... | ... |
@@ -24,9 +24,9 @@ export(featureModuleLookup) |
24 | 24 |
export(featureModuleTable) |
25 | 25 |
export(geneSetEnrich) |
26 | 26 |
export(logLikelihood) |
27 |
-export(logLikelihoodCeldaC) |
|
28 |
-export(logLikelihoodCeldaCG) |
|
29 |
-export(logLikelihoodCeldaG) |
|
27 |
+export(logLikelihood.celda_C) |
|
28 |
+export(logLikelihood.celda_CG) |
|
29 |
+export(logLikelihood.celda_G) |
|
30 | 30 |
export(logLikelihoodHistory) |
31 | 31 |
export(matrixNames) |
32 | 32 |
export(moduleHeatmap) |
... | ... |
@@ -743,7 +743,7 @@ setMethod("factorizeMatrix", signature(celdaMod = "celda_C"), |
743 | 743 |
#' @return Numeric. The log likelihood for the given cluster assignments |
744 | 744 |
#' @seealso `celda_C()` for clustering cells |
745 | 745 |
#' @examples |
746 |
-#' loglik <- logLikelihoodCeldaC(celdaCSim$counts, |
|
746 |
+#' loglik <- logLikelihood.celda_C(celdaCSim$counts, |
|
747 | 747 |
#' sampleLabel = celdaCSim$sampleLabel, |
748 | 748 |
#' z = celdaCSim$z, |
749 | 749 |
#' K = celdaCSim$K, |
... | ... |
@@ -758,7 +758,7 @@ setMethod("factorizeMatrix", signature(celdaMod = "celda_C"), |
758 | 758 |
#' alpha = celdaCSim$alpha, |
759 | 759 |
#' beta = celdaCSim$beta) |
760 | 760 |
#' @export |
761 |
-logLikelihoodCeldaC <- function(counts, sampleLabel, z, K, alpha, beta) { |
|
761 |
+logLikelihood.celda_C <- function(counts, sampleLabel, z, K, alpha, beta) { |
|
762 | 762 |
|
763 | 763 |
if (sum(z > K) > 0) { |
764 | 764 |
stop("An entry in z contains a value greater than the provided K.") |
... | ... |
@@ -933,7 +933,7 @@ setMethod("factorizeMatrix", signature(celdaMod = "celda_CG"), |
933 | 933 |
#' @return The log likelihood for the given cluster assignments |
934 | 934 |
#' @seealso `celda_CG()` for clustering features and cells |
935 | 935 |
#' @examples |
936 |
-#' loglik <- logLikelihoodCeldaCG(celdaCGSim$counts, |
|
936 |
+#' loglik <- logLikelihood.celda_CG(celdaCGSim$counts, |
|
937 | 937 |
#' sampleLabel = celdaCGSim$sampleLabel, |
938 | 938 |
#' z = celdaCGSim$z, |
939 | 939 |
#' y = celdaCGSim$y, |
... | ... |
@@ -956,7 +956,7 @@ setMethod("factorizeMatrix", signature(celdaMod = "celda_CG"), |
956 | 956 |
#' gamma = celdaCGSim$gamma, |
957 | 957 |
#' delta = celdaCGSim$delta) |
958 | 958 |
#' @export |
959 |
-logLikelihoodCeldaCG <- function(counts, |
|
959 |
+logLikelihood.celda_CG <- function(counts, |
|
960 | 960 |
sampleLabel, |
961 | 961 |
z, |
962 | 962 |
y, |
... | ... |
@@ -713,7 +713,7 @@ setMethod("factorizeMatrix", signature(celdaMod = "celda_G"), |
713 | 713 |
#' @return The log-likelihood for the given cluster assignments. |
714 | 714 |
#' @seealso `celda_G()` for clustering features |
715 | 715 |
#' @examples |
716 |
-#' loglik <- logLikelihoodCeldaG(celdaGSim$counts, |
|
716 |
+#' loglik <- logLikelihood.celda_G(celdaGSim$counts, |
|
717 | 717 |
#' y = celdaGSim$y, |
718 | 718 |
#' L = celdaGSim$L, |
719 | 719 |
#' beta = celdaGSim$beta, |
... | ... |
@@ -728,7 +728,7 @@ setMethod("factorizeMatrix", signature(celdaMod = "celda_G"), |
728 | 728 |
#' delta = celdaGSim$delta, |
729 | 729 |
#' gamma = celdaGSim$gamma) |
730 | 730 |
#' @export |
731 |
-logLikelihoodCeldaG <- function(counts, y, L, beta, delta, gamma) { |
|
731 |
+logLikelihood.celda_G <- function(counts, y, L, beta, delta, gamma) { |
|
732 | 732 |
if (sum(y > L) > 0) { |
733 | 733 |
stop("An entry in y contains a value greater than the provided L.") |
734 | 734 |
} |
735 | 735 |
similarity index 88% |
736 | 736 |
rename from man/logLikelihoodCeldaC.Rd |
737 | 737 |
rename to man/logLikelihood.celda_C.Rd |
... | ... |
@@ -1,10 +1,10 @@ |
1 | 1 |
% Generated by roxygen2: do not edit by hand |
2 | 2 |
% Please edit documentation in R/celda_C.R |
3 |
-\name{logLikelihoodCeldaC} |
|
4 |
-\alias{logLikelihoodCeldaC} |
|
3 |
+\name{logLikelihood.celda_C} |
|
4 |
+\alias{logLikelihood.celda_C} |
|
5 | 5 |
\title{Calculate Celda_C log likelihood} |
6 | 6 |
\usage{ |
7 |
-logLikelihoodCeldaC(counts, sampleLabel, z, K, alpha, beta) |
|
7 |
+logLikelihood.celda_C(counts, sampleLabel, z, K, alpha, beta) |
|
8 | 8 |
} |
9 | 9 |
\arguments{ |
10 | 10 |
\item{counts}{Integer matrix. Rows represent features and columns represent |
... | ... |
@@ -33,7 +33,7 @@ Calculates the log likelihood for user-provided cell population |
33 | 33 |
clusters using the `celda_C()` model. |
34 | 34 |
} |
35 | 35 |
\examples{ |
36 |
-loglik <- logLikelihoodCeldaC(celdaCSim$counts, |
|
36 |
+loglik <- logLikelihood.celda_C(celdaCSim$counts, |
|
37 | 37 |
sampleLabel = celdaCSim$sampleLabel, |
38 | 38 |
z = celdaCSim$z, |
39 | 39 |
K = celdaCSim$K, |
40 | 40 |
similarity index 91% |
41 | 41 |
rename from man/logLikelihoodCeldaCG.Rd |
42 | 42 |
rename to man/logLikelihood.celda_CG.Rd |
... | ... |
@@ -1,10 +1,10 @@ |
1 | 1 |
% Generated by roxygen2: do not edit by hand |
2 | 2 |
% Please edit documentation in R/celda_CG.R |
3 |
-\name{logLikelihoodCeldaCG} |
|
4 |
-\alias{logLikelihoodCeldaCG} |
|
3 |
+\name{logLikelihood.celda_CG} |
|
4 |
+\alias{logLikelihood.celda_CG} |
|
5 | 5 |
\title{Calculate Celda_CG log likelihood} |
6 | 6 |
\usage{ |
7 |
-logLikelihoodCeldaCG(counts, sampleLabel, z, y, K, L, alpha, beta, delta, |
|
7 |
+logLikelihood.celda_CG(counts, sampleLabel, z, y, K, L, alpha, beta, delta, |
|
8 | 8 |
gamma) |
9 | 9 |
} |
10 | 10 |
\arguments{ |
... | ... |
@@ -44,7 +44,7 @@ Calculates the log likelihood for user-provided cell population |
44 | 44 |
and feature module clusters using the `celda_CG()` model. |
45 | 45 |
} |
46 | 46 |
\examples{ |
47 |
-loglik <- logLikelihoodCeldaCG(celdaCGSim$counts, |
|
47 |
+loglik <- logLikelihood.celda_CG(celdaCGSim$counts, |
|
48 | 48 |
sampleLabel = celdaCGSim$sampleLabel, |
49 | 49 |
z = celdaCGSim$z, |
50 | 50 |
y = celdaCGSim$y, |
51 | 51 |
similarity index 89% |
52 | 52 |
rename from man/logLikelihoodCeldaG.Rd |
53 | 53 |
rename to man/logLikelihood.celda_G.Rd |
... | ... |
@@ -1,10 +1,10 @@ |
1 | 1 |
% Generated by roxygen2: do not edit by hand |
2 | 2 |
% Please edit documentation in R/celda_G.R |
3 |
-\name{logLikelihoodCeldaG} |
|
4 |
-\alias{logLikelihoodCeldaG} |
|
3 |
+\name{logLikelihood.celda_G} |
|
4 |
+\alias{logLikelihood.celda_G} |
|
5 | 5 |
\title{Calculate Celda_G log likelihood} |
6 | 6 |
\usage{ |
7 |
-logLikelihoodCeldaG(counts, y, L, beta, delta, gamma) |
|
7 |
+logLikelihood.celda_G(counts, y, L, beta, delta, gamma) |
|
8 | 8 |
} |
9 | 9 |
\arguments{ |
10 | 10 |
\item{counts}{Integer matrix. Rows represent features and columns represent |
... | ... |
@@ -33,7 +33,7 @@ Calculates the log likelihood for user-provided feature module |
33 | 33 |
clusters using the `celda_G()` model. |
34 | 34 |
} |
35 | 35 |
\examples{ |
36 |
-loglik <- logLikelihoodCeldaG(celdaGSim$counts, |
|
36 |
+loglik <- logLikelihood.celda_G(celdaGSim$counts, |
|
37 | 37 |
y = celdaGSim$y, |
38 | 38 |
L = celdaGSim$L, |
39 | 39 |
beta = celdaGSim$beta, |