... | ... |
@@ -9,7 +9,9 @@ Depends: |
9 | 9 |
R (>= 3.2.2) |
10 | 10 |
Imports: |
11 | 11 |
gtools, |
12 |
- entropy |
|
12 |
+ entropy, |
|
13 |
+ RColorBrewer, |
|
14 |
+ pheatmap |
|
13 | 15 |
Suggests: |
14 | 16 |
testthat, |
15 | 17 |
knitr, |
... | ... |
@@ -20,6 +22,6 @@ VignetteBuilder: |
20 | 22 |
License: MIT |
21 | 23 |
Encoding: UTF-8 |
22 | 24 |
LazyData: true |
23 |
-RoxygenNote: 5.0.1 |
|
25 |
+RoxygenNote: 6.0.1 |
|
24 | 26 |
BugReports: |
25 |
- https://github.com/definitelysean/celda/issues |
|
26 | 27 |
\ No newline at end of file |
28 |
+ https://github.com/definitelysean/celda/issues |
... | ... |
@@ -1,9 +1,10 @@ |
1 |
-# Generated by roxygen2: do not edit by hand |
|
2 |
- |
|
3 |
-export(cCG.calcLLFromVariables) |
|
4 |
-export(cCG.generateCells) |
|
5 |
-export(celda) |
|
6 |
-export(celda_CG) |
|
7 |
-export(geneCluster) |
|
8 |
-export(generateCells_gene_clustering) |
|
9 |
-import(foreach) |
|
1 |
+# Generated by roxygen2: do not edit by hand |
|
2 |
+ |
|
3 |
+export(cCG.calcLLFromVariables) |
|
4 |
+export(cCG.generateCells) |
|
5 |
+export(celda) |
|
6 |
+export(celda_CG) |
|
7 |
+export(celda_heatmap) |
|
8 |
+export(geneCluster) |
|
9 |
+export(generateCells_gene_clustering) |
|
10 |
+import(foreach) |
10 | 11 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,42 @@ |
1 |
+##ToDo: Need to (1)scale the row height accordingly; (2) pick more contradictory color; |
|
2 |
+## (3)Aanotation need to change and; (4) what else need to do? |
|
3 |
+ #' plot the heatmap of the counts data |
|
4 |
+ #' @param counts the counts matrix |
|
5 |
+ #' @param K The number of clusters being considered (Question1)or: Total number of cell populations?? |
|
6 |
+ #' @param z A numeric vector of cluster assignments |
|
7 |
+ #' @param L Total number of transcriptional states |
|
8 |
+ #' @param col vector of colors used in heatmap |
|
9 |
+ #' @param cluster_gene boolean values determining if genes should be clustered |
|
10 |
+ #' @param cluster_cell boolean values determining if cells should be clustered |
|
11 |
+ #' @param annotation_gene data frame that specifies the annotations for genes |
|
12 |
+ #' @param annotation_cell data frame that specifies the annotations for cells |
|
13 |
+ #' @example TODO |
|
14 |
+ #' @export |
|
15 |
+ celda_heatmap <- function(counts, K, z, L, col="YlOrBr", cluster_gene = TRUE, cluster_cell = FALSE, |
|
16 |
+ annotation_gene, annotation_cell) { |
|
17 |
+ ## Set row name to counts matrix |
|
18 |
+ if(is.null(rownames(counts))){ |
|
19 |
+ rownames(counts) <- 1:nrow(counts) |
|
20 |
+ } |
|
21 |
+ else if(is.null(colnames(counts))) { |
|
22 |
+ colnames(counts) <- 1:ncol(counts) |
|
23 |
+ } |
|
24 |
+ ##-- Set cell annotation # need to do |
|
25 |
+ #annotaion_cell <- data.frame(pseudoanno = sample(c("Tcell","BCell"), nrow(counts), replace = T)) # ToDo: need to change |
|
26 |
+ ##-- Set gene annotation |
|
27 |
+ #annotation_gene <- data.frame(pseudo=sample(1:6,nrow(counts),replace=T)) |
|
28 |
+ |
|
29 |
+ ## Set color |
|
30 |
+ col.pal <- colorRampPalette(RColorBrewer::brewer.pal(n = 9, name =col))(100) # ToDo: need to be more flexible or fixed to a better color list |
|
31 |
+ pheatmap::pheatmap(counts, |
|
32 |
+ color = col.pal, |
|
33 |
+ cluster_rows = cluster_gene, |
|
34 |
+ cluster_cols = cluster_cell, |
|
35 |
+ annotation_row = annotation_gene, |
|
36 |
+ annotation_col = annotation_cell, |
|
37 |
+ cutree_rows = L, # Question1: not sure about this |
|
38 |
+ cutree_cols = L, # Question2: not sure about this either |
|
39 |
+ fontsize = 6.5, |
|
40 |
+ fontsize_col = 5 |
|
41 |
+ ) |
|
42 |
+ } |
|
0 | 43 |
\ No newline at end of file |
... | ... |
@@ -1,31 +1,30 @@ |
1 |
-% Generated by roxygen2: do not edit by hand |
|
2 |
-% Please edit documentation in R/celda_G.R |
|
3 |
-\name{calcGibbsProb} |
|
4 |
-\alias{calcGibbsProb} |
|
5 |
-\title{Calculate Log Likelihood For Single Set of Cluster Assignments (Gene Clustering)} |
|
6 |
-\usage{ |
|
7 |
-calcGibbsProb(ix, r, z, k, a, b, g) |
|
8 |
-} |
|
9 |
-\arguments{ |
|
10 |
-\item{ix}{The index in z corresponding to the cell currently being considered during Gibbs sampling} |
|
11 |
- |
|
12 |
-\item{r}{A numeric count matrix} |
|
13 |
- |
|
14 |
-\item{z}{A numeric vector of cluster assignments} |
|
15 |
- |
|
16 |
-\item{k}{The number of clusters being considered} |
|
17 |
- |
|
18 |
-\item{a}{Vector of non-zero concentration parameters for sample <-> cluster assignment Dirichlet distribution} |
|
19 |
- |
|
20 |
-\item{b}{Vector of non-zero concentration parameters for cluster <-> gene assignment Dirichlet distribution} |
|
21 |
- |
|
22 |
-\item{g}{The number of cell states ("topics")} |
|
23 |
-} |
|
24 |
-\description{ |
|
25 |
-This function calculates the log-likelihood of a cell's membership to each possible clusters, |
|
26 |
-given the cluster assignment for all other cells. |
|
27 |
-} |
|
28 |
-\examples{ |
|
29 |
-TODO |
|
30 |
-} |
|
31 |
- |
|
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 |
+% Please edit documentation in R/celda_G.R |
|
3 |
+\name{calcGibbsProb} |
|
4 |
+\alias{calcGibbsProb} |
|
5 |
+\title{Calculate Log Likelihood For Single Set of Cluster Assignments (Gene Clustering)} |
|
6 |
+\usage{ |
|
7 |
+calcGibbsProb(ix, r, z, k, a, b, g) |
|
8 |
+} |
|
9 |
+\arguments{ |
|
10 |
+\item{ix}{The index in z corresponding to the cell currently being considered during Gibbs sampling} |
|
11 |
+ |
|
12 |
+\item{r}{A numeric count matrix} |
|
13 |
+ |
|
14 |
+\item{z}{A numeric vector of cluster assignments} |
|
15 |
+ |
|
16 |
+\item{k}{The number of clusters being considered} |
|
17 |
+ |
|
18 |
+\item{a}{Vector of non-zero concentration parameters for sample <-> cluster assignment Dirichlet distribution} |
|
19 |
+ |
|
20 |
+\item{b}{Vector of non-zero concentration parameters for cluster <-> gene assignment Dirichlet distribution} |
|
21 |
+ |
|
22 |
+\item{g}{The number of cell states ("topics")} |
|
23 |
+} |
|
24 |
+\description{ |
|
25 |
+This function calculates the log-likelihood of a cell's membership to each possible clusters, |
|
26 |
+given the cluster assignment for all other cells. |
|
27 |
+} |
|
28 |
+\examples{ |
|
29 |
+TODO |
|
30 |
+} |
... | ... |
@@ -1,31 +1,30 @@ |
1 |
-% Generated by roxygen2: do not edit by hand |
|
2 |
-% Please edit documentation in R/celda_G.R |
|
3 |
-\name{calcLL_gene_clustering} |
|
4 |
-\alias{calcLL_gene_clustering} |
|
5 |
-\title{Calculate Log Likelihood For A Set of Gene Clusterings (Gene Clustering)} |
|
6 |
-\usage{ |
|
7 |
-calcLL_gene_clustering(counts, z, k, alpha, beta, gamma) |
|
8 |
-} |
|
9 |
-\arguments{ |
|
10 |
-\item{counts}{A numeric count matrix} |
|
11 |
- |
|
12 |
-\item{z}{A numeric vector of cluster assignments} |
|
13 |
- |
|
14 |
-\item{k}{The number of clusters being considered} |
|
15 |
- |
|
16 |
-\item{alpha}{Vector of non-zero concentration parameters for sample <-> cluster assignment Dirichlet distribution} |
|
17 |
- |
|
18 |
-\item{beta}{Vector of non-zero concentration parameters for cluster <-> gene assignment Dirichlet distribution} |
|
19 |
- |
|
20 |
-\item{gamma}{The number of cell states ("topics")} |
|
21 |
-} |
|
22 |
-\description{ |
|
23 |
-This function calculates the log likelihood of each clustering of genes generated |
|
24 |
-over multiple iterations of Gibbs sampling. |
|
25 |
-} |
|
26 |
-\examples{ |
|
27 |
-TODO |
|
28 |
-} |
|
29 |
-\keyword{likelihood} |
|
30 |
-\keyword{log} |
|
31 |
- |
|
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 |
+% Please edit documentation in R/celda_G.R |
|
3 |
+\name{calcLL_gene_clustering} |
|
4 |
+\alias{calcLL_gene_clustering} |
|
5 |
+\title{Calculate Log Likelihood For A Set of Gene Clusterings (Gene Clustering)} |
|
6 |
+\usage{ |
|
7 |
+calcLL_gene_clustering(counts, z, k, alpha, beta, gamma) |
|
8 |
+} |
|
9 |
+\arguments{ |
|
10 |
+\item{counts}{A numeric count matrix} |
|
11 |
+ |
|
12 |
+\item{z}{A numeric vector of cluster assignments} |
|
13 |
+ |
|
14 |
+\item{k}{The number of clusters being considered} |
|
15 |
+ |
|
16 |
+\item{alpha}{Vector of non-zero concentration parameters for sample <-> cluster assignment Dirichlet distribution} |
|
17 |
+ |
|
18 |
+\item{beta}{Vector of non-zero concentration parameters for cluster <-> gene assignment Dirichlet distribution} |
|
19 |
+ |
|
20 |
+\item{gamma}{The number of cell states ("topics")} |
|
21 |
+} |
|
22 |
+\description{ |
|
23 |
+This function calculates the log likelihood of each clustering of genes generated |
|
24 |
+over multiple iterations of Gibbs sampling. |
|
25 |
+} |
|
26 |
+\examples{ |
|
27 |
+TODO |
|
28 |
+} |
|
29 |
+\keyword{likelihood} |
|
30 |
+\keyword{log} |
... | ... |
@@ -1,33 +1,32 @@ |
1 |
-% Generated by roxygen2: do not edit by hand |
|
2 |
-% Please edit documentation in R/celda_G.R |
|
3 |
-\name{calcLLlite_gene_clustering} |
|
4 |
-\alias{calcLLlite_gene_clustering} |
|
5 |
-\title{Calculate Log Likelihood For Single Set of Cluster Assignments (Gene Clustering)} |
|
6 |
-\usage{ |
|
7 |
-calcLLlite_gene_clustering(ix, counts, z, k, alpha, beta, gamma) |
|
8 |
-} |
|
9 |
-\arguments{ |
|
10 |
-\item{ix}{The index of the cell being assigned a cluster during the current iteration of Gibbs sampling} |
|
11 |
- |
|
12 |
-\item{counts}{A numeric count matrix} |
|
13 |
- |
|
14 |
-\item{z}{A numeric vector of cluster assignments} |
|
15 |
- |
|
16 |
-\item{k}{The number of clusters being considered} |
|
17 |
- |
|
18 |
-\item{alpha}{Vector of non-zero concentration parameters for sample <-> cluster assignment Dirichlet distribution} |
|
19 |
- |
|
20 |
-\item{beta}{Vector of non-zero concentration parameters for cluster <-> gene assignment Dirichlet distribution} |
|
21 |
- |
|
22 |
-\item{gamma}{The number of cell states ("topics")} |
|
23 |
-} |
|
24 |
-\description{ |
|
25 |
-This function calculates the log-likelihood of a given set of cluster assigments for the samples |
|
26 |
-represented in the provided count matrix. |
|
27 |
-} |
|
28 |
-\examples{ |
|
29 |
-TODO |
|
30 |
-} |
|
31 |
-\keyword{likelihood} |
|
32 |
-\keyword{log} |
|
33 |
- |
|
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 |
+% Please edit documentation in R/celda_G.R |
|
3 |
+\name{calcLLlite_gene_clustering} |
|
4 |
+\alias{calcLLlite_gene_clustering} |
|
5 |
+\title{Calculate Log Likelihood For Single Set of Cluster Assignments (Gene Clustering)} |
|
6 |
+\usage{ |
|
7 |
+calcLLlite_gene_clustering(ix, counts, z, k, alpha, beta, gamma) |
|
8 |
+} |
|
9 |
+\arguments{ |
|
10 |
+\item{ix}{The index of the cell being assigned a cluster during the current iteration of Gibbs sampling} |
|
11 |
+ |
|
12 |
+\item{counts}{A numeric count matrix} |
|
13 |
+ |
|
14 |
+\item{z}{A numeric vector of cluster assignments} |
|
15 |
+ |
|
16 |
+\item{k}{The number of clusters being considered} |
|
17 |
+ |
|
18 |
+\item{alpha}{Vector of non-zero concentration parameters for sample <-> cluster assignment Dirichlet distribution} |
|
19 |
+ |
|
20 |
+\item{beta}{Vector of non-zero concentration parameters for cluster <-> gene assignment Dirichlet distribution} |
|
21 |
+ |
|
22 |
+\item{gamma}{The number of cell states ("topics")} |
|
23 |
+} |
|
24 |
+\description{ |
|
25 |
+This function calculates the log-likelihood of a given set of cluster assigments for the samples |
|
26 |
+represented in the provided count matrix. |
|
27 |
+} |
|
28 |
+\examples{ |
|
29 |
+TODO |
|
30 |
+} |
|
31 |
+\keyword{likelihood} |
|
32 |
+\keyword{log} |
34 | 33 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,31 @@ |
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 |
+% Please edit documentation in R/celda_heatmap.R |
|
3 |
+\name{celda_heatmap} |
|
4 |
+\alias{celda_heatmap} |
|
5 |
+\title{plot the heatmap of the counts data} |
|
6 |
+\usage{ |
|
7 |
+celda_heatmap(counts, K, z, L, col = "YlOrBr", cluster_gene = TRUE, |
|
8 |
+ cluster_cell = FALSE, annotation_gene, annotation_cell) |
|
9 |
+} |
|
10 |
+\arguments{ |
|
11 |
+\item{counts}{the counts matrix} |
|
12 |
+ |
|
13 |
+\item{K}{The number of clusters being considered (Question1)or: Total number of cell populations??} |
|
14 |
+ |
|
15 |
+\item{z}{A numeric vector of cluster assignments} |
|
16 |
+ |
|
17 |
+\item{L}{Total number of transcriptional states} |
|
18 |
+ |
|
19 |
+\item{col}{vector of colors used in heatmap} |
|
20 |
+ |
|
21 |
+\item{cluster_gene}{boolean values determining if genes should be clustered} |
|
22 |
+ |
|
23 |
+\item{cluster_cell}{boolean values determining if cells should be clustered} |
|
24 |
+ |
|
25 |
+\item{annotation_gene}{data frame that specifies the annotations for genes} |
|
26 |
+ |
|
27 |
+\item{annotation_cell}{data frame that specifies the annotations for cells} |
|
28 |
+} |
|
29 |
+\description{ |
|
30 |
+plot the heatmap of the counts data |
|
31 |
+} |
... | ... |
@@ -1,45 +1,44 @@ |
1 |
-% Generated by roxygen2: do not edit by hand |
|
2 |
-% Please edit documentation in R/celda_G.R |
|
3 |
-\name{geneCluster} |
|
4 |
-\alias{geneCluster} |
|
5 |
-\title{Cluster Genes from Single Cell Sequencing Data} |
|
6 |
-\usage{ |
|
7 |
-geneCluster(counts, k, a = 1, b = 1, g = 1, max.iter = 25, |
|
8 |
- min.cell = 5, seed = 12345, best = TRUE, kick = TRUE, |
|
9 |
- converge = 1e-05) |
|
10 |
-} |
|
11 |
-\arguments{ |
|
12 |
-\item{counts}{A numeric count matrix} |
|
13 |
- |
|
14 |
-\item{k}{The number of clusters to generate} |
|
15 |
- |
|
16 |
-\item{a}{Vector of non-zero concentration parameters for sample <-> cluster assignment Dirichlet distribution} |
|
17 |
- |
|
18 |
-\item{b}{Vector of non-zero concentration parameters for cluster <-> gene assignment Dirichlet distribution} |
|
19 |
- |
|
20 |
-\item{g}{Number of cell states ("topics")} |
|
21 |
- |
|
22 |
-\item{max.iter}{Maximum iterations of Gibbs sampling to perform. Defaults to 25.} |
|
23 |
- |
|
24 |
-\item{min.cell}{Desired minimum number of cells per cluster} |
|
25 |
- |
|
26 |
-\item{seed}{Parameter to set.seed() for random number generation} |
|
27 |
- |
|
28 |
-\item{best}{Whether to return the cluster assignment with the highest log-likelihood. Defaults to TRUE. Returns last generated cluster assignment when FALSE.} |
|
29 |
- |
|
30 |
-\item{kick}{Whether to randomize cluster assignments when a cluster has fewer than min.cell cells assigned to it during Gibbs sampling. (TODO param currently unused?)} |
|
31 |
- |
|
32 |
-\item{converge}{Threshold at which to consider the Markov chain converged} |
|
33 |
-} |
|
34 |
-\description{ |
|
35 |
-geneCluster provides cluster assignments for all genes in a provided single-cell |
|
36 |
-sequencing count matrix, using the celda Bayesian hierarchical model. |
|
37 |
-} |
|
38 |
-\examples{ |
|
39 |
-TODO |
|
40 |
-} |
|
41 |
-\keyword{LDA} |
|
42 |
-\keyword{clustering} |
|
43 |
-\keyword{gene} |
|
44 |
-\keyword{gibbs} |
|
45 |
- |
|
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 |
+% Please edit documentation in R/celda_G.R |
|
3 |
+\name{geneCluster} |
|
4 |
+\alias{geneCluster} |
|
5 |
+\title{Cluster Genes from Single Cell Sequencing Data} |
|
6 |
+\usage{ |
|
7 |
+geneCluster(counts, k, a = 1, b = 1, g = 1, max.iter = 25, |
|
8 |
+ min.cell = 5, seed = 12345, best = TRUE, kick = TRUE, |
|
9 |
+ converge = 1e-05) |
|
10 |
+} |
|
11 |
+\arguments{ |
|
12 |
+\item{counts}{A numeric count matrix} |
|
13 |
+ |
|
14 |
+\item{k}{The number of clusters to generate} |
|
15 |
+ |
|
16 |
+\item{a}{Vector of non-zero concentration parameters for sample <-> cluster assignment Dirichlet distribution} |
|
17 |
+ |
|
18 |
+\item{b}{Vector of non-zero concentration parameters for cluster <-> gene assignment Dirichlet distribution} |
|
19 |
+ |
|
20 |
+\item{g}{Number of cell states ("topics")} |
|
21 |
+ |
|
22 |
+\item{max.iter}{Maximum iterations of Gibbs sampling to perform. Defaults to 25.} |
|
23 |
+ |
|
24 |
+\item{min.cell}{Desired minimum number of cells per cluster} |
|
25 |
+ |
|
26 |
+\item{seed}{Parameter to set.seed() for random number generation} |
|
27 |
+ |
|
28 |
+\item{best}{Whether to return the cluster assignment with the highest log-likelihood. Defaults to TRUE. Returns last generated cluster assignment when FALSE.} |
|
29 |
+ |
|
30 |
+\item{kick}{Whether to randomize cluster assignments when a cluster has fewer than min.cell cells assigned to it during Gibbs sampling. (TODO param currently unused?)} |
|
31 |
+ |
|
32 |
+\item{converge}{Threshold at which to consider the Markov chain converged} |
|
33 |
+} |
|
34 |
+\description{ |
|
35 |
+geneCluster provides cluster assignments for all genes in a provided single-cell |
|
36 |
+sequencing count matrix, using the celda Bayesian hierarchical model. |
|
37 |
+} |
|
38 |
+\examples{ |
|
39 |
+TODO |
|
40 |
+} |
|
41 |
+\keyword{LDA} |
|
42 |
+\keyword{clustering} |
|
43 |
+\keyword{gene} |
|
44 |
+\keyword{gibbs} |
... | ... |
@@ -1,32 +1,31 @@ |
1 |
-% Generated by roxygen2: do not edit by hand |
|
2 |
-% Please edit documentation in R/celda_G.R |
|
3 |
-\name{generateCells_gene_clustering} |
|
4 |
-\alias{generateCells_gene_clustering} |
|
5 |
-\title{Generate Count Data} |
|
6 |
-\usage{ |
|
7 |
-generateCells_gene_clustering(C = 100, N.Range = c(500, 5000), G = 1000, |
|
8 |
- k = 5, a = 1, b = 1, g = 1, seed = 12345) |
|
9 |
-} |
|
10 |
-\arguments{ |
|
11 |
-\item{C}{The number of cells} |
|
12 |
- |
|
13 |
-\item{N.Range}{The range of counts each gene should have} |
|
14 |
- |
|
15 |
-\item{G}{The number of genes for which to simulate counts} |
|
16 |
- |
|
17 |
-\item{a}{Vector of non-zero concentration parameters for sample <-> cluster assignment Dirichlet distribution} |
|
18 |
- |
|
19 |
-\item{b}{Vector of non-zero concentration parameters for cluster <-> gene assignment Dirichlet distribution} |
|
20 |
- |
|
21 |
-\item{g}{The number of cell states ("topics")' @param k The number of gene clusters to simulate from} |
|
22 |
- |
|
23 |
-\item{seed}{Parameter to set.seed() for random number generation} |
|
24 |
-} |
|
25 |
-\description{ |
|
26 |
-Generate a simulated count matrix, based off a generative distribution whose |
|
27 |
-parameters can be provided by the user. |
|
28 |
-} |
|
29 |
-\examples{ |
|
30 |
-TODO |
|
31 |
-} |
|
32 |
- |
|
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 |
+% Please edit documentation in R/celda_G.R |
|
3 |
+\name{generateCells_gene_clustering} |
|
4 |
+\alias{generateCells_gene_clustering} |
|
5 |
+\title{Generate Count Data} |
|
6 |
+\usage{ |
|
7 |
+generateCells_gene_clustering(C = 100, N.Range = c(500, 5000), G = 1000, |
|
8 |
+ k = 5, a = 1, b = 1, g = 1, seed = 12345) |
|
9 |
+} |
|
10 |
+\arguments{ |
|
11 |
+\item{C}{The number of cells} |
|
12 |
+ |
|
13 |
+\item{N.Range}{The range of counts each gene should have} |
|
14 |
+ |
|
15 |
+\item{G}{The number of genes for which to simulate counts} |
|
16 |
+ |
|
17 |
+\item{a}{Vector of non-zero concentration parameters for sample <-> cluster assignment Dirichlet distribution} |
|
18 |
+ |
|
19 |
+\item{b}{Vector of non-zero concentration parameters for cluster <-> gene assignment Dirichlet distribution} |
|
20 |
+ |
|
21 |
+\item{g}{The number of cell states ("topics")' @param k The number of gene clusters to simulate from} |
|
22 |
+ |
|
23 |
+\item{seed}{Parameter to set.seed() for random number generation} |
|
24 |
+} |
|
25 |
+\description{ |
|
26 |
+Generate a simulated count matrix, based off a generative distribution whose |
|
27 |
+parameters can be provided by the user. |
|
28 |
+} |
|
29 |
+\examples{ |
|
30 |
+TODO |
|
31 |
+} |
... | ... |
@@ -1,24 +1,23 @@ |
1 |
-% Generated by roxygen2: do not edit by hand |
|
2 |
-% Please edit documentation in R/celda_G.R |
|
3 |
-\name{sample.ll} |
|
4 |
-\alias{sample.ll} |
|
5 |
-\title{Sample log-likelihood probabilities} |
|
6 |
-\usage{ |
|
7 |
-sample.ll(ll.probs) |
|
8 |
-} |
|
9 |
-\arguments{ |
|
10 |
-\item{counts}{A numeric count matrix} |
|
11 |
-} |
|
12 |
-\value{ |
|
13 |
-A single integer in 1:k corresponding to a cluster assignment |
|
14 |
-} |
|
15 |
-\description{ |
|
16 |
-Given a set of log-likelihoods for cluster membership, return a single cluster assignment. |
|
17 |
-} |
|
18 |
-\examples{ |
|
19 |
-TODO |
|
20 |
-} |
|
21 |
-\keyword{likelihood} |
|
22 |
-\keyword{log} |
|
23 |
-\keyword{sample} |
|
24 |
- |
|
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 |
+% Please edit documentation in R/celda_G.R |
|
3 |
+\name{sample.ll} |
|
4 |
+\alias{sample.ll} |
|
5 |
+\title{Sample log-likelihood probabilities} |
|
6 |
+\usage{ |
|
7 |
+sample.ll(ll.probs) |
|
8 |
+} |
|
9 |
+\arguments{ |
|
10 |
+\item{counts}{A numeric count matrix} |
|
11 |
+} |
|
12 |
+\value{ |
|
13 |
+A single integer in 1:k corresponding to a cluster assignment |
|
14 |
+} |
|
15 |
+\description{ |
|
16 |
+Given a set of log-likelihoods for cluster membership, return a single cluster assignment. |
|
17 |
+} |
|
18 |
+\examples{ |
|
19 |
+TODO |
|
20 |
+} |
|
21 |
+\keyword{likelihood} |
|
22 |
+\keyword{log} |
|
23 |
+\keyword{sample} |