2.** This can be installed via homebrew:
26 23
 ```
27 24
 brew install libgit2
28 25
 ```
29
-**NOTE** If you install celda in Rstudio and get an error:could not find tools necessary to compile a package, you can try this:
26
+**NOTE** If you are trying to install celda using Rstudio and get this error: "could not find tools necessary to compile a package", you can try this:
30 27
 ```
31 28
 options(buildtools.check = function(action) TRUE)
32 29
 ```
33 30
 
34 31
 ## Examples and vignettes
35 32
 
36
-Vignettes are available in the package. 
37
-
38
-An analysis example using celda with RNASeq via vignette('celda-analysis')
39
-
40
-
41
-### Decontamination with DecontX
42
-Highly expressed genes from various cells clusters will be expressed at low levels in other clusters in droplet-based systems due to contamination. DecontX will decompose an observed count matrix into a decontaminated expression matrix and a contamination matrix. The only other parameter needed is a vector of cell cluster labels. 
43
-
44
-To simulate two 300 (gene) x 100 (cell) count matrices from 3 different cell types with total reads per cell ranged from 5000 to 40000: one matrix being ture expression matrix (rmat), the other matrix being contamination count matrix (cmat)
45
-```
46
-sim.con = simulateContaminatedMatrix( C = 100, G = 300, K = 3, N.Range= c(5000, 40000), seed = 9124) 
47
-true.contamination.percentage = colSums( sim.con$cmat ) / colSums( sim.con$cmat + sim.con$rmat ) 
48
-str(sim.con)   
49
-# N.by.C: total transcripts per cell 
50
-# z: cell type label 
51
-
52
-```
53
-Use DecontX to decompose the observed (contaminated) count matrix back into true expression matrix and a contamination matrix with specified cell label
54
-```
55
-observedCounts = sim.con$observedCounts
56
-cell.label = sim.con$z
57
-new.counts = DecontX( counts = observedCounts, z = cell.label,  max.iter = 200, seed = 123) 
58
-str(new.counts) 
59
-# Decontaminated matrix: new.counts$res.list$est.rmat
60
-# Percentage of contamination per cell: new.counts$res.list$est.conp
61
-
62
-```
63
-DecontX Performance check 
64
-```
65
-estimated.contamination.percentage = new.counts$res.list$est.conp
66
-plot( true.contamination.percentage, estimated.contamination.percentage) ; abline(0,1) 
67
-``` 
68
-
69
-
70
-
71
-## New Features and announcements
72
-The v0.4 release of celda represents a useable implementation of the various celda clustering models.
73
-Please submit any usability issues or bugs to the issue tracker at https://github.com/campbio/celda
33
+Uncompiled vignettes are available in the package. 
74 34
 
75
-You can discuss celda, or ask the developers usage questions, in our [Google Group.](https://groups.google.com/forum/#!forum/celda-list)
35
+Examples of doing single-cell RNA-seq data analysis using celda and DecontX is available in files vignettes/celda-analysis.Rmd and vignettes/DecontX-analysis.Rmd.
76 36
 
77 37
 ## For developers
78 38
 Check out our [Wiki](https://github.com/campbio/celda/wiki) for [coding style guide](https://github.com/campbio/celda/wiki/Celda-Development-Coding-Style-Guide) if you want to contribute!
Browse code

Update README.md

add Wiki section

Zhe Wang authored on 09/04/2019 21:39:22 • GitHub committed on 09/04/2019 21:39:22
Showing 1 changed files
... ...
@@ -73,3 +73,6 @@ The v0.4 release of celda represents a useable implementation of the various cel
73 73
 Please submit any usability issues or bugs to the issue tracker at https://github.com/campbio/celda
74 74
 
75 75
 You can discuss celda, or ask the developers usage questions, in our [Google Group.](https://groups.google.com/forum/#!forum/celda-list)
76
+
77
+## For developers
78
+Check out our [Wiki](https://github.com/campbio/celda/wiki) for [coding style guide](https://github.com/campbio/celda/wiki/Celda-Development-Coding-Style-Guide) if you want to contribute!
Browse code

Update README.md

a solution to an error when installing celda in Rstudio

Tianzhu2019 authored on 09/04/2019 17:41:56 • GitHub committed on 09/04/2019 17:41:56
Showing 1 changed files
... ...
@@ -26,6 +26,10 @@ install_github("campbio/celda@devel")
26 26
 ```
27 27
 brew install libgit2
28 28
 ```
29
+**NOTE** If you install celda in Rstudio and get an error:could not find tools necessary to compile a package, you can try this:
30
+```
31
+options(buildtools.check = function(action) TRUE)
32
+```
29 33
 
30 34
 ## Examples and vignettes
31 35
 
Browse code

update README.md

87875172 authored on 25/03/2019 16:55:27
Showing 1 changed files
... ...
@@ -1,5 +1,5 @@
1
-[![Build Status](https://travis-ci.org/compbiomed/celda.svg?branch=master)](https://travis-ci.org/compbiomed/celda)
2
-[![Coverage Status](https://coveralls.io/repos/github/compbiomed/celda/badge.svg?branch=devel)](https://coveralls.io/github/compbiomed/celda?branch=devel)
1
+[![Build Status](https://travis-ci.org/campbio/celda.svg?branch=master)](https://travis-ci.org/campbio/celda)
2
+[![Coverage Status](https://coveralls.io/repos/github/campbio/celda/badge.svg?branch=master)](https://coveralls.io/github/campbio/celda?branch=master)
3 3
 
4 4
 # celda: CEllular Latent Dirichlet Allocation
5 5
 
... ...
@@ -66,6 +66,6 @@ plot( true.contamination.percentage, estimated.contamination.percentage) ; ablin
66 66
 
67 67
 ## New Features and announcements
68 68
 The v0.4 release of celda represents a useable implementation of the various celda clustering models.
69
-Please submit any usability issues or bugs to the issue tracker at https://github.com/compbiomed/celda
69
+Please submit any usability issues or bugs to the issue tracker at https://github.com/campbio/celda
70 70
 
71 71
 You can discuss celda, or ask the developers usage questions, in our [Google Group.](https://groups.google.com/forum/#!forum/celda-list)
Browse code

Update README.md

syyang authored on 18/03/2019 15:25:21 • GitHub committed on 18/03/2019 15:25:21
Showing 1 changed files
... ...
@@ -42,17 +42,15 @@ To simulate two 300 (gene) x 100 (cell) count matrices from 3 different cell typ
42 42
 sim.con = simulateContaminatedMatrix( C = 100, G = 300, K = 3, N.Range= c(5000, 40000), seed = 9124) 
43 43
 true.contamination.percentage = colSums( sim.con$cmat ) / colSums( sim.con$cmat + sim.con$rmat ) 
44 44
 str(sim.con)   
45
-# rmat: simulated true expression (gene by cell) count matrix
46
-# cmat: simulated contamination (gene by cell) count matrix 
47 45
 # N.by.C: total transcripts per cell 
48 46
 # z: cell type label 
49 47
 
50 48
 ```
51 49
 Use DecontX to decompose the observed (contaminated) count matrix back into true expression matrix and a contamination matrix with specified cell label
52 50
 ```
53
-observed.mat = sim.con$rmat + sim.con$cmat 
51
+observedCounts = sim.con$observedCounts
54 52
 cell.label = sim.con$z
55
-new.counts = DecontX( counts = observed.mat, z = cell.label,  max.iter = 200, seed = 123) 
53
+new.counts = DecontX( counts = observedCounts, z = cell.label,  max.iter = 200, seed = 123) 
56 54
 str(new.counts) 
57 55
 # Decontaminated matrix: new.counts$res.list$est.rmat
58 56
 # Percentage of contamination per cell: new.counts$res.list$est.conp
Browse code

merge with master

Irisapo authored on 13/03/2019 19:21:30
Showing 0 changed files
Browse code

rename omat as counts

Irisapo authored on 13/03/2019 14:40:11
Showing 1 changed files
... ...
@@ -38,7 +38,7 @@ An analysis example using celda with RNASeq via vignette('celda-analysis')
38 38
 Highly expressed genes from various cells clusters will be expressed at low levels in other clusters in droplet-based systems due to contamination. DecontX will decompose an observed count matrix into a decontaminated expression matrix and a contamination matrix. The only other parameter needed is a vector of cell cluster labels. 
39 39
 
40 40
 ```
41
-new.counts = DecontX( omat = counts, z = cell.label) 
41
+new.counts = DecontX( counts = counts, z = cell.label) 
42 42
 # Decontaminated matrix: new.counts$res.list$est.rmat
43 43
 # Percentage of contamination per cell: new.counts$res.list$est.conp
44 44
 ```
Browse code

Update README.md

Sean authored on 24/02/2019 21:22:40 • GitHub committed on 24/02/2019 21:22:40
Showing 1 changed files
... ...
@@ -15,11 +15,11 @@
15 15
 To install the most recent release of celda (used in the preprint version of the celda paper) via devtools:
16 16
 ```
17 17
 library(devtools)
18
-install_github("compbiomed/celda@v0.6")
18
+install_github("campbio/celda@v0.6")
19 19
 ```
20 20
 The most up-to-date (but potentially less stable) version of celda can similarly be installed with:
21 21
 ```
22
-install_github("compbiomed/celda")
22
+install_github("campbio/celda@devel")
23 23
 ```
24 24
 
25 25
 **NOTE** On OSX, devtools::install_github() requires installation of **libgit2.** This can be installed via homebrew:
Browse code

Update README.md

modify DecontX example

syyang authored on 17/01/2019 17:46:34 • GitHub committed on 17/01/2019 17:46:34
Showing 1 changed files
... ...
@@ -37,11 +37,34 @@ An analysis example using celda with RNASeq via vignette('celda-analysis')
37 37
 ### Decontamination with DecontX
38 38
 Highly expressed genes from various cells clusters will be expressed at low levels in other clusters in droplet-based systems due to contamination. DecontX will decompose an observed count matrix into a decontaminated expression matrix and a contamination matrix. The only other parameter needed is a vector of cell cluster labels. 
39 39
 
40
+To simulate two 300 (gene) x 100 (cell) count matrices from 3 different cell types with total reads per cell ranged from 5000 to 40000: one matrix being ture expression matrix (rmat), the other matrix being contamination count matrix (cmat)
40 41
 ```
41
-new.counts = DecontX( omat = counts, z = cell.label) 
42
+sim.con = simulateObservedMatrix( C = 100, G = 300, K = 3, N.Range= c(5000, 40000), seed = 9124) 
43
+true.contamination.percentage = colSums( sim.con$cmat ) / colSums( sim.con$cmat + sim.con$rmat ) 
44
+str(sim.con)   
45
+# rmat: simulated true expression (gene by cell) count matrix
46
+# cmat: simulated contamination (gene by cell) count matrix 
47
+# N.by.C: total transcripts per cell 
48
+# z: cell type label 
49
+
50
+```
51
+Use DecontX to decompose the observed (contaminated) count matrix back into true expression matrix and a contamination matrix with specified cell label
52
+```
53
+observed.mat = sim.con$rmat + sim.con$cmat 
54
+cell.label = sim.con$z
55
+new.counts = DecontX( omat = observed.mat, z = cell.label,  max.iter = 200, seed = 123) 
56
+str(new.counts) 
42 57
 # Decontaminated matrix: new.counts$res.list$est.rmat
43 58
 # Percentage of contamination per cell: new.counts$res.list$est.conp
59
+
44 60
 ```
61
+DecontX Performance check 
62
+```
63
+estimated.contamination.percentage = new.counts$res.list$est.conp
64
+plot( true.contamination.percentage, estimated.contamination.percentage) ; abline(0,1) 
65
+``` 
66
+
67
+
45 68
 
46 69
 ## New Features and announcements
47 70
 The v0.4 release of celda represents a useable implementation of the various celda clustering models.
Browse code

Update README.md

Joshua D. Campbell authored on 17/01/2019 16:20:29 • GitHub committed on 17/01/2019 16:20:29
Showing 1 changed files
... ...
@@ -34,6 +34,14 @@ Vignettes are available in the package.
34 34
 An analysis example using celda with RNASeq via vignette('celda-analysis')
35 35
 
36 36
 
37
+### Decontamination with DecontX
38
+Highly expressed genes from various cells clusters will be expressed at low levels in other clusters in droplet-based systems due to contamination. DecontX will decompose an observed count matrix into a decontaminated expression matrix and a contamination matrix. The only other parameter needed is a vector of cell cluster labels. 
39
+
40
+```
41
+new.counts = DecontX( omat = counts, z = cell.label) 
42
+# Decontaminated matrix: new.counts$res.list$est.rmat
43
+# Percentage of contamination per cell: new.counts$res.list$est.conp
44
+```
37 45
 
38 46
 ## New Features and announcements
39 47
 The v0.4 release of celda represents a useable implementation of the various celda clustering models.
Browse code

Update README.md

Sean authored on 10/01/2019 21:48:03 • GitHub committed on 10/01/2019 21:48:03
Showing 1 changed files
... ...
@@ -12,10 +12,10 @@
12 12
 
13 13
 ## Installation Instructions
14 14
 
15
-To install the most recent beta release of celda via devtools:
15
+To install the most recent release of celda (used in the preprint version of the celda paper) via devtools:
16 16
 ```
17 17
 library(devtools)
18
-install_github("compbiomed/celda@v0.5")
18
+install_github("compbiomed/celda@v0.6")
19 19
 ```
20 20
 The most up-to-date (but potentially less stable) version of celda can similarly be installed with:
21 21
 ```
Browse code

Update README.md

Former-commit-id: a1f50f51a5dd94ec292b44405340b22c9bd19780

Sean authored on 10/12/2018 04:18:19 • GitHub committed on 10/12/2018 04:18:19
Showing 1 changed files
... ...
@@ -15,7 +15,7 @@
15 15
 To install the most recent beta release of celda via devtools:
16 16
 ```
17 17
 library(devtools)
18
-install_github("compbiomed/celda@v0.4")
18
+install_github("compbiomed/celda@v0.5")
19 19
 ```
20 20
 The most up-to-date (but potentially less stable) version of celda can similarly be installed with:
21 21
 ```
Browse code

Update README.md

Former-commit-id: 19ae30028c22968714f306af9a15a2e4e1e6e848

Sean authored on 29/08/2018 19:13:14 • GitHub committed on 29/08/2018 19:13:14
Showing 1 changed files
... ...
@@ -1,4 +1,5 @@
1 1
 [![Build Status](https://travis-ci.org/compbiomed/celda.svg?branch=master)](https://travis-ci.org/compbiomed/celda)
2
+[![Coverage Status](https://coveralls.io/repos/github/compbiomed/celda/badge.svg?branch=devel)](https://coveralls.io/github/compbiomed/celda?branch=devel)
2 3
 
3 4
 # celda: CEllular Latent Dirichlet Allocation
4 5
 
Browse code

Updating Installation Instructions

#276 pointed out the fact that some system level dependencies may be necessary to install celda on OSX.

Former-commit-id: db669d5fadc0e91996a0f089140cf649cede0de9

Sean authored on 24/07/2018 14:29:54 • GitHub committed on 24/07/2018 14:29:54
Showing 1 changed files
... ...
@@ -21,6 +21,11 @@ The most up-to-date (but potentially less stable) version of celda can similarly
21 21
 install_github("compbiomed/celda")
22 22
 ```
23 23
 
24
+**NOTE** On OSX, devtools::install_github() requires installation of **libgit2.** This can be installed via homebrew:
25
+```
26
+brew install libgit2
27
+```
28
+
24 29
 ## Examples and vignettes
25 30
 
26 31
 Vignettes are available in the package. 
Browse code

Update README.md

Former-commit-id: 633d83d187c4df3cbc03e493a6529a6182bec7ce

Sean authored on 04/06/2018 16:31:48 • GitHub committed on 04/06/2018 16:31:48
Showing 1 changed files
... ...
@@ -14,7 +14,7 @@
14 14
 To install the most recent beta release of celda via devtools:
15 15
 ```
16 16
 library(devtools)
17
-install_github("compbiomed/celda@v0.3.1")
17
+install_github("compbiomed/celda@v0.4")
18 18
 ```
19 19
 The most up-to-date (but potentially less stable) version of celda can similarly be installed with:
20 20
 ```
... ...
@@ -30,7 +30,7 @@ An analysis example using celda with RNASeq via vignette('celda-analysis')
30 30
 
31 31
 
32 32
 ## New Features and announcements
33
-The v0.3.1 release of celda represents a useable implementation of the various celda clustering models.
33
+The v0.4 release of celda represents a useable implementation of the various celda clustering models.
34 34
 Please submit any usability issues or bugs to the issue tracker at https://github.com/compbiomed/celda
35 35
 
36 36
 You can discuss celda, or ask the developers usage questions, in our [Google Group.](https://groups.google.com/forum/#!forum/celda-list)
Browse code

Merge pull request #181 from compbiomed/dev

Merging from dev branch. Closes PR #179

Former-commit-id: c95f8d51dc8b470b385aae819953be855733f190

Sean authored on 18/12/2017 20:58:51 • GitHub committed on 18/12/2017 20:58:51
Showing 0 changed files
Browse code

Update README.md

Former-commit-id: e4b89e4a12727da31e77d35385b32e4f5c917cfb

Sean authored on 18/12/2017 20:44:20 • GitHub committed on 18/12/2017 20:44:20
Showing 1 changed files
... ...
@@ -14,7 +14,7 @@
14 14
 To install the most recent beta release of celda via devtools:
15 15
 ```
16 16
 library(devtools)
17
-install_github("compbiomed/celda@v0.3")
17
+install_github("compbiomed/celda@v0.3.1")
18 18
 ```
19 19
 The most up-to-date (but potentially less stable) version of celda can similarly be installed with:
20 20
 ```
... ...
@@ -30,7 +30,7 @@ An analysis example using celda with RNASeq via vignette('celda-analysis')
30 30
 
31 31
 
32 32
 ## New Features and announcements
33
-The v0.3 release of celda represents a useable implementation of the various celda clustering models.
33
+The v0.3.1 release of celda represents a useable implementation of the various celda clustering models.
34 34
 Please submit any usability issues or bugs to the issue tracker at https://github.com/compbiomed/celda
35 35
 
36 36
 You can discuss celda, or ask the developers usage questions, in our [Google Group.](https://groups.google.com/forum/#!forum/celda-list)
Browse code

add names of three new function to NAMESPACE and three Rd files in man folder

Former-commit-id: c511bbc2b07a5089863d5e7be25a8f69a1374bc0

Jiangyuan Liu authored on 07/12/2017 17:31:56
Showing 1 changed files
1 1
old mode 100644
2 2
new mode 100755
... ...
@@ -30,7 +30,7 @@ An analysis example using celda with RNASeq via vignette('celda-analysis')
30 30
 
31 31
 
32 32
 ## New Features and announcements
33
-The v0.2 release of celda represents a useable implementation of the various celda clustering models.
33
+The v0.3 release of celda represents a useable implementation of the various celda clustering models.
34 34
 Please submit any usability issues or bugs to the issue tracker at https://github.com/compbiomed/celda
35 35
 
36 36
 You can discuss celda, or ask the developers usage questions, in our [Google Group.](https://groups.google.com/forum/#!forum/celda-list)
Browse code

Update README.md

Former-commit-id: 0a3a8ebae225edf565b8241167b819b50ce89a6b

Sean authored on 06/12/2017 17:55:29 • GitHub committed on 06/12/2017 17:55:29
Showing 1 changed files
... ...
@@ -30,7 +30,7 @@ An analysis example using celda with RNASeq via vignette('celda-analysis')
30 30
 
31 31
 
32 32
 ## New Features and announcements
33
-The v0.2 release of celda represents a useable implementation of the various celda clustering models.
33
+The v0.3 release of celda represents a useable implementation of the various celda clustering models.
34 34
 Please submit any usability issues or bugs to the issue tracker at https://github.com/compbiomed/celda
35 35
 
36 36
 You can discuss celda, or ask the developers usage questions, in our [Google Group.](https://groups.google.com/forum/#!forum/celda-list)
Browse code

Update README.md

Bumping most recent beta release version

Former-commit-id: 08513e8ef06a9a577c174430e7a8f953eb0ee55c

Sean authored on 07/11/2017 16:20:50 • GitHub committed on 07/11/2017 16:20:50
Showing 1 changed files
... ...
@@ -11,10 +11,10 @@
11 11
 
12 12
 ## Installation Instructions
13 13
 
14
-To install the beta release of celda via devtools:
14
+To install the most recent beta release of celda via devtools:
15 15
 ```
16 16
 library(devtools)
17
-install_github("compbiomed/celda@v0.2")
17
+install_github("compbiomed/celda@v0.3")
18 18
 ```
19 19
 The most up-to-date (but potentially less stable) version of celda can similarly be installed with:
20 20
 ```
Browse code

Update README.md

Former-commit-id: 94d6a32de1e5b50749af074c144f9b7f065f334d

Sean authored on 21/09/2017 21:22:22 • GitHub committed on 21/09/2017 21:22:22
Showing 1 changed files
... ...
@@ -14,7 +14,7 @@
14 14
 To install the beta release of celda via devtools:
15 15
 ```
16 16
 library(devtools)
17
-install_github("compbiomed/celda@v0.1")
17
+install_github("compbiomed/celda@v0.2")
18 18
 ```
19 19
 The most up-to-date (but potentially less stable) version of celda can similarly be installed with:
20 20
 ```
... ...
@@ -30,7 +30,7 @@ An analysis example using celda with RNASeq via vignette('celda-analysis')
30 30
 
31 31
 
32 32
 ## New Features and announcements
33
-The v0.1 release of celda represents a useable implementation of the various celda clustering models.
33
+The v0.2 release of celda represents a useable implementation of the various celda clustering models.
34 34
 Please submit any usability issues or bugs to the issue tracker at https://github.com/compbiomed/celda
35 35
 
36 36
 You can discuss celda, or ask the developers usage questions, in our [Google Group.](https://groups.google.com/forum/#!forum/celda-list)
Browse code

Instructions for installing newest dev version

Former-commit-id: d2ca7ce9f1694cca7725debee914d11489b89de6

Sean authored on 23/06/2017 18:00:01 • GitHub committed on 23/06/2017 18:00:01
Showing 1 changed files
... ...
@@ -16,7 +16,10 @@ To install the beta release of celda via devtools:
16 16
 library(devtools)
17 17
 install_github("compbiomed/celda@v0.1")
18 18
 ```
19
-
19
+The most up-to-date (but potentially less stable) version of celda can similarly be installed with:
20
+```
21
+install_github("compbiomed/celda")
22
+```
20 23
 
21 24
 ## Examples and vignettes
22 25
 
Browse code

Fix build warnings by adding documentation and modifying vignette to use data instead of RDA

Former-commit-id: 8bb50939dc84017ce328e6f53835cb6224bda2c2

David Jenkins authored on 01/06/2017 16:25:07
Showing 1 changed files
... ...
@@ -1,3 +1,5 @@
1
+[![Build Status](https://travis-ci.org/compbiomed/celda.svg?branch=master)](https://travis-ci.org/compbiomed/celda)
2
+
1 3
 # celda: CEllular Latent Dirichlet Allocation
2 4
 
3 5
 "celda" stands for "**CE**llular **L**atent **D**irichlet **A**llocation", which is a suite of Bayesian hierarchical models and supporting functions to perform gene and cell clustering for count data generated by single cell RNA-seq platforms. This algorithm is an extension of the Latent Dirichlet Allocation (LDA) topic modeling framework that has been popular in text mining applications. Celda has advantages over other clustering frameworks:
Browse code

Added Google Group to README.md

Former-commit-id: 2481ec84f3456e6a8eb8161ab74283a28fd518fd

Sean authored on 29/05/2017 19:25:51 • GitHub committed on 29/05/2017 19:25:51
Showing 1 changed files
... ...
@@ -27,3 +27,5 @@ An analysis example using celda with RNASeq via vignette('celda-analysis')
27 27
 ## New Features and announcements
28 28
 The v0.1 release of celda represents a useable implementation of the various celda clustering models.
29 29
 Please submit any usability issues or bugs to the issue tracker at https://github.com/compbiomed/celda
30
+
31
+You can discuss celda, or ask the developers usage questions, in our [Google Group.](https://groups.google.com/forum/#!forum/celda-list)
Browse code

Update README.md

Former-commit-id: b0b79ac703ad765035638127739bee37b459904e

Sean authored on 26/05/2017 23:04:30 • GitHub committed on 26/05/2017 23:04:30
Showing 1 changed files
... ...
@@ -1,10 +1,10 @@
1 1
 # celda: CEllular Latent Dirichlet Allocation
2 2
 
3
-"celda" stands for "***CE***llular ***L***atent ***D***irichlet ***A***llocation", which is a suite of Bayesian hierarchical models and supporting functions to perform gene and cell clustering for count data generated by single cell RNA-seq platforms. This algorithm is an extension of the Latent Dirichlet Allocation (LDA) topic modeling framework that has been popular in text mining applications. Celda has advantages over other clustering frameworks:
3
+"celda" stands for "**CE**llular **L**atent **D**irichlet **A**llocation", which is a suite of Bayesian hierarchical models and supporting functions to perform gene and cell clustering for count data generated by single cell RNA-seq platforms. This algorithm is an extension of the Latent Dirichlet Allocation (LDA) topic modeling framework that has been popular in text mining applications. Celda has advantages over other clustering frameworks:
4 4
 
5
-# Celda can simultaneously cluster genes into transcriptional states and cells into subpopulations
6
-# Celda uses count-based Dirichlet-multinomial distributions so no additional normalization is required for 3' DGE single cell RNA-seq
7
-# These types of models have shown good performance with sparse data.
5
+1. Celda can simultaneously cluster genes into transcriptional states and cells into subpopulations
6
+2. Celda uses count-based Dirichlet-multinomial distributions so no additional normalization is required for 3' DGE single cell RNA-seq
7
+3. These types of models have shown good performance with sparse data.
8 8
 
9 9
 
10 10
 ## Installation Instructions
Browse code

Reorder sections in README.md

Former-commit-id: 73a01ff344f244d42f7db238b6e57d62f074d2fb

Sean Corbett authored on 26/05/2017 22:53:43
Showing 1 changed files
... ...
@@ -7,13 +7,6 @@
7 7
 # These types of models have shown good performance with sparse data.
8 8
 
9 9
 
10
-## Examples and vignettes
11
-
12
-Vignettes are available in the package. 
13
-
14
-An analysis example using celda with RNASeq via vignette('celda-analysis')
15
-
16
-
17 10
 ## Installation Instructions
18 11
 
19 12
 To install the beta release of celda via devtools:
... ...
@@ -22,6 +15,15 @@ library(devtools)
22 15
 install_github("compbiomed/celda@v0.1")
23 16
 ```
24 17
 
18
+
19
+## Examples and vignettes
20
+
21
+Vignettes are available in the package. 
22
+
23
+An analysis example using celda with RNASeq via vignette('celda-analysis')
24
+
25
+
26
+
25 27
 ## New Features and announcements
26 28
 The v0.1 release of celda represents a useable implementation of the various celda clustering models.
27 29
 Please submit any usability issues or bugs to the issue tracker at https://github.com/compbiomed/celda
Browse code

Updating readme per Josh's suggestions

Former-commit-id: abaf01807620490fceb75ec91c49c9b3bf95ad53

Sean Corbett authored on 26/05/2017 22:48:39
Showing 1 changed files
... ...
@@ -1,13 +1,16 @@
1
-# celda: CELlular Latent Dirichlet Allocation
1
+# celda: CEllular Latent Dirichlet Allocation
2
+
3
+"celda" stands for "***CE***llular ***L***atent ***D***irichlet ***A***llocation", which is a suite of Bayesian hierarchical models and supporting functions to perform gene and cell clustering for count data generated by single cell RNA-seq platforms. This algorithm is an extension of the Latent Dirichlet Allocation (LDA) topic modeling framework that has been popular in text mining applications. Celda has advantages over other clustering frameworks:
4
+
5
+# Celda can simultaneously cluster genes into transcriptional states and cells into subpopulations
6
+# Celda uses count-based Dirichlet-multinomial distributions so no additional normalization is required for 3' DGE single cell RNA-seq
7
+# These types of models have shown good performance with sparse data.
2 8
 
3
-Description
4 9
 
5 10
 ## Examples and vignettes
6 11
 
7 12
 Vignettes are available in the package. 
8 13
 
9
-An Introduction of the package via vignette('celda-intro').
10
-
11 14
 An analysis example using celda with RNASeq via vignette('celda-analysis')
12 15
 
13 16
 
Browse code

Update README.md Fixes #92

Former-commit-id: 0268ae164fae39bb838bf513e5035ab9d21bcf88

Sean authored on 24/05/2017 19:11:44 • GitHub committed on 24/05/2017 19:11:44
Showing 1 changed files
... ...
@@ -10,12 +10,15 @@ An Introduction of the package via vignette('celda-intro').
10 10
 
11 11
 An analysis example using celda with RNASeq via vignette('celda-analysis')
12 12
 
13
-## New Features and announcements
14
-
15 13
 
16 14
 ## Installation Instructions
17 15
 
16
+To install the beta release of celda via devtools:
18 17
 ```
19 18
 library(devtools)
20
-install_github("definitelysean/celda")
19
+install_github("compbiomed/celda@v0.1")
21 20
 ```
21
+
22
+## New Features and announcements
23
+The v0.1 release of celda represents a useable implementation of the various celda clustering models.
24
+Please submit any usability issues or bugs to the issue tracker at https://github.com/compbiomed/celda
Browse code

readme updates

David Jenkins authored on 21/04/2017 14:14:54
Showing 1 changed files
... ...
@@ -1,5 +1,3 @@
1
-# celda
2
-
3 1
 # celda: CELlular Latent Dirichlet Allocation
4 2
 
5 3
 Description
... ...
@@ -17,5 +15,7 @@ An analysis example using celda with RNASeq via vignette('celda-analysis')
17 15
 
18 16
 ## Installation Instructions
19 17
 
18
+```
20 19
 library(devtools)
21 20
 install_github("definitelysean/celda")
21
+```
Browse code

vignettes framework

lloydliu717 authored on 24/03/2017 01:53:49
Showing 1 changed files
... ...
@@ -8,9 +8,9 @@ Description
8 8
 
9 9
 Vignettes are available in the package. 
10 10
 
11
-See Introduction of the package via vignette('celda-intro').
11
+An Introduction of the package via vignette('celda-intro').
12 12
 
13
-See a analysis example using celda with RNASeq via vignette('celda-analysis')
13
+An analysis example using celda with RNASeq via vignette('celda-analysis')
14 14
 
15 15
 ## New Features and announcements
16 16
 
Browse code

vignettes framework

lloydliu717 authored on 24/03/2017 01:53:07
Showing 1 changed files
... ...
@@ -6,8 +6,10 @@ Description
6 6
 
7 7
 ## Examples and vignettes
8 8
 
9
-Vignettes are available in the package. \n
9
+Vignettes are available in the package. 
10
+
10 11
 See Introduction of the package via vignette('celda-intro').
12
+
11 13
 See a analysis example using celda with RNASeq via vignette('celda-analysis')
12 14
 
13 15
 ## New Features and announcements
lloydliu717 authored on 24/03/2017 01:52:24
Showing 1 changed files
... ...
@@ -6,7 +6,7 @@ Description
6 6
 
7 7
 ## Examples and vignettes
8 8
 
9
-Vignettes are available in the package. 
9
+Vignettes are available in the package. \n
10 10
 See Introduction of the package via vignette('celda-intro').
11 11
 See a analysis example using celda with RNASeq via vignette('celda-analysis')
12 12
 
Browse code

vignette framework

lloydliu717 authored on 24/03/2017 01:51:29
Showing 1 changed files
... ...
@@ -6,7 +6,9 @@ Description
6 6
 
7 7
 ## Examples and vignettes
8 8
 
9
-Vignettes are available in the package via vignette('celda-intro').
9
+Vignettes are available in the package. 
10
+See Introduction of the package via vignette('celda-intro').
11
+See a analysis example using celda with RNASeq via vignette('celda-analysis')
10 12
 
11 13
 ## New Features and announcements
12 14
 
Browse code

Updated skeleton

I’ve added directories and updated the DESCRIPTION file as well as the
README.md.

masanao-yajima authored on 17/03/2017 13:35:19
Showing 1 changed files
... ...
@@ -1,2 +1,17 @@
1 1
 # celda
2
-CELlular Latent Dirichlet Allocation
2
+
3
+# celda: CELlular Latent Dirichlet Allocation
4
+
5
+Description
6
+
7
+## Examples and vignettes
8
+
9
+Vignettes are available in the package via vignette('celda-intro').
10
+
11
+## New Features and announcements
12
+
13
+
14
+## Installation Instructions
15
+
16
+library(devtools)
17
+install_github("definitelysean/celda")
Browse code

Updated README

Sean authored on 19/02/2017 22:35:00 • GitHub committed on 19/02/2017 22:35:00
Showing 1 changed files
... ...
@@ -1,2 +1,2 @@
1
-# sc-decon
2
-Bayesian Hierarchical Modeling for Clustering Single Cell RNA-Seq Data
1
+# celda
2
+CELlular Latent Dirichlet Allocation
Browse code

Initial commit

Sean authored on 19/02/2017 18:09:24
Showing 1 changed files
1 1
new file mode 100644
... ...
@@ -0,0 +1,2 @@
1
+# sc-decon
2
+Bayesian Hierarchical Modeling for Clustering Single Cell RNA-Seq Data