Browse code

import foreach

87875172 authored on 23/04/2019 22:41:46
Showing 3 changed files

... ...
@@ -78,6 +78,7 @@ exportMethods(runParams)
78 78
 exportMethods(sampleLabel)
79 79
 import(Rcpp)
80 80
 import(RcppEigen)
81
+import(foreach)
81 82
 import(ggplot2)
82 83
 import(graphics)
83 84
 import(grid)
... ...
@@ -98,7 +99,6 @@ importFrom(digest,digest)
98 99
 importFrom(doParallel,registerDoParallel)
99 100
 importFrom(enrichR,enrichr)
100 101
 importFrom(enrichR,listEnrichrDbs)
101
-importFrom(foreach,foreach)
102 102
 importFrom(ggrepel,geom_text_repel)
103 103
 importFrom(grDevices,colorRampPalette)
104 104
 importFrom(grDevices,colors)
... ...
@@ -46,7 +46,7 @@
46 46
 #'     bestOnly = TRUE,
47 47
 #'     nchains = 1,
48 48
 #'     cores = 2)
49
-#' @importFrom foreach foreach
49
+#' @import foreach
50 50
 #' @importFrom doParallel registerDoParallel
51 51
 #' @importFrom methods is
52 52
 #' @export
... ...
@@ -10,10 +10,10 @@ vignette: >
10 10
   %\VignetteEngine{knitr::rmarkdown}
11 11
   %\VignetteEncoding{UTF-8}
12 12
 ---
13
-  
13
+
14 14
 # Introduction
15 15
 **CE**llular **L**atent **D**irichlet **A**llocation (celda) is a collection of Bayesian hierarchical models to perform feature and cell bi-clustering for count data generated by single-cell platforms. This algorithm is an extension of the Latent Dirichlet Allocation (LDA) topic modeling framework that has been popular in text mining applications and has shown good performance with sparse data. celda simultaneously clusters features (i.e. gene expression) into modules based on co-expression patterns across cells and cells into subpopulations based on the probabilities of the feature modules within each cell. celda uses Dirichlet-multinomial distributions to model cells and genes so no additional normalization is required for single-cell counts. 
16
- 
16
+
17 17
 In this vignette we will demonstrate how to use celda to perform cell and feature clustering with simulated data.
18 18
 
19 19
 # Installation