... | ... |
@@ -112,24 +112,25 @@ opts_chunk$set( |
112 | 112 |
Reduced dimensional 2-D plots created by algorithms such as tSNE and UMAP are useful for visualizing the relationship between cells. Each point on the plot represents a single cell. Cells closer together on the plot have more similar expression profiles across all genes. The tabs below show the `r reducedDimName` dimensions colored by different variables. The *Cluster* tab colors cells by the `r K` subpopulation labels identified by celda_CG, The *Sample Labels* tab colors cells by the sample label supplied to celda_CG. If no sample label was supplied to celda_CG, then all cells will be the same color. The *Cell Annotations* tab contains colors points by other pre-specified cell-level annotations. |
113 | 113 |
|
114 | 114 |
### Clusters |
115 |
-```{r celda_clusters, fig.height = 9, fig.width = 9} |
|
115 |
+```{r celda_clusters} |
|
116 | 116 |
plotDimReduceCluster(sce, reducedDimName = reducedDimName, labelClusters = TRUE) |
117 | 117 |
``` |
118 | 118 |
|
119 | 119 |
### Sample Labels |
120 |
-```{r celda_samples, fig.height = 9, fig.width = 9} |
|
120 |
+```{r celda_samples} |
|
121 | 121 |
plotSCEDimReduceColData( |
122 | 122 |
altExp(sce), |
123 | 123 |
reducedDimName = reducedDimName, |
124 | 124 |
colorBy = "celda_sample_label", |
125 |
- labelClusters = FALSE |
|
125 |
+ labelClusters = FALSE, |
|
126 |
+ dotSize = 0.5 |
|
126 | 127 |
) |
127 | 128 |
``` |
128 | 129 |
|
129 | 130 |
|
130 | 131 |
### Cell Annotations {.tabset .tabset-fade} |
131 | 132 |
|
132 |
-```{r celda_cellAnnot, results = "asis", fig.height = 9, fig.width = 10} |
|
133 |
+```{r celda_cellAnnot, results = "asis"} |
|
133 | 134 |
if (!is.null(cellAnnotFinal)) { |
134 | 135 |
for (i in seq_along(cellAnnotFinal)) { |
135 | 136 |
cat(sprintf(tab4, cellAnnotFinal[i])) |
... | ... |
@@ -139,11 +140,11 @@ if (!is.null(cellAnnotFinal)) { |
139 | 140 |
print( |
140 | 141 |
plotSCEDimReduceColData( |
141 | 142 |
altExp(sce), |
142 |
- sample = sce$sample, |
|
143 | 143 |
colorBy = cellAnnotFinal[i], |
144 | 144 |
conditionClass = conditionClass, |
145 | 145 |
reducedDim = reducedDimName, |
146 |
- labelClusters = plotLabels[i] |
|
146 |
+ labelClusters = plotLabels[i], |
|
147 |
+ dotSize = 0.5 |
|
147 | 148 |
) |
148 | 149 |
) |
149 | 150 |
cat(space) |
... | ... |
@@ -141,7 +141,7 @@ grid.arrange(p1, p2, ncol = 2) |
141 | 141 |
``` |
142 | 142 |
|
143 | 143 |
|
144 |
-## Determining the number of cell populaitons (K) |
|
144 |
+## Determining the number of cell populations (K) |
|
145 | 145 |
The ```recursiveSplitCell``` function fits different celda models for a range of ```K``` values from `r initialK` to `r maxK`. The number of modules is set to ```L``` and the module labels from the ```recursiveSplitModule``` output are used for initialization. Similarly, the first model is fit with ```r paste0("K = ", initialK)```. Then the `celda_C` model is used to split each cell population into two new cell populations and the likelihood is re-calculated. The split that produced the best overall likelihood out of all splits is used for the next model with `K+1` cell populations. Perplexity and RPC are calculated as described in the previous section. The elbow can be used as a good starting point for possible choices of ```K```. Lastly, the final model is selected and the modules and cells are reordered using hierarchical clustering so that more similar modules and cell populations will have more similar values of L and K, respectively. Different choices for ```K``` are also visualized in reduced dimensional plots in the next section. |
146 | 146 |
|
147 | 147 |
```{r cell_split} |
... | ... |
@@ -182,7 +182,7 @@ Reduced dimensional 2-D plots created by algorithms such as tSNE and UMAP are us |
182 | 182 |
|
183 | 183 |
### tSNE {.tabset .tabset-fade} |
184 | 184 |
```{r dimreduce_tsne, results = "asis"} |
185 |
-sce <- celdaTsne(sce) |
|
185 |
+sce <- celdaTsne(sce, useAssay = useAssay, altExpName = altExpName) |
|
186 | 186 |
tsne <- reducedDim(altExp(sce, altExpName), "celda_tSNE") |
187 | 187 |
for (i in seq.int(initialK, maxK)) { |
188 | 188 |
cat(sprintf(tab4, paste0("K = ", i))) |
... | ... |
@@ -202,7 +202,7 @@ for (i in seq.int(initialK, maxK)) { |
202 | 202 |
|
203 | 203 |
### UMAP {.tabset .tabset-fade} |
204 | 204 |
```{r dimreduce_umap, results = "asis"} |
205 |
-sce <- celdaUmap(sce) |
|
205 |
+sce <- celdaUmap(sce, useAssay = useAssay, altExpName = altExpName) |
|
206 | 206 |
umap <- reducedDim(altExp(sce, altExpName), "celda_UMAP") |
207 | 207 |
for (i in seq.int(initialK, maxK)) { |
208 | 208 |
cat(sprintf(tab4, paste0("K = ", i))) |