Browse code

Update README.md

Zhe Wang authored on 11/04/2019 16:35:12 • GitHub committed on 11/04/2019 16:35:12
Showing 1 changed files

... ...
@@ -8,71 +8,31 @@
8 8
 1. Celda can simultaneously cluster genes into transcriptional states and cells into subpopulations
9 9
 2. Celda uses count-based Dirichlet-multinomial distributions so no additional normalization is required for 3' DGE single cell RNA-seq
10 10
 3. These types of models have shown good performance with sparse data.
11
+4. **Celda now includes DecontX, a computational algorithm for decontamination of droplet based scRNA-seq data.**
11 12
 
12 13
 
13 14
 ## Installation Instructions
14 15
 
15
-To install the most recent release of celda (used in the preprint version of the celda paper) via devtools:
16
+To install the most recent release of celda via devtools:
16 17
 ```
17 18
 library(devtools)
18
-install_github("campbio/celda@v0.6")
19
-```
20
-The most up-to-date (but potentially less stable) version of celda can similarly be installed with:
21
-```
22
-install_github("campbio/celda@devel")
19
+install_github("campbio/celda")
23 20
 ```
24 21
 
25 22
 **NOTE** On OSX, devtools::install_github() requires installation of **libgit2.** This can be installed via homebrew:
26 23
 ```
27 24
 brew install libgit2
28 25
 ```
29
-**NOTE** If you install celda in Rstudio and get an error:could not find tools necessary to compile a package, you can try this:
26
+**NOTE** If you are trying to install celda using Rstudio and get this error: "could not find tools necessary to compile a package", you can try this:
30 27
 ```
31 28
 options(buildtools.check = function(action) TRUE)
32 29
 ```
33 30
 
34 31
 ## Examples and vignettes
35 32
 
36
-Vignettes are available in the package. 
37
-
38
-An analysis example using celda with RNASeq via vignette('celda-analysis')
39
-
40
-
41
-### Decontamination with DecontX
42
-Highly expressed genes from various cells clusters will be expressed at low levels in other clusters in droplet-based systems due to contamination. DecontX will decompose an observed count matrix into a decontaminated expression matrix and a contamination matrix. The only other parameter needed is a vector of cell cluster labels. 
43
-
44
-To simulate two 300 (gene) x 100 (cell) count matrices from 3 different cell types with total reads per cell ranged from 5000 to 40000: one matrix being ture expression matrix (rmat), the other matrix being contamination count matrix (cmat)
45
-```
46
-sim.con = simulateContaminatedMatrix( C = 100, G = 300, K = 3, N.Range= c(5000, 40000), seed = 9124) 
47
-true.contamination.percentage = colSums( sim.con$cmat ) / colSums( sim.con$cmat + sim.con$rmat ) 
48
-str(sim.con)   
49
-# N.by.C: total transcripts per cell 
50
-# z: cell type label 
51
-
52
-```
53
-Use DecontX to decompose the observed (contaminated) count matrix back into true expression matrix and a contamination matrix with specified cell label
54
-```
55
-observedCounts = sim.con$observedCounts
56
-cell.label = sim.con$z
57
-new.counts = DecontX( counts = observedCounts, z = cell.label,  max.iter = 200, seed = 123) 
58
-str(new.counts) 
59
-# Decontaminated matrix: new.counts$res.list$est.rmat
60
-# Percentage of contamination per cell: new.counts$res.list$est.conp
61
-
62
-```
63
-DecontX Performance check 
64
-```
65
-estimated.contamination.percentage = new.counts$res.list$est.conp
66
-plot( true.contamination.percentage, estimated.contamination.percentage) ; abline(0,1) 
67
-``` 
68
-
69
-
70
-
71
-## New Features and announcements
72
-The v0.4 release of celda represents a useable implementation of the various celda clustering models.
73
-Please submit any usability issues or bugs to the issue tracker at https://github.com/campbio/celda
33
+Uncompiled vignettes are available in the package. 
74 34
 
75
-You can discuss celda, or ask the developers usage questions, in our [Google Group.](https://groups.google.com/forum/#!forum/celda-list)
35
+Examples of doing single-cell RNA-seq data analysis using celda and DecontX is available in files vignettes/celda-analysis.Rmd and vignettes/DecontX-analysis.Rmd.
76 36
 
77 37
 ## For developers
78 38
 Check out our [Wiki](https://github.com/campbio/celda/wiki) for [coding style guide](https://github.com/campbio/celda/wiki/Celda-Development-Coding-Style-Guide) if you want to contribute!