Browse code

Fixed lints

Joshua D. Campbell authored on 19/07/2021 13:17:02
Showing 8 changed files

... ...
@@ -11,7 +11,7 @@
11 11
 #'  Rows represent features and columns represent cells. Alternatively,
12 12
 #'  any matrix-like object that can be coerced to a sparse matrix of class
13 13
 #'  "dgCMatrix" can be directly used as input. The matrix will automatically be
14
-#'  converted to a \linkS4class{SingleCellExperiment} object. 
14
+#'  converted to a \linkS4class{SingleCellExperiment} object.
15 15
 #' @param useAssay A string specifying the name of the
16 16
 #'  \link{assay} slot to use. Default "counts".
17 17
 #' @param altExpName The name for the \link{altExp} slot
... ...
@@ -189,7 +189,7 @@ setMethod("celda_C",
189 189
 
190 190
         # Convert to sparse matrix
191 191
         x <- methods::as(x, "dgCMatrix")
192
-        
192
+
193 193
         ls <- list()
194 194
         ls[[useAssay]] <- x
195 195
         sce <- SingleCellExperiment::SingleCellExperiment(assays = ls)
... ...
@@ -11,7 +11,7 @@
11 11
 #'  Rows represent features and columns represent cells. Alternatively,
12 12
 #'  any matrix-like object that can be coerced to a sparse matrix of class
13 13
 #'  "dgCMatrix" can be directly used as input. The matrix will automatically be
14
-#'  converted to a \linkS4class{SingleCellExperiment} object. 
14
+#'  converted to a \linkS4class{SingleCellExperiment} object.
15 15
 #' @param useAssay A string specifying the name of the
16 16
 #'  \link{assay} slot to use. Default "counts".
17 17
 #' @param altExpName The name for the \link{altExp} slot
... ...
@@ -223,7 +223,7 @@ setMethod("celda_CG",
223 223
 
224 224
         # Convert to sparse matrix
225 225
         x <- methods::as(x, "dgCMatrix")
226
-      
226
+
227 227
         ls <- list()
228 228
         ls[[useAssay]] <- x
229 229
         sce <- SingleCellExperiment::SingleCellExperiment(assays = ls)
... ...
@@ -11,7 +11,7 @@
11 11
 #'  Rows represent features and columns represent cells. Alternatively,
12 12
 #'  any matrix-like object that can be coerced to a sparse matrix of class
13 13
 #'  "dgCMatrix" can be directly used as input. The matrix will automatically be
14
-#'  converted to a \linkS4class{SingleCellExperiment} object. 
14
+#'  converted to a \linkS4class{SingleCellExperiment} object.
15 15
 #' @param useAssay A string specifying the name of the
16 16
 #'  \link{assay} slot to use. Default "counts".
17 17
 #' @param altExpName The name for the \link{altExp} slot
... ...
@@ -173,7 +173,7 @@ setMethod("celda_G",
173 173
 
174 174
         # Convert to sparse matrix
175 175
         x <- methods::as(x, "dgCMatrix")
176
-      
176
+
177 177
         ls <- list()
178 178
         ls[[useAssay]] <- x
179 179
         sce <- SingleCellExperiment::SingleCellExperiment(assays = ls)
... ...
@@ -553,7 +553,7 @@ featureModuleTable <- function(sce,
553 553
       altExpName = altExpName,
554 554
       type = "proportion")
555 555
   altExp <- SingleCellExperiment::altExp(sce, altExpName)
556
-  
556
+
557 557
   allGenes <- topRank(factorizeMatrix$proportions$module, n = nrow(altExp))
558 558
   maxlen <- max(vapply(allGenes$names, length, integer(1)))
559 559
 
... ...
@@ -44,14 +44,14 @@ setMethod("featureModuleLookup", signature(sce = "SingleCellExperiment"),
44 44
         by = "rownames") {
45 45
 
46 46
         modules <- as.numeric(celdaModules(sce, altExpName = altExpName))
47
-        
47
+
48 48
         if (celdaModel(sce, altExpName = altExpName) %in%
49 49
                 c("celda_CG", "celda_G")) {
50 50
           altExp <- SingleCellExperiment::altExp(sce, altExpName)
51 51
           featureIndex <- retrieveFeatureIndex(features, x = altExp,
52 52
                 exactMatch = exactMatch, by = by)
53 53
           featureModules <- modules[featureIndex]
54
-          names(featureModules) <- features  
54
+          names(featureModules) <- features
55 55
         } else {
56 56
             stop("S4Vectors::metadata(altExp(sce, altExpName))$",
57 57
                 "celda_parameters$model must be",
... ...
@@ -60,5 +60,3 @@ setMethod("featureModuleLookup", signature(sce = "SingleCellExperiment"),
60 60
         return(featureModules)
61 61
     }
62 62
 )
63
-
64
-
... ...
@@ -264,7 +264,7 @@ setMethod("moduleHeatmap",
264 264
 
265 265
         # Get max rowFontSize if multiple modules are selected
266 266
         if (is.null(rowFontSize)) {
267
-          if(length(featureIndices) > 1) {
267
+          if (length(featureIndices) > 1) {
268 268
             maxlen <- max(unlist(lapply(featureIndices, length)))
269 269
             maxlen <- maxlen * sqrt(length(featureIndices))
270 270
             rowFontSize <- min(200 / maxlen, 20)
... ...
@@ -272,7 +272,7 @@ setMethod("moduleHeatmap",
272 272
             rowFontSize <- min(200 / length(featureIndices[[1]]), 20)
273 273
           }
274 274
         }
275
-        
275
+
276 276
         plts <- vector("list", length = length(featureModule))
277 277
         for (i in seq(length(featureModule))) {
278 278
             plts[[i]] <- .plotModuleHeatmap(normCounts = normCounts,
... ...
@@ -882,8 +882,8 @@ setMethod("plotRPC",
882 882
         diffMeansByK$L <- as.factor(diffMeansByK$L)
883 883
         diffMeansByK$rollmean <- data.table::frollmean(
884 884
             diffMeansByK$meanperpdiffK, n = n, align = "center")
885
-        diffMeansByK <- diffMeansByK[stats::complete.cases(diffMeansByK),]
886
-        
885
+        diffMeansByK <- diffMeansByK[stats::complete.cases(diffMeansByK), ]
886
+
887 887
         if (nlevels(dt$L) > 1) {
888 888
             plot <- ggplot2::ggplot(dt[!is.na(perpdiffK), ],
889 889
                 ggplot2::aes_string(x = "K",
... ...
@@ -939,8 +939,8 @@ setMethod("plotRPC",
939 939
         diffMeansByL$L <- as.factor(diffMeansByL$L)
940 940
         diffMeansByL$rollmean <- data.table::frollmean(
941 941
             diffMeansByL$meanperpdiffL, n = n, align = "center")
942
-        diffMeansByL <- diffMeansByL[stats::complete.cases(diffMeansByL),]
943
-        
942
+        diffMeansByL <- diffMeansByL[stats::complete.cases(diffMeansByL), ]
943
+
944 944
         plot <- ggplot2::ggplot(dt[!is.na(perpdiffL), ],
945 945
             ggplot2::aes_string(x = "L", y = "perpdiffL")) +
946 946
             ggplot2::geom_jitter(height = 0, width = 0.1,
... ...
@@ -1002,8 +1002,8 @@ setMethod("plotRPC",
1002 1002
         diffMeansByK$K <- as.factor(diffMeansByK$K)
1003 1003
         diffMeansByK$rollmean <- data.table::frollmean(
1004 1004
             diffMeansByK$meanperpdiffK, n = n, align = "center")
1005
-        diffMeansByK <- diffMeansByK[stats::complete.cases(diffMeansByK),]
1006
-        
1005
+        diffMeansByK <- diffMeansByK[stats::complete.cases(diffMeansByK), ]
1006
+
1007 1007
         plot <- ggplot2::ggplot(dt[!is.na(perpdiffK), ],
1008 1008
             ggplot2::aes_string(x = "K",
1009 1009
                 y = "perpdiffK")) +
... ...
@@ -1062,8 +1062,8 @@ setMethod("plotRPC",
1062 1062
         diffMeansByL$L <- as.factor(diffMeansByL$L)
1063 1063
         diffMeansByL$rollmean <- data.table::frollmean(
1064 1064
             diffMeansByL$meanperpdiffL, n = n, align = "center")
1065
-        diffMeansByL <- diffMeansByL[stats::complete.cases(diffMeansByL),]
1066
-        
1065
+        diffMeansByL <- diffMeansByL[stats::complete.cases(diffMeansByL), ]
1066
+
1067 1067
         plot <- ggplot2::ggplot(dt[!is.na(perpdiffL), ],
1068 1068
             ggplot2::aes_string(x = "L",
1069 1069
                 y = "perpdiffL")) +
... ...
@@ -47,25 +47,26 @@
47 47
 #' @return The plot as a ggplot object
48 48
 #' @export
49 49
 setGeneric("plotDimReduceGrid",
50
-    function(x,
51
-        reducedDimName,
52
-        dim1 = NULL,
53
-        dim2 = NULL,
54
-        useAssay = "counts",
55
-        altExpName = "featureSubset",
56
-        size = 1,
57
-        xlab = "Dimension_1",
58
-        ylab = "Dimension_2",
59
-        limits = c(-2, 2),
60
-        colorLow = "blue4",
61
-        colorMid = "grey90",
62
-        colorHigh = "firebrick1",
63
-        midpoint = 0,
64
-        varLabel = NULL,
65
-        ncol = NULL,
66
-        headers = NULL,
67
-        decreasing = FALSE) {
68
-    standardGeneric("plotDimReduceGrid")})
50
+           function(x,
51
+                    reducedDimName,
52
+                    dim1 = NULL,
53
+                    dim2 = NULL,
54
+                    useAssay = "counts",
55
+                    altExpName = "featureSubset",
56
+                    size = 1,
57
+                    xlab = "Dimension_1",
58
+                    ylab = "Dimension_2",
59
+                    limits = c(-2, 2),
60
+                    colorLow = "blue4",
61
+                    colorMid = "grey90",
62
+                    colorHigh = "firebrick1",
63
+                    midpoint = 0,
64
+                    varLabel = NULL,
65
+                    ncol = NULL,
66
+                    headers = NULL,
67
+                    decreasing = FALSE) {
68
+             standardGeneric("plotDimReduceGrid")
69
+           })
69 70
 
70 71
 
71 72
 #' @rdname plotDimReduceGrid
... ...
@@ -79,57 +80,57 @@ setGeneric("plotDimReduceGrid",
79 80
 #'   varLabel = "tSNE")
80 81
 #' @export
81 82
 setMethod("plotDimReduceGrid",
82
-    signature(x = "SingleCellExperiment"),
83
-    function(x,
84
-        reducedDimName,
85
-        dim1 = NULL,
86
-        dim2 = NULL,
87
-        useAssay = "counts",
88
-        altExpName = "featureSubset",
89
-        size = 1,
90
-        xlab = "Dimension_1",
91
-        ylab = "Dimension_2",
92
-        limits = c(-2, 2),
93
-        colorLow = "blue4",
94
-        colorMid = "grey90",
95
-        colorHigh = "firebrick1",
96
-        midpoint = 0,
97
-        varLabel = NULL,
98
-        ncol = NULL,
99
-        headers = NULL,
100
-        decreasing = FALSE) {
101
-
102
-        altExp <- SingleCellExperiment::altExp(x, altExpName)
103
-        matrix <- SummarizedExperiment::assay(x, i = useAssay)
104
-
105
-        if (is.null(dim1)) {
106
-            dim1 <- SingleCellExperiment::reducedDim(altExp,
107
-                reducedDimName)[, 1]
108
-        }
109
-
110
-        if (is.null(dim2)) {
111
-            dim2 <- SingleCellExperiment::reducedDim(altExp,
112
-                reducedDimName)[, 2]
113
-        }
114
-
115
-        g <- .plotDimReduceGrid(dim1 = dim1,
116
-            dim2 = dim2,
117
-            matrix = matrix,
118
-            size = size,
119
-            xlab = xlab,
120
-            ylab = ylab,
121
-            limits = limits,
122
-            colorLow = colorLow,
123
-            colorMid = colorMid,
124
-            colorHigh = colorHigh,
125
-            midpoint = midpoint,
126
-            varLabel = varLabel,
127
-            ncol = ncol,
128
-            headers = headers,
129
-            decreasing = decreasing)
130
-        return(g)
131
-    }
132
-)
83
+          signature(x = "SingleCellExperiment"),
84
+          function(x,
85
+                   reducedDimName,
86
+                   dim1 = NULL,
87
+                   dim2 = NULL,
88
+                   useAssay = "counts",
89
+                   altExpName = "featureSubset",
90
+                   size = 1,
91
+                   xlab = "Dimension_1",
92
+                   ylab = "Dimension_2",
93
+                   limits = c(-2, 2),
94
+                   colorLow = "blue4",
95
+                   colorMid = "grey90",
96
+                   colorHigh = "firebrick1",
97
+                   midpoint = 0,
98
+                   varLabel = NULL,
99
+                   ncol = NULL,
100
+                   headers = NULL,
101
+                   decreasing = FALSE) {
102
+            altExp <- SingleCellExperiment::altExp(x, altExpName)
103
+            matrix <- SummarizedExperiment::assay(x, i = useAssay)
104
+
105
+            if (is.null(dim1)) {
106
+              dim1 <- SingleCellExperiment::reducedDim(altExp,
107
+                                                       reducedDimName)[, 1]
108
+            }
109
+
110
+            if (is.null(dim2)) {
111
+              dim2 <- SingleCellExperiment::reducedDim(altExp,
112
+                                                       reducedDimName)[, 2]
113
+            }
114
+
115
+            g <- .plotDimReduceGrid(
116
+              dim1 = dim1,
117
+              dim2 = dim2,
118
+              matrix = matrix,
119
+              size = size,
120
+              xlab = xlab,
121
+              ylab = ylab,
122
+              limits = limits,
123
+              colorLow = colorLow,
124
+              colorMid = colorMid,
125
+              colorHigh = colorHigh,
126
+              midpoint = midpoint,
127
+              varLabel = varLabel,
128
+              ncol = ncol,
129
+              headers = headers,
130
+              decreasing = decreasing
131
+            )
132
+            return(g)
133
+          })
133 134
 
134 135
 
135 136
 #' @rdname plotDimReduceGrid
... ...
@@ -145,151 +146,142 @@ setMethod("plotDimReduceGrid",
145 146
 #'   varLabel = "tSNE")
146 147
 #' @export
147 148
 setMethod("plotDimReduceGrid",
148
-    signature(x = "ANY"),
149
-    function(x,
150
-        dim1,
151
-        dim2,
152
-        size = 1,
153
-        xlab = "Dimension_1",
154
-        ylab = "Dimension_2",
155
-        limits = c(-2, 2),
156
-        colorLow = "blue4",
157
-        colorMid = "grey90",
158
-        colorHigh = "firebrick1",
159
-        midpoint = 0,
160
-        varLabel = NULL,
161
-        ncol = NULL,
162
-        headers = NULL,
163
-        decreasing = FALSE) {
164
-
165
-        x <- as.matrix(x)
166
-        g <- .plotDimReduceGrid(dim1 = dim1,
167
-            dim2 = dim2,
168
-            matrix = x,
169
-            size = size,
170
-            xlab = xlab,
171
-            ylab = ylab,
172
-            limits = limits,
173
-            colorLow = colorLow,
174
-            colorMid = colorMid,
175
-            colorHigh = colorHigh,
176
-            midpoint = midpoint,
177
-            varLabel = varLabel,
178
-            ncol = ncol,
179
-            headers = headers,
180
-            decreasing = decreasing)
181
-        return(g)
182
-    }
183
-)
149
+          signature(x = "ANY"),
150
+          function(x,
151
+                   dim1,
152
+                   dim2,
153
+                   size = 1,
154
+                   xlab = "Dimension_1",
155
+                   ylab = "Dimension_2",
156
+                   limits = c(-2, 2),
157
+                   colorLow = "blue4",
158
+                   colorMid = "grey90",
159
+                   colorHigh = "firebrick1",
160
+                   midpoint = 0,
161
+                   varLabel = NULL,
162
+                   ncol = NULL,
163
+                   headers = NULL,
164
+                   decreasing = FALSE) {
165
+            x <- as.matrix(x)
166
+            g <- .plotDimReduceGrid(
167
+              dim1 = dim1,
168
+              dim2 = dim2,
169
+              matrix = x,
170
+              size = size,
171
+              xlab = xlab,
172
+              ylab = ylab,
173
+              limits = limits,
174
+              colorLow = colorLow,
175
+              colorMid = colorMid,
176
+              colorHigh = colorHigh,
177
+              midpoint = midpoint,
178
+              varLabel = varLabel,
179
+              ncol = ncol,
180
+              headers = headers,
181
+              decreasing = decreasing
182
+            )
183
+            return(g)
184
+          })
184 185
 
185 186
 
186 187
 #' @importFrom reshape2 melt
187 188
 .plotDimReduceGrid <- function(dim1,
188
-    dim2,
189
-    matrix,
190
-    size,
191
-    xlab,
192
-    ylab,
193
-    limits,
194
-    colorLow,
195
-    colorMid,
196
-    colorHigh,
197
-    midpoint,
198
-    varLabel,
199
-    ncol,
200
-    headers,
201
-    decreasing) {
202
-
203
-    df <- data.frame(dim1, dim2, t(as.data.frame(matrix)), check.names = FALSE)
204
-    naIx <- is.na(dim1) | is.na(dim2)
205
-    df <- df[!naIx, ]
206
-
207
-    m <- reshape2::melt(df, id.vars = c("dim1", "dim2"))
208
-    colnames(m) <- c(xlab, ylab, "facet", "Expression")
209
-
210
-    if (!is.null(decreasing)) {
211
-        m <- m[order(m$facet, m$Expression, decreasing = decreasing), ]
212
-    }
189
+                               dim2,
190
+                               matrix,
191
+                               size,
192
+                               xlab,
193
+                               ylab,
194
+                               limits,
195
+                               colorLow,
196
+                               colorMid,
197
+                               colorHigh,
198
+                               midpoint,
199
+                               varLabel,
200
+                               ncol,
201
+                               headers,
202
+                               decreasing) {
203
+  df <-
204
+    data.frame(dim1, dim2, t(as.data.frame(matrix)), check.names = FALSE)
205
+  naIx <- is.na(dim1) | is.na(dim2)
206
+  df <- df[!naIx, ]
213 207
 
214
-    if (is.null(midpoint)) {
215
-        midpoint <- mean(m[, 4], trim = 0.1)
216
-    }
208
+  m <- reshape2::melt(df, id.vars = c("dim1", "dim2"))
209
+  colnames(m) <- c(xlab, ylab, "facet", "Expression")
217 210
 
218
-    varLabel <- gsub("_", " ", varLabel)
219
-
220
-    if (isFALSE(is.null(headers))) {
221
-        names(headers) <- levels(m$facet)
222
-        headers <- ggplot2::as_labeller(headers)
223
-
224
-        g <- ggplot2::ggplot(
225
-            m,
226
-            ggplot2::aes_string(x = xlab, y = ylab)
227
-        ) +
228
-            ggplot2::geom_point(
229
-                stat = "identity",
230
-                size = size,
231
-                ggplot2::aes_string(color = m$Expression)
232
-            ) +
233
-            ggplot2::theme_bw() +
234
-            ggplot2::scale_colour_gradient2(
235
-                limits = limits,
236
-                low = colorLow,
237
-                high = colorHigh,
238
-                mid = colorMid,
239
-                midpoint = midpoint,
240
-                name = varLabel
241
-            ) +
242
-            ggplot2::theme(
243
-                strip.background = ggplot2::element_blank(),
244
-                panel.grid.major = ggplot2::element_blank(),
245
-                panel.grid.minor = ggplot2::element_blank(),
246
-                panel.spacing = unit(0, "lines"),
247
-                panel.background = ggplot2::element_blank(),
248
-                axis.line = ggplot2::element_line(colour = "black")
249
-            )
250
-        if (isFALSE(is.null(ncol))) {
251
-            g <- g + ggplot2::facet_wrap(~facet,
252
-                labeller = headers,
253
-                ncol = ncol
254
-            )
255
-        } else {
256
-            g <- g + ggplot2::facet_wrap(~facet, labeller = headers)
257
-        }
211
+  if (!is.null(decreasing)) {
212
+    m <- m[order(m$facet, m$Expression, decreasing = decreasing), ]
213
+  }
214
+
215
+  if (is.null(midpoint)) {
216
+    midpoint <- mean(m[, 4], trim = 0.1)
217
+  }
218
+
219
+  varLabel <- gsub("_", " ", varLabel)
220
+
221
+  if (isFALSE(is.null(headers))) {
222
+    names(headers) <- levels(m$facet)
223
+    headers <- ggplot2::as_labeller(headers)
224
+
225
+    g <- ggplot2::ggplot(m,
226
+                         ggplot2::aes_string(x = xlab, y = ylab)) +
227
+      ggplot2::geom_point(stat = "identity",
228
+                          size = size,
229
+                          ggplot2::aes_string(color = m$Expression)) +
230
+      ggplot2::theme_bw() +
231
+      ggplot2::scale_colour_gradient2(
232
+        limits = limits,
233
+        low = colorLow,
234
+        high = colorHigh,
235
+        mid = colorMid,
236
+        midpoint = midpoint,
237
+        name = varLabel
238
+      ) +
239
+      ggplot2::theme(
240
+        strip.background = ggplot2::element_blank(),
241
+        panel.grid.major = ggplot2::element_blank(),
242
+        panel.grid.minor = ggplot2::element_blank(),
243
+        panel.spacing = unit(0, "lines"),
244
+        panel.background = ggplot2::element_blank(),
245
+        axis.line = ggplot2::element_line(colour = "black")
246
+      )
247
+    if (isFALSE(is.null(ncol))) {
248
+      g <- g + ggplot2::facet_wrap(~ facet,
249
+                                  labeller = headers,
250
+                                  ncol = ncol)
258 251
     } else {
259
-        g <- ggplot2::ggplot(
260
-            m,
261
-            ggplot2::aes_string(x = xlab, y = ylab)
262
-        ) +
263
-            ggplot2::geom_point(
264
-                stat = "identity",
265
-                size = size,
266
-                ggplot2::aes_string(color = m$Expression)
267
-            ) +
268
-            ggplot2::facet_wrap(~facet) +
269
-            ggplot2::theme_bw() +
270
-            ggplot2::scale_colour_gradient2(
271
-                limits = limits,
272
-                low = colorLow,
273
-                high = colorHigh,
274
-                mid = colorMid,
275
-                midpoint = midpoint,
276
-                name = varLabel
277
-            ) +
278
-            ggplot2::theme(
279
-                strip.background = ggplot2::element_blank(),
280
-                panel.grid.major = ggplot2::element_blank(),
281
-                panel.grid.minor = ggplot2::element_blank(),
282
-                panel.spacing = unit(0, "lines"),
283
-                panel.background = ggplot2::element_blank(),
284
-                axis.line = ggplot2::element_line(colour = "black")
285
-            )
286
-        if (isFALSE(is.null(ncol))) {
287
-            g <- g + ggplot2::facet_wrap(~facet, ncol = ncol)
288
-        } else {
289
-            g <- g + ggplot2::facet_wrap(~facet)
290
-        }
252
+      g <- g + ggplot2::facet_wrap(~ facet, labeller = headers)
291 253
     }
292
-    return(g)
254
+  } else {
255
+    g <- ggplot2::ggplot(m,
256
+                         ggplot2::aes_string(x = xlab, y = ylab)) +
257
+      ggplot2::geom_point(stat = "identity",
258
+                          size = size,
259
+                          ggplot2::aes_string(color = m$Expression)) +
260
+      ggplot2::facet_wrap(~ facet) +
261
+      ggplot2::theme_bw() +
262
+      ggplot2::scale_colour_gradient2(
263
+        limits = limits,
264
+        low = colorLow,
265
+        high = colorHigh,
266
+        mid = colorMid,
267
+        midpoint = midpoint,
268
+        name = varLabel
269
+      ) +
270
+      ggplot2::theme(
271
+        strip.background = ggplot2::element_blank(),
272
+        panel.grid.major = ggplot2::element_blank(),
273
+        panel.grid.minor = ggplot2::element_blank(),
274
+        panel.spacing = unit(0, "lines"),
275
+        panel.background = ggplot2::element_blank(),
276
+        axis.line = ggplot2::element_line(colour = "black")
277
+      )
278
+    if (isFALSE(is.null(ncol))) {
279
+      g <- g + ggplot2::facet_wrap(~ facet, ncol = ncol)
280
+    } else {
281
+      g <- g + ggplot2::facet_wrap(~ facet)
282
+    }
283
+  }
284
+  return(g)
293 285
 }
294 286
 
295 287
 
... ...
@@ -366,30 +358,30 @@ setMethod("plotDimReduceGrid",
366 358
 #' @return The plot as a ggplot object
367 359
 #' @export
368 360
 setGeneric("plotDimReduceFeature", function(x,
369
-    features,
370
-    reducedDimName = NULL,
371
-    displayName = NULL,    
372
-    dim1 = NULL,
373
-    dim2 = NULL,
374
-    headers = NULL,
375
-    useAssay = "counts",
376
-    altExpName = "featureSubset",
377
-    normalize = FALSE,
378
-    zscore = TRUE,
379
-    exactMatch = TRUE,
380
-    trim = c(-2, 2),
381
-    limits = c(-2, 2),
382
-    size = 0.5,
383
-    xlab = NULL,
384
-    ylab = NULL,
385
-    colorLow = "blue4",
386
-    colorMid = "grey90",
387
-    colorHigh = "firebrick1",
388
-    midpoint = 0,
389
-    ncol = NULL,
390
-    decreasing = FALSE) {
391
-
392
-    standardGeneric("plotDimReduceFeature")})
361
+                                            features,
362
+                                            reducedDimName = NULL,
363
+                                            displayName = NULL,
364
+                                            dim1 = NULL,
365
+                                            dim2 = NULL,
366
+                                            headers = NULL,
367
+                                            useAssay = "counts",
368
+                                            altExpName = "featureSubset",
369
+                                            normalize = FALSE,
370
+                                            zscore = TRUE,
371
+                                            exactMatch = TRUE,
372
+                                            trim = c(-2, 2),
373
+                                            limits = c(-2, 2),
374
+                                            size = 0.5,
375
+                                            xlab = NULL,
376
+                                            ylab = NULL,
377
+                                            colorLow = "blue4",
378
+                                            colorMid = "grey90",
379
+                                            colorHigh = "firebrick1",
380
+                                            midpoint = 0,
381
+                                            ncol = NULL,
382
+                                            decreasing = FALSE) {
383
+  standardGeneric("plotDimReduceFeature")
384
+})
393 385
 
394 386
 
395 387
 #' @rdname plotDimReduceFeature
... ...
@@ -403,92 +395,91 @@ setGeneric("plotDimReduceFeature", function(x,
403 395
 #'   exactMatch = TRUE)
404 396
 #' @export
405 397
 setMethod("plotDimReduceFeature",
406
-    signature(x = "SingleCellExperiment"),
407
-    function(x,
408
-        features,
409
-        reducedDimName,
410
-        displayName = NULL,
411
-        dim1 = 1,
412
-        dim2 = 2,
413
-        headers = NULL,
414
-        useAssay = "counts",
415
-        altExpName = "featureSubset",
416
-        normalize = FALSE,
417
-        zscore = TRUE,
418
-        exactMatch = TRUE,
419
-        trim = c(-2, 2),
420
-        limits = c(-2, 2),
421
-        size = 0.5,
422
-        xlab = NULL,
423
-        ylab = NULL,
424
-        colorLow = "blue4",
425
-        colorMid = "grey90",
426
-        colorHigh = "firebrick1",
427
-        midpoint = 0,
428
-        ncol = NULL,
429
-        decreasing = FALSE) {
430
-
431
-        altExp <- SingleCellExperiment::altExp(x, altExpName)
432
-        counts <- SummarizedExperiment::assay(x, i = useAssay)
433
-        reddim <- .processReducedDim(x = altExp,
434
-                                     reducedDimName = reducedDimName,
435
-                                     dim1 = dim1,
436
-                                     dim2 = dim2,
437
-                                     xlab = xlab,
438
-                                     ylab = ylab)
439
-        
440
-        if (isFALSE(is.null(displayName))) {
441
-            featuresIx <- retrieveFeatureIndex(features,
442
-                x,
443
-                by = displayName,
444
-                exactMatch = exactMatch)
445
-            headers <- SummarizedExperiment::rowData(x)[[
446
-                displayName]][featuresIx]
447
-        } else {
448
-            featuresIx <- retrieveFeatureIndex(features,
449
-                counts,
450
-                by = "rownames",
451
-                exactMatch = exactMatch)
398
+          signature(x = "SingleCellExperiment"),
399
+          function(x,
400
+                   features,
401
+                   reducedDimName,
402
+                   displayName = NULL,
403
+                   dim1 = 1,
404
+                   dim2 = 2,
405
+                   headers = NULL,
406
+                   useAssay = "counts",
407
+                   altExpName = "featureSubset",
408
+                   normalize = FALSE,
409
+                   zscore = TRUE,
410
+                   exactMatch = TRUE,
411
+                   trim = c(-2, 2),
412
+                   limits = c(-2, 2),
413
+                   size = 0.5,
414
+                   xlab = NULL,
415
+                   ylab = NULL,
416
+                   colorLow = "blue4",
417
+                   colorMid = "grey90",
418
+                   colorHigh = "firebrick1",
419
+                   midpoint = 0,
420
+                   ncol = NULL,
421
+                   decreasing = FALSE) {
422
+            altExp <- SingleCellExperiment::altExp(x, altExpName)
423
+            counts <- SummarizedExperiment::assay(x, i = useAssay)
424
+            reddim <- .processReducedDim(
425
+              x = altExp,
426
+              reducedDimName = reducedDimName,
427
+              dim1 = dim1,
428
+              dim2 = dim2,
429
+              xlab = xlab,
430
+              ylab = ylab
431
+            )
452 432
 
453
-            if (isFALSE(is.null(headers))) {
433
+            if (isFALSE(is.null(displayName))) {
434
+              featuresIx <- retrieveFeatureIndex(features,
435
+                                                 x,
436
+                                                 by = displayName,
437
+                                                 exactMatch = exactMatch)
438
+        headers <- SummarizedExperiment::rowData(x)[[displayName]][featuresIx]
439
+            } else {
440
+              featuresIx <- retrieveFeatureIndex(features,
441
+                                                 counts,
442
+                                                 by = "rownames",
443
+                                                 exactMatch = exactMatch)
444
+
445
+              if (isFALSE(is.null(headers))) {
454 446
                 if (length(headers) != length(features)) {
455
-                    stop(
456
-                        "Headers ",
457
-                        headers,
458
-                        " should be the same length as features ",
459
-                        features
460
-                    )
447
+                  stop("Headers ",
448
+                       headers,
449
+                       " should be the same length as features ",
450
+                       features)
461 451
                 }
462 452
 
463 453
                 if (isFALSE(exactMatch)) {
464
-                    warning("exactMatch is FALSE. headers will not be used!")
465
-                    headers <- NULL
454
+                  warning("exactMatch is FALSE. headers will not be used!")
455
+                  headers <- NULL
466 456
                 }
457
+              }
467 458
             }
468
-        }
469
-
470
-        g <- .plotDimReduceFeature(dim1 = reddim$dim1,
471
-            dim2 = reddim$dim2,
472
-            counts = counts,
473
-            features = features,
474
-            headers = headers,
475
-            normalize = normalize,
476
-            zscore = zscore,
477
-            featuresIx = featuresIx,
478
-            trim = trim,
479
-            limits = limits,
480
-            size = size,
481
-            xlab = reddim$xlab,
482
-            ylab = reddim$ylab,
483
-            colorLow = colorLow,
484
-            colorMid = colorMid,
485
-            colorHigh = colorHigh,
486
-            midpoint = midpoint,
487
-            ncol = ncol,
488
-            decreasing = decreasing)
489
-        return(g)
490
-    }
491
-)
459
+
460
+            g <- .plotDimReduceFeature(
461
+              dim1 = reddim$dim1,
462
+              dim2 = reddim$dim2,
463
+              counts = counts,
464
+              features = features,
465
+              headers = headers,
466
+              normalize = normalize,
467
+              zscore = zscore,
468
+              featuresIx = featuresIx,
469
+              trim = trim,
470
+              limits = limits,
471
+              size = size,
472
+              xlab = reddim$xlab,
473
+              ylab = reddim$ylab,
474
+              colorLow = colorLow,
475
+              colorMid = colorMid,
476
+              colorHigh = colorHigh,
477
+              midpoint = midpoint,
478
+              ncol = ncol,
479
+              decreasing = decreasing
480
+            )
481
+            return(g)
482
+          })
492 483
 
493 484
 
494 485
 #' @rdname plotDimReduceFeature
... ...
@@ -504,93 +495,90 @@ setMethod("plotDimReduceFeature",
504 495
 #'   exactMatch = TRUE)
505 496
 #' @export
506 497
 setMethod("plotDimReduceFeature",
507
-    signature(x = "ANY"),
508
-    function(x,
509
-        features,
510
-        dim1,
511
-        dim2,
512
-        headers = NULL,
513
-        normalize = FALSE,
514
-        zscore = TRUE,
515
-        exactMatch = TRUE,
516
-        trim = c(-2, 2),
517
-        limits = c(-2, 2),
518
-        size = 0.5,
519
-        xlab = "Dimension_1",
520
-        ylab = "Dimension_2",
521
-        colorLow = "blue4",
522
-        colorMid = "grey90",
523
-        colorHigh = "firebrick1",
524
-        midpoint = 0,
525
-        ncol = NULL,
526
-        decreasing = FALSE) {
527
-
528
-        x <- as.matrix(x)
529
-        if (isFALSE(is.null(headers))) {
530
-            if (length(headers) != length(features)) {
531
-                stop(
532
-                    "Headers ",
533
-                    headers,
534
-                    " should be the same length as features ",
535
-                    features
536
-                )
537
-            }
538
-
539
-            if (isFALSE(exactMatch)) {
498
+          signature(x = "ANY"),
499
+          function(x,
500
+                   features,
501
+                   dim1,
502
+                   dim2,
503
+                   headers = NULL,
504
+                   normalize = FALSE,
505
+                   zscore = TRUE,
506
+                   exactMatch = TRUE,
507
+                   trim = c(-2, 2),
508
+                   limits = c(-2, 2),
509
+                   size = 0.5,
510
+                   xlab = "Dimension_1",
511
+                   ylab = "Dimension_2",
512
+                   colorLow = "blue4",
513
+                   colorMid = "grey90",
514
+                   colorHigh = "firebrick1",
515
+                   midpoint = 0,
516
+                   ncol = NULL,
517
+                   decreasing = FALSE) {
518
+            x <- as.matrix(x)
519
+            if (isFALSE(is.null(headers))) {
520
+              if (length(headers) != length(features)) {
521
+                stop("Headers ",
522
+                     headers,
523
+                     " should be the same length as features ",
524
+                     features)
525
+              }
526
+
527
+              if (isFALSE(exactMatch)) {
540 528
                 warning("exactMatch is FALSE. headers will not be used!")
541 529
                 headers <- NULL
530
+              }
542 531
             }
543
-        }
544
-
545
-        featuresIx <- retrieveFeatureIndex(features,
546
-            x,
547
-            by = "rownames",
548
-            exactMatch = exactMatch)
549
-
550
-        g <- .plotDimReduceFeature(dim1 = dim1,
551
-            dim2 = dim2,
552
-            counts = x,
553
-            features = features,
554
-            headers = headers,
555
-            normalize = normalize,
556
-            zscore = zscore,
557
-            featuresIx = featuresIx,
558
-            trim = trim,
559
-            limits = limits,
560
-            size = size,
561
-            xlab = xlab,
562
-            ylab = ylab,
563
-            colorLow = colorLow,
564
-            colorMid = colorMid,
565
-            colorHigh = colorHigh,
566
-            midpoint = midpoint,
567
-            ncol = ncol,
568
-            decreasing = decreasing)
569
-        return(g)
570
-    }
571
-)
572 532
 
533
+            featuresIx <- retrieveFeatureIndex(features,
534
+                                               x,
535
+                                               by = "rownames",
536
+                                               exactMatch = exactMatch)
537
+
538
+            g <- .plotDimReduceFeature(
539
+              dim1 = dim1,
540
+              dim2 = dim2,
541
+              counts = x,
542
+              features = features,
543
+              headers = headers,
544
+              normalize = normalize,
545
+              zscore = zscore,
546
+              featuresIx = featuresIx,
547
+              trim = trim,
548
+              limits = limits,
549
+              size = size,
550
+              xlab = xlab,
551
+              ylab = ylab,
552
+              colorLow = colorLow,
553
+              colorMid = colorMid,
554
+              colorHigh = colorHigh,
555
+              midpoint = midpoint,
556
+              ncol = ncol,
557
+              decreasing = decreasing
558
+            )
559
+            return(g)
560
+          })
573 561
 
574
-.plotDimReduceFeature <- function(dim1,
575
-                                 dim2,
576
-                                 counts,
577
-                                 features,
578
-                                 headers,
579
-                                 normalize,
580
-                                 zscore,
581
-                                 featuresIx,
582
-                                 trim,
583
-                                 limits,
584
-                                 size,
585
-                                 xlab,
586
-                                 ylab,
587
-                                 colorLow,
588
-                                 colorMid,
589
-                                 colorHigh,
590
-                                 midpoint,
591
-                                 ncol,
592
-                                 decreasing) {
593 562
 
563
+.plotDimReduceFeature <- function(dim1,
564
+                                  dim2,
565
+                                  counts,
566
+                                  features,
567
+                                  headers,
568
+                                  normalize,
569
+                                  zscore,
570
+                                  featuresIx,
571
+                                  trim,
572
+                                  limits,
573
+                                  size,
574
+                                  xlab,
575
+                                  ylab,
576
+                                  colorLow,
577
+                                  colorMid,
578
+                                  colorHigh,
579
+                                  midpoint,
580
+                                  ncol,
581
+                                  decreasing) {
594 582
   # Perform checks
595 583
   if (is.null(features)) {
596 584
     stop("at least one feature is required to create a plot")
... ...
@@ -614,10 +602,8 @@ setMethod("plotDimReduceFeature",
614 602
 
615 603
   if (!is.null(trim)) {
616 604
     if (length(trim) != 2) {
617
-      stop(
618
-        "'trim' should be a 2 element vector",
619
-        "specifying the lower and upper boundaries"
620
-      )
605
+      stop("'trim' should be a 2 element vector",
606
+           "specifying the lower and upper boundaries")
621 607
     }
622 608
     trim <- sort(trim)
623 609
     counts[counts < trim[1]] <- trim[1]
... ...
@@ -695,24 +681,25 @@ setMethod("plotDimReduceFeature",
695 681
 #' @return The plot as a ggplot object
696 682
 #' @export
697 683
 setGeneric("plotDimReduceModule",
698
-    function(x,
699
-        reducedDimName,
700
-        useAssay = "counts",
701
-        altExpName = "featureSubset",
702
-        celdaMod,
703
-        modules = NULL,
704
-        dim1 = NULL,
705
-        dim2 = NULL,
706
-        size = 0.5,
707
-        xlab = NULL,
708
-        ylab = NULL,
709
-        rescale = TRUE,
710
-        limits = c(0, 1),
711
-        colorLow = "grey90",
712
-        colorHigh = "firebrick1",
713
-        ncol = NULL,
714
-        decreasing = FALSE) {
715
-    standardGeneric("plotDimReduceModule")})
684
+           function(x,
685
+                    reducedDimName,
686
+                    useAssay = "counts",
687
+                    altExpName = "featureSubset",
688
+                    celdaMod,
689
+                    modules = NULL,
690
+                    dim1 = NULL,
691
+                    dim2 = NULL,
692
+                    size = 0.5,
693
+                    xlab = NULL,
694
+                    ylab = NULL,
695
+                    rescale = TRUE,
696
+                    limits = c(0, 1),
697
+                    colorLow = "grey90",
698
+                    colorHigh = "firebrick1",
699
+                    ncol = NULL,
700
+                    decreasing = FALSE) {
701
+             standardGeneric("plotDimReduceModule")
702
+           })
716 703
 
717 704
 
718 705
 #' @rdname plotDimReduceModule
... ...
@@ -724,54 +711,56 @@ setGeneric("plotDimReduceModule",
724 711
 #'   modules = c("1", "2"))
725 712
 #' @export
726 713
 setMethod("plotDimReduceModule",
727
-    signature(x = "SingleCellExperiment"),
728
-    function(x,
729
-        reducedDimName,
730
-        useAssay = "counts",
731
-        altExpName = "featureSubset",
732
-        modules = NULL,
733
-        dim1 = 1,
734
-        dim2 = 2,
735
-        size = 0.5,
736
-        xlab = NULL,
737
-        ylab = NULL,
738
-        rescale = TRUE,
739
-        limits = c(0, 1),
740
-        colorLow = "grey90",
741
-        colorHigh = "firebrick1",
742
-        ncol = NULL,
743
-        decreasing = FALSE) {
744
-
745
-        # Get reduced dim object
746
-        altExp <- SingleCellExperiment::altExp(x, altExpName)
747
-        reddim <- .processReducedDim(x = altExp,
748
-                                     reducedDimName = reducedDimName,
749
-                                     dim1 = dim1,
750
-                                     dim2 = dim2,
751
-                                     xlab = xlab,
752
-                                     ylab = ylab)
753
-
754
-        factorized <- factorizeMatrix(x,
755
-            useAssay = useAssay,
756
-            altExpName = altExpName,
757
-            type = "proportion")
758
-
759
-        g <- .plotDimReduceModule(dim1 = reddim$dim1,
760
-            dim2 = reddim$dim2,
761
-            factorized = factorized,
762
-            modules = modules,
763
-            rescale = rescale,
764
-            limits = limits,
765
-            size = size,
766
-            xlab = reddim$xlab,
767
-            ylab = reddim$ylab,
768
-            colorLow = colorLow,
769
-            colorHigh = colorHigh,
770
-            ncol = ncol,
771
-            decreasing = decreasing)
772
-        return(g)
773
-    }
774
-)
714
+          signature(x = "SingleCellExperiment"),
715
+          function(x,
716
+                   reducedDimName,
717
+                   useAssay = "counts",
718
+                   altExpName = "featureSubset",
719
+                   modules = NULL,
720
+                   dim1 = 1,
721
+                   dim2 = 2,
722
+                   size = 0.5,
723
+                   xlab = NULL,
724
+                   ylab = NULL,
725
+                   rescale = TRUE,
726
+                   limits = c(0, 1),
727
+                   colorLow = "grey90",
728
+                   colorHigh = "firebrick1",
729
+                   ncol = NULL,
730
+                   decreasing = FALSE) {
731
+            # Get reduced dim object
732
+            altExp <- SingleCellExperiment::altExp(x, altExpName)
733
+            reddim <- .processReducedDim(
734
+              x = altExp,
735
+              reducedDimName = reducedDimName,
736
+              dim1 = dim1,
737
+              dim2 = dim2,
738
+              xlab = xlab,
739
+              ylab = ylab
740
+            )
741
+
742
+            factorized <- factorizeMatrix(x,
743
+                                          useAssay = useAssay,
744
+                                          altExpName = altExpName,
745
+                                          type = "proportion")
746
+
747
+            g <- .plotDimReduceModule(
748
+              dim1 = reddim$dim1,
749
+              dim2 = reddim$dim2,
750
+              factorized = factorized,
751
+              modules = modules,
752
+              rescale = rescale,
753
+              limits = limits,
754
+              size = size,
755
+              xlab = reddim$xlab,
756
+              ylab = reddim$ylab,
757
+              colorLow = colorLow,
758
+              colorHigh = colorHigh,
759
+              ncol = ncol,
760
+              decreasing = decreasing
761
+            )
762
+            return(g)
763
+          })
775 764
 
776 765
 
777 766
 #' @rdname plotDimReduceModule
... ...
@@ -786,118 +775,127 @@ setMethod("plotDimReduceModule",
786 775
 #'   modules = c("1", "2"))
787 776
 #' @export
788 777
 setMethod("plotDimReduceModule",
789
-    signature(x = "ANY"),
790
-    function(x,
791
-        celdaMod,
792
-        modules = NULL,
793
-        dim1,
794
-        dim2,
795
-        size = 0.5,
796
-        xlab = "Dimension_1",
797
-        ylab = "Dimension_2",
798
-        rescale = TRUE,
799
-        limits = c(0, 1),
800
-        colorLow = "grey90",
801
-        colorHigh = "firebrick1",
802
-        ncol = NULL,
803
-        decreasing = FALSE) {
804
-
805
-        factorized <- factorizeMatrix(x = x, celdaMod = celdaMod)
806
-        reddim <- .processReducedDim(x = x,
807
-                                     dim1 = dim1,
808
-                                     dim2 = dim2,
809
-                                     xlab = xlab,
810
-                                     ylab = ylab)
811
-        
812
-        g <- .plotDimReduceModule(dim1 = reddim$dim1,
813
-            dim2 = reddim$dim2,
814
-            factorized = factorized,
815
-            modules = modules,
816
-            rescale = rescale,
817
-            limits = limits,
818
-            size = size,
819
-            xlab = reddim$xlab,
820
-            ylab = reddim$ylab,
821
-            colorLow = colorLow,
822
-            colorHigh = colorHigh,
823
-            ncol = ncol,
824
-            decreasing = decreasing)
825
-        return(g)
826
-    }
827
-)
778
+          signature(x = "ANY"),
779
+          function(x,
780
+                   celdaMod,
781
+                   modules = NULL,
782
+                   dim1,
783
+                   dim2,
784
+                   size = 0.5,
785
+                   xlab = "Dimension_1",
786
+                   ylab = "Dimension_2",
787
+                   rescale = TRUE,
788
+                   limits = c(0, 1),
789
+                   colorLow = "grey90",
790
+                   colorHigh = "firebrick1",
791
+                   ncol = NULL,
792
+                   decreasing = FALSE) {
793
+            factorized <- factorizeMatrix(x = x, celdaMod = celdaMod)
794
+            reddim <- .processReducedDim(
795
+              x = x,
796
+              dim1 = dim1,
797
+              dim2 = dim2,
798
+              xlab = xlab,
799
+              ylab = ylab
800
+            )
801
+
802
+            g <- .plotDimReduceModule(
803
+              dim1 = reddim$dim1,
804
+              dim2 = reddim$dim2,
805
+              factorized = factorized,
806
+              modules = modules,
807
+              rescale = rescale,
808
+              limits = limits,
809
+              size = size,
810
+              xlab = reddim$xlab,
811
+              ylab = reddim$ylab,
812
+              colorLow = colorLow,
813
+              colorHigh = colorHigh,
814
+              ncol = ncol,
815
+              decreasing = decreasing
816
+            )
817
+            return(g)
818
+          })
828 819
 
829 820
 
830 821
 .plotDimReduceModule <- function(dim1,
831
-    dim2,
832
-    factorized,
833
-    modules,
834
-    rescale,
835
-    limits,
836
-    size,
837
-    xlab,
838
-    ylab,
839
-    colorLow,
840
-    colorHigh,
841
-    ncol,
842
-    decreasing) {
843
-
844
-    matrix <- factorized$proportions$cell
845
-
846
-    if (rescale == TRUE) {
847
-        for (x in seq(nrow(matrix))) {
848
-            matrix[x, ] <- matrix[x, ] - min(matrix[x, ])
849
-            matrix[x, ] <- matrix[x, ] / max(matrix[x, ])
850
-            varLabel <- "Scaled Probability"
851
-        }
852
-    } else {
853
-        varLabel <- "Probability"
822
+                                 dim2,
823
+                                 factorized,
824
+                                 modules,
825
+                                 rescale,
826
+                                 limits,
827
+                                 size,
828
+                                 xlab,
829
+                                 ylab,
830
+                                 colorLow,
831
+                                 colorHigh,
832
+                                 ncol,
833
+                                 decreasing) {
834
+  matrix <- factorized$proportions$cell
835
+
836
+  if (rescale == TRUE) {
837
+    for (x in seq(nrow(matrix))) {
838
+      matrix[x, ] <- matrix[x, ] - min(matrix[x, ])
839
+      matrix[x, ] <- matrix[x, ] / max(matrix[x, ])
840
+      varLabel <- "Scaled Probability"
854 841
     }
842
+  } else {
843
+    varLabel <- "Probability"
844
+  }
855 845
 
856
-    rownames(matrix) <- gsub("L", "", rownames(matrix))
857
-    if (!is.null(modules)) {
858
-        if (length(rownames(matrix)[rownames(matrix) %in% modules]) < 1) {
859
-            stop("All modules selected do not exist in the model.")
860
-        }
861
-        matrix <- matrix[which(rownames(matrix) %in% modules), , drop = FALSE]
862
-        matrix <- matrix[match(rownames(matrix), modules), , drop = FALSE]
846
+  rownames(matrix) <- gsub("L", "", rownames(matrix))
847
+  if (!is.null(modules)) {
848
+    if (length(rownames(matrix)[rownames(matrix) %in% modules]) < 1) {
849
+      stop("All modules selected do not exist in the model.")
863 850
     }
851
+    matrix <-
852
+      matrix[which(rownames(matrix) %in% modules), , drop = FALSE]
853
+    matrix <-
854
+      matrix[match(rownames(matrix), modules), , drop = FALSE]
855
+  }
864 856
 
865
-    rownames(matrix) <- paste0("L", rownames(matrix))
857
+  rownames(matrix) <- paste0("L", rownames(matrix))
866 858
 
867
-    df <- data.frame(dim1, dim2, t(as.data.frame(matrix)), check.names = FALSE)
868
-    naIx <- is.na(dim1) | is.na(dim2)
869
-    df <- df[!naIx, ]
859
+  df <-
860
+    data.frame(dim1, dim2, t(as.data.frame(matrix)), check.names = FALSE)
861
+  naIx <- is.na(dim1) | is.na(dim2)
862
+  df <- df[!naIx, ]
870 863
 
871
-    m <- reshape2::melt(df, id.vars = c("dim1", "dim2"))
872
-    colnames(m) <- c(xlab, ylab, "facet", "Expression")
864
+  m <- reshape2::melt(df, id.vars = c("dim1", "dim2"))
865
+  colnames(m) <- c(xlab, ylab, "facet", "Expression")
873 866
 
874
-    if (!is.null(decreasing)) {
875
-        m <- m[order(m$facet, m$Expression, decreasing = decreasing), ]
876
-    }
867
+  if (!is.null(decreasing)) {
868
+    m <- m[order(m$facet, m$Expression, decreasing = decreasing), ]
869
+  }
877 870
 
878
-    g <- ggplot2::ggplot(m, ggplot2::aes_string(x = xlab, y = ylab)) +
879
-        ggplot2::geom_point(stat = "identity",
880
-            size = size,
881
-            ggplot2::aes_string(color = m$Expression)) +
882
-        ggplot2::facet_wrap(~facet) +
883
-        ggplot2::theme_bw() +
884
-        ggplot2::scale_colour_gradient(limits = limits,
885
-            low = colorLow,
886
-            high = colorHigh,
887
-            name = varLabel) +
888
-        ggplot2::theme(strip.background = ggplot2::element_blank(),
889
-            panel.grid.major = ggplot2::element_blank(),
890
-            panel.grid.minor = ggplot2::element_blank(),
891
-            panel.spacing = unit(0, "lines"),
892
-            panel.background = ggplot2::element_blank(),
893
-            axis.line = ggplot2::element_line(colour = "black"))
894
-    if (isFALSE(is.null(ncol))) {
895
-        g <- g + ggplot2::facet_wrap(~facet, ncol = ncol)
896
-    } else {
897
-        g <- g + ggplot2::facet_wrap(~facet)
898
-    }
871
+  g <-
872
+    ggplot2::ggplot(m, ggplot2::aes_string(x = xlab, y = ylab)) +
873
+    ggplot2::geom_point(stat = "identity",
874
+                        size = size,
875
+                        ggplot2::aes_string(color = m$Expression)) +
876
+    ggplot2::facet_wrap(~ facet) +
877
+    ggplot2::theme_bw() +
878
+    ggplot2::scale_colour_gradient(
879
+      limits = limits,
880
+      low = colorLow,
881
+      high = colorHigh,
882
+      name = varLabel
883
+    ) +
884
+    ggplot2::theme(
885
+      strip.background = ggplot2::element_blank(),
886
+      panel.grid.major = ggplot2::element_blank(),
887
+      panel.grid.minor = ggplot2::element_blank(),
888
+      panel.spacing = unit(0, "lines"),
889
+      panel.background = ggplot2::element_blank(),
890
+      axis.line = ggplot2::element_line(colour = "black")
891
+    )
892
+  if (isFALSE(is.null(ncol))) {
893
+    g <- g + ggplot2::facet_wrap(~ facet, ncol = ncol)
894
+  } else {
895
+    g <- g + ggplot2::facet_wrap(~ facet)
896
+  }
899 897
 
900
-    return(g)
898
+  return(g)
901 899
 }
902 900
 
903 901
 
... ...
@@ -945,19 +943,20 @@ setMethod("plotDimReduceModule",
945 943
 #' @importFrom ggrepel geom_text_repel
946 944
 #' @export
947 945
 setGeneric("plotDimReduceCluster",
948
-    function(x,
949
-        reducedDimName,
950
-        altExpName = "featureSubset",
951
-        dim1 = NULL,
952
-        dim2 = NULL,
953
-        size = 0.5,
954
-        xlab = NULL,
955
-        ylab = NULL,
956
-        specificClusters = NULL,
957
-        labelClusters = FALSE,
958
-        groupBy = NULL,
959
-        labelSize = 3.5) {
960
-    standardGeneric("plotDimReduceCluster")})
946
+           function(x,
947
+                    reducedDimName,
948
+                    altExpName = "featureSubset",
949
+                    dim1 = NULL,
950
+                    dim2 = NULL,
951
+                    size = 0.5,
952
+                    xlab = NULL,
953
+                    ylab = NULL,
954
+                    specificClusters = NULL,
955
+                    labelClusters = FALSE,
956
+                    groupBy = NULL,
957
+                    labelSize = 3.5) {
958
+             standardGeneric("plotDimReduceCluster")
959
+           })
961 960