... | ... |
@@ -77,40 +77,23 @@ exportMethods(perplexity) |
77 | 77 |
exportMethods(resList) |
78 | 78 |
exportMethods(runParams) |
79 | 79 |
exportMethods(sampleLabel) |
80 |
+import(MAST, except = c(combine)) |
|
81 |
+import(RColorBrewer) |
|
80 | 82 |
import(Rcpp) |
81 | 83 |
import(RcppEigen) |
84 |
+import(SummarizedExperiment, except = c(shift, rowRanges)) |
|
85 |
+import(data.table) |
|
82 | 86 |
import(foreach) |
83 |
-import(ggplot2) |
|
84 | 87 |
import(grDevices) |
85 | 88 |
import(graphics) |
86 | 89 |
import(grid) |
90 |
+import(gridExtra) |
|
91 |
+import(gridExtra, except = c(combine)) |
|
87 | 92 |
import(gtable) |
88 |
-import(stats) |
|
89 |
-import(umap) |
|
90 |
-importFrom(MAST,FromMatrix) |
|
91 |
-importFrom(MAST,summary) |
|
92 |
-importFrom(MAST,zlm) |
|
93 |
-importFrom(MCMCprecision,fit_dirichlet) |
|
94 |
-importFrom(RColorBrewer,brewer.pal) |
|
95 |
-importFrom(Rtsne,Rtsne) |
|
96 |
-importFrom(S4Vectors,mcols) |
|
97 |
-importFrom(SummarizedExperiment,assay) |
|
98 |
-importFrom(SummarizedExperiment,assayNames) |
|
99 |
-importFrom(SummarizedExperiment,colData) |
|
100 |
-importFrom(data.table,as.data.table) |
|
101 |
-importFrom(digest,digest) |
|
102 |
-importFrom(doParallel,registerDoParallel) |
|
93 |
+import(matrixStats, except = c(count)) |
|
94 |
+import(plyr) |
|
95 |
+import(scales) |
|
103 | 96 |
importFrom(enrichR,enrichr) |
104 |
-importFrom(ggrepel,geom_text_repel) |
|
105 |
-importFrom(gridExtra,grid.arrange) |
|
106 |
-importFrom(matrixStats,logSumExp) |
|
107 |
-importFrom(methods,.hasSlot) |
|
108 |
-importFrom(methods,is) |
|
109 |
-importFrom(methods,new) |
|
110 |
-importFrom(plyr,mapvalues) |
|
111 |
-importFrom(reshape2,melt) |
|
112 |
-importFrom(scales,dscale) |
|
113 |
-importFrom(stringi,stri_list2matrix) |
|
114 | 97 |
useDynLib(celda,"_colSumByGroup") |
115 | 98 |
useDynLib(celda,"_colSumByGroupChange") |
116 | 99 |
useDynLib(celda,"_colSumByGroup_numeric") |
... | ... |
@@ -397,7 +397,7 @@ setGeneric("celdaHeatmap", |
397 | 397 |
#' |
398 | 398 |
#' |
399 | 399 |
logLikelihood <- function(counts, model, ...) { |
400 |
- do.call(paste0("logLikelihood.", model), |
|
400 |
+ do.call(paste0("logLikelihood", model), |
|
401 | 401 |
args = list(counts = counts, ...)) |
402 | 402 |
} |
403 | 403 |
|
... | ... |
@@ -461,7 +461,7 @@ setGeneric("perplexity", |
461 | 461 |
#' dim(celdaCGSim$counts) |
462 | 462 |
#' @export |
463 | 463 |
simulateCells <- function(model, ...) { |
464 |
- do.call(paste0("simulateCells.", model), args = list(...)) |
|
464 |
+ do.call(paste0("simulateCells", model), args = list(...)) |
|
465 | 465 |
} |
466 | 466 |
|
467 | 467 |
|
... | ... |
@@ -522,7 +522,7 @@ celda_C <- function(counts, |
522 | 522 |
#' celdaCSim <- simulateCells(model = "celda_C", K = 10) |
523 | 523 |
#' simCounts <- celdaCSim$counts |
524 | 524 |
#' @export |
525 |
-simulateCells.celda_C <- function(model, |
|
525 |
+simulateCellscelda_C <- function(model, |
|
526 | 526 |
S = 5, |
527 | 527 |
CRange = c(50, 100), |
528 | 528 |
NRange = c(500, 1000), |
... | ... |
@@ -726,7 +726,7 @@ setMethod("factorizeMatrix", signature(celdaMod = "celda_C"), |
726 | 726 |
#' @seealso `celda_C()` for clustering cells |
727 | 727 |
#' @examples |
728 | 728 |
#' data(celdaCSim) |
729 |
-#' loglik <- logLikelihood.celda_C(celdaCSim$counts, |
|
729 |
+#' loglik <- logLikelihoodcelda_C(celdaCSim$counts, |
|
730 | 730 |
#' sampleLabel = celdaCSim$sampleLabel, |
731 | 731 |
#' z = celdaCSim$z, |
732 | 732 |
#' K = celdaCSim$K, |
... | ... |
@@ -741,7 +741,7 @@ setMethod("factorizeMatrix", signature(celdaMod = "celda_C"), |
741 | 741 |
#' alpha = celdaCSim$alpha, |
742 | 742 |
#' beta = celdaCSim$beta) |
743 | 743 |
#' @export |
744 |
-logLikelihood.celda_C <- function(counts, sampleLabel, z, K, alpha, beta) { |
|
744 |
+logLikelihoodcelda_C <- function(counts, sampleLabel, z, K, alpha, beta) { |
|
745 | 745 |
|
746 | 746 |
if (sum(z > K) > 0) { |
747 | 747 |
stop("An entry in z contains a value greater than the provided K.") |
... | ... |
@@ -584,7 +584,7 @@ celda_CG <- function(counts, |
584 | 584 |
#' @examples |
585 | 585 |
#' celdaCGSim <- simulateCells(model = "celda_CG") |
586 | 586 |
#' @export |
587 |
-simulateCells.celda_CG <- function(model, |
|
587 |
+simulateCellscelda_CG <- function(model, |
|
588 | 588 |
S = 5, |
589 | 589 |
CRange = c(50, 100), |
590 | 590 |
NRange = c(500, 1000), |
... | ... |
@@ -912,7 +912,7 @@ setMethod("factorizeMatrix", signature(celdaMod = "celda_CG"), |
912 | 912 |
#' @seealso `celda_CG()` for clustering features and cells |
913 | 913 |
#' @examples |
914 | 914 |
#' data(celdaCGSim) |
915 |
-#' loglik <- logLikelihood.celda_CG(celdaCGSim$counts, |
|
915 |
+#' loglik <- logLikelihoodcelda_CG(celdaCGSim$counts, |
|
916 | 916 |
#' sampleLabel = celdaCGSim$sampleLabel, |
917 | 917 |
#' z = celdaCGSim$z, |
918 | 918 |
#' y = celdaCGSim$y, |
... | ... |
@@ -935,7 +935,7 @@ setMethod("factorizeMatrix", signature(celdaMod = "celda_CG"), |
935 | 935 |
#' gamma = celdaCGSim$gamma, |
936 | 936 |
#' delta = celdaCGSim$delta) |
937 | 937 |
#' @export |
938 |
-logLikelihood.celda_CG <- function(counts, |
|
938 |
+logLikelihoodcelda_CG <- function(counts, |
|
939 | 939 |
sampleLabel, |
940 | 940 |
z, |
941 | 941 |
y, |
... | ... |
@@ -454,7 +454,7 @@ celda_G <- function(counts, |
454 | 454 |
#' @examples |
455 | 455 |
#' celdaGSim <- simulateCells(model = "celda_G") |
456 | 456 |
#' @export |
457 |
-simulateCells.celda_G <- function(model, |
|
457 |
+simulateCellscelda_G <- function(model, |
|
458 | 458 |
C = 100, |
459 | 459 |
NRange = c(500, 1000), |
460 | 460 |
G = 100, |
... | ... |
@@ -696,7 +696,7 @@ setMethod("factorizeMatrix", signature(celdaMod = "celda_G"), |
696 | 696 |
#' @seealso `celda_G()` for clustering features |
697 | 697 |
#' @examples |
698 | 698 |
#' data(celdaGSim) |
699 |
-#' loglik <- logLikelihood.celda_G(celdaGSim$counts, |
|
699 |
+#' loglik <- logLikelihoodcelda_G(celdaGSim$counts, |
|
700 | 700 |
#' y = celdaGSim$y, |
701 | 701 |
#' L = celdaGSim$L, |
702 | 702 |
#' beta = celdaGSim$beta, |
... | ... |
@@ -711,7 +711,7 @@ setMethod("factorizeMatrix", signature(celdaMod = "celda_G"), |
711 | 711 |
#' delta = celdaGSim$delta, |
712 | 712 |
#' gamma = celdaGSim$gamma) |
713 | 713 |
#' @export |
714 |
-logLikelihood.celda_G <- function(counts, y, L, beta, delta, gamma) { |
|
714 |
+logLikelihoodcelda_G <- function(counts, y, L, beta, delta, gamma) { |
|
715 | 715 |
if (sum(y > L) > 0) { |
716 | 716 |
stop("An entry in y contains a value greater than the provided L.") |
717 | 717 |
} |
... | ... |
@@ -65,7 +65,7 @@ resamplePerplexity <- function(counts, |
65 | 65 |
#' plotGridSearchPerplexity(celdaCGGridSearchRes) |
66 | 66 |
#' @export |
67 | 67 |
plotGridSearchPerplexity <- function(celdaList, sep = 1) { |
68 |
- do.call(paste0("plotGridSearchPerplexity.", |
|
68 |
+ do.call(paste0("plotGridSearchPerplexity", |
|
69 | 69 |
as.character(class(celdaList@resList[[1]]))), |
70 | 70 |
args = list(celdaList, sep)) |
71 | 71 |
} |
... | ... |
@@ -86,7 +86,7 @@ plotGridSearchPerplexity <- function(celdaList, sep = 1) { |
86 | 86 |
#' ) |
87 | 87 |
#' plotGridSearchPerplexity(celdaCGGridSearchRes) |
88 | 88 |
#' @export |
89 |
-plotGridSearchPerplexity.celda_CG <- function(celdaList, sep) { |
|
89 |
+plotGridSearchPerplexitycelda_CG <- function(celdaList, sep) { |
|
90 | 90 |
if (!all(c("K", "L") %in% colnames(celdaList@runParams))) { |
91 | 91 |
stop("celdaList@runParams needs K and L columns.") |
92 | 92 |
} |
... | ... |
@@ -158,7 +158,7 @@ plotGridSearchPerplexity.celda_CG <- function(celdaList, sep) { |
158 | 158 |
#' ) |
159 | 159 |
#' plotGridSearchPerplexity(celdaCGGridSearchRes) |
160 | 160 |
#' @export |
161 |
-plotGridSearchPerplexity.celda_C <- function(celdaList, sep) { |
|
161 |
+plotGridSearchPerplexitycelda_C <- function(celdaList, sep) { |
|
162 | 162 |
if (!all(c("K") %in% colnames(celdaList@runParams))) { |
163 | 163 |
stop("runParams(celdaList) needs the column K.") |
164 | 164 |
} |
... | ... |
@@ -207,7 +207,7 @@ plotGridSearchPerplexity.celda_C <- function(celdaList, sep) { |
207 | 207 |
#' celdaCGGridSearchRes) |
208 | 208 |
#' plotGridSearchPerplexity(celdaCGGridSearchRes) |
209 | 209 |
#' @export |
210 |
-plotGridSearchPerplexity.celda_G <- function(celdaList, sep) { |
|
210 |
+plotGridSearchPerplexitycelda_G <- function(celdaList, sep) { |
|
211 | 211 |
if (!all(c("L") %in% colnames(celdaList@runParams))) { |
212 | 212 |
stop("celdaList@runParams needs the column L.") |
213 | 213 |
} |
... | ... |
@@ -23,7 +23,7 @@ |
23 | 23 |
ix <- z == i |
24 | 24 |
newZ <- z |
25 | 25 |
newZ[ix] <- ifelse(clustLabel@clusters$z == 2, i, K) |
26 |
- ll <- logLikelihood.celda_C(counts, s, newZ, K, alpha, beta) |
|
26 |
+ ll <- logLikelihoodcelda_C(counts, s, newZ, K, alpha, beta) |
|
27 | 27 |
|
28 | 28 |
if (ll > bestLl) { |
29 | 29 |
bestZ <- newZ |
... | ... |
@@ -61,7 +61,7 @@ |
61 | 61 |
ix <- y == i |
62 | 62 |
newY <- y |
63 | 63 |
newY[ix] <- ifelse(clustLabel@clusters$y == 2, i, L) |
64 |
- ll <- logLikelihood.celda_G(counts, newY, L, beta, delta, gamma) |
|
64 |
+ ll <- logLikelihoodcelda_G(counts, newY, L, beta, delta, gamma) |
|
65 | 65 |
|
66 | 66 |
if (ll > bestLl) { |
67 | 67 |
bestY <- newY |
... | ... |
@@ -265,7 +265,7 @@ recursiveSplitCell <- function(counts, |
265 | 265 |
overallZ <- tempModel@clusters$z |
266 | 266 |
} else { |
267 | 267 |
overallZ <- tempSplit$z |
268 |
- ll <- logLikelihood.celda_CG(counts, |
|
268 |
+ ll <- logLikelihoodcelda_CG(counts, |
|
269 | 269 |
s, |
270 | 270 |
overallZ, |
271 | 271 |
tempModel@clusters$y, |
... | ... |
@@ -353,7 +353,7 @@ recursiveSplitCell <- function(counts, |
353 | 353 |
reorder = reorder) |
354 | 354 |
currentK <- length(unique(modelInitial@clusters$z)) + 1 |
355 | 355 |
overallZ <- modelInitial@clusters$z |
356 |
- ll <- logLikelihood.celda_C(counts, s, overallZ, currentK, |
|
356 |
+ ll <- logLikelihoodcelda_C(counts, s, overallZ, currentK, |
|
357 | 357 |
alpha, beta) |
358 | 358 |
modelInitial@params$countChecksum <- countChecksum |
359 | 359 |
modelInitial@completeLogLik <- ll |
... | ... |
@@ -391,7 +391,7 @@ recursiveSplitCell <- function(counts, |
391 | 391 |
} |
392 | 392 |
|
393 | 393 |
# Need to change below line to use decompose counts to save time |
394 |
- ll <- logLikelihood.celda_C(counts, s, overallZ, currentK, |
|
394 |
+ ll <- logLikelihoodcelda_C(counts, s, overallZ, currentK, |
|
395 | 395 |
alpha, beta) |
396 | 396 |
tempModel <- methods::new("celda_C", |
397 | 397 |
clusters = list(z = overallZ), |
... | ... |
@@ -471,7 +471,7 @@ recursiveSplitCell <- function(counts, |
471 | 471 |
} else { |
472 | 472 |
overallZ <- tempSplit$z |
473 | 473 |
ll <- |
474 |
- logLikelihood.celda_C(counts, s, overallZ, |
|
474 |
+ logLikelihoodcelda_C(counts, s, overallZ, |
|
475 | 475 |
currentK, alpha, beta) |
476 | 476 |
tempModel <- methods::new("celda_C", |
477 | 477 |
clusters = list(z = overallZ), |