... | ... |
@@ -547,7 +547,7 @@ setMethod("recursiveSplitCell", |
547 | 547 |
beta = beta |
548 | 548 |
) |
549 | 549 |
tempModel <- .celda_CG(counts, |
550 |
- sampleLabel = s, |
|
550 |
+ sampleLabel = sampleLabel, |
|
551 | 551 |
K = as.integer(currentK), |
552 | 552 |
L = as.integer(L), |
553 | 553 |
yInit = overallY, |
... | ... |
@@ -660,7 +660,7 @@ setMethod("recursiveSplitCell", |
660 | 660 |
logfile = logfile |
661 | 661 |
) |
662 | 662 |
modelInitial <- .celda_C(countsY, |
663 |
- sampleLabel = s, |
|
663 |
+ sampleLabel = sampleLabel, |
|
664 | 664 |
K = as.integer(initialK), |
665 | 665 |
zInitialize = "split", |
666 | 666 |
nchains = 1, |
... | ... |
@@ -691,7 +691,7 @@ setMethod("recursiveSplitCell", |
691 | 691 |
beta = beta |
692 | 692 |
) |
693 | 693 |
tempModel <- .celda_C(countsY, |
694 |
- sampleLabel = s, |
|
694 |
+ sampleLabel = sampleLabel, |
|
695 | 695 |
K = as.integer(currentK), |
696 | 696 |
nchains = 1, |
697 | 697 |
zInitialize = "random", |
... | ... |
@@ -762,7 +762,7 @@ setMethod("recursiveSplitCell", |
762 | 762 |
logfile = logfile |
763 | 763 |
) |
764 | 764 |
modelInitial <- .celda_C(counts, |
765 |
- sampleLabel = s, |
|
765 |
+ sampleLabel = sampleLabel, |
|
766 | 766 |
K = as.integer(initialK), |
767 | 767 |
zInitialize = "split", |
768 | 768 |
nchains = 1, |
... | ... |
@@ -784,7 +784,7 @@ setMethod("recursiveSplitCell", |
784 | 784 |
beta = beta |
785 | 785 |
) |
786 | 786 |
tempModel <- .celda_C(counts, |
787 |
- sampleLabel = s, |
|
787 |
+ sampleLabel = sampleLabel, |
|
788 | 788 |
K = as.integer(currentK), |
789 | 789 |
nchains = 1, |
790 | 790 |
zInitialize = "random", |
... | ... |
@@ -135,7 +135,11 @@ if (!is.null(cellAnnotFinal)) { |
135 | 135 |
for (i in seq_along(cellAnnotFinal)) { |
136 | 136 |
cat(sprintf(tab4, cellAnnotFinal[i])) |
137 | 137 |
|
138 |
- conditionClass <- ifelse(plotLabels[i], "factor", "numeric") |
|
138 |
+ if(isTRUE(plotLabels[i])) { |
|
139 |
+ conditionClass <- "factor" |
|
140 |
+ } else { |
|
141 |
+ conditionClass <- NULL |
|
142 |
+ } |
|
139 | 143 |
|
140 | 144 |
print( |
141 | 145 |
plotSCEDimReduceColData( |
... | ... |
@@ -339,17 +343,8 @@ The probability matrix on the left contains the probability of each module withi |
339 | 343 |
print(celdaProbabilityMap(sce)) |
340 | 344 |
``` |
341 | 345 |
|
342 |
-### Overview Heatmap |
|
343 |
-This general heatmap shows the actual relative expression of the |
|
344 |
-top 10 features in each module (rows) for each cell (columns). Rows are z-score |
|
345 |
-normalized. The columns of the heatmap are semi-supervised by cell population and the rows are semi-supervised by module. |
|
346 |
-```{r celda_heatmap, fig.height = 15, fig.width = 9} |
|
347 |
-grid.draw(celdaHeatmap(sce, nfeatures = 10)) |
|
348 |
-``` |
|
349 |
- |
|
350 |
-## Session Information |
|
346 |
+## Session Information {.unnumbered} |
|
351 | 347 |
```{r session, eval = showSession, echo = showSession} |
352 | 348 |
sessionInfo() |
353 | 349 |
``` |
354 | 350 |
|
355 |
-<br><br> |