Browse code

update doc

zhewa authored on 04/02/2019 20:42:13
Showing 4 changed files

... ...
@@ -51,6 +51,6 @@ VignetteBuilder: knitr
51 51
 License: MIT
52 52
 Encoding: UTF-8
53 53
 LazyData: true
54
-RoxygenNote: 6.1.0
54
+RoxygenNote: 6.1.0.9000
55 55
 BugReports: https://github.com/definitelysean/celda/issues
56 56
 biocViews: SingleCell, GeneExpression, Clustering, Sequencing, Bayesian
... ...
@@ -22,6 +22,7 @@ export(distinct_colors)
22 22
 export(factorizeMatrix)
23 23
 export(featureModuleLookup)
24 24
 export(featureModuleTable)
25
+export(geneSetEnrich)
25 26
 export(logLikelihood)
26 27
 export(logLikelihood.celda_C)
27 28
 export(logLikelihood.celda_CG)
... ...
@@ -13,7 +13,7 @@
13 13
 #'  enriched.
14 14
 #' @return List of length 'L' where each member contains the significantly
15 15
 #'  enriched terms for the corresponding module.
16
-#' @example
16
+#' @examples
17 17
 #' if (!requireNamespace("BiocManager", quietly = TRUE))
18 18
 #'     install.packages("M3DExampleData")
19 19
 #' library(M3DExampleData)
20 20
new file mode 100644
... ...
@@ -0,0 +1,47 @@
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/geneSetEnrich.R
3
+\name{geneSetEnrich}
4
+\alias{geneSetEnrich}
5
+\title{Gene set enrichment}
6
+\usage{
7
+geneSetEnrich(counts, celdaModel, databases, fdr = 0.05)
8
+}
9
+\arguments{
10
+\item{counts}{Integer count matrix. Rows represent genes and columns
11
+represent cells. Row names of the matrix should be gene names.}
12
+
13
+\item{celdaModel}{Celda object of class `celda_G` or `celda_CG`.}
14
+
15
+\item{databases}{Character vector. Name of reference database. Available
16
+databases can be viewed by running \code{enrichR::listEnrichrDbs()}.}
17
+
18
+\item{fdr}{False discovery rate (FDR). Numeric. Cutoff value for adjusted
19
+p-value, terms with FDR below this value are considered significantly
20
+enriched.}
21
+}
22
+\value{
23
+List of length 'L' where each member contains the significantly
24
+ enriched terms for the corresponding module.
25
+}
26
+\description{
27
+Identify and return significantly-enriched terms for each gene
28
+ module in a Celda object. Performs gene set enrichment analysis for Celda
29
+ identified modules using the enrichR package.
30
+}
31
+\examples{
32
+if (!requireNamespace("BiocManager", quietly = TRUE))
33
+    install.packages("M3DExampleData")
34
+library(M3DExampleData)
35
+counts <- M3DExampleData::Mmus_example_list$data
36
+#subset 100 genes for fast clustering
37
+counts <- countsMatrix[sample(seq_len(nrow(countsMatrix)),
38
+    size = 100),]
39
+#cluster genes into 10 modules for quick demo
40
+cm <- celda_G(counts = as.matrix(countsMatrix), L = 10, verbose = FALSE)
41
+gse <- geneSetEnrich(counts,
42
+    cm,
43
+    databases = c('GO_Biological_Process_2018','GO_Molecular_Function_2018'))
44
+}
45
+\author{
46
+Ahmed Youssef
47
+}