... | ... |
@@ -1,16 +1,18 @@ |
1 | 1 |
# Generated by roxygen2: do not edit by hand |
2 | 2 |
|
3 |
-export("clusters<-") |
|
3 |
+export("celdaClusters<-") |
|
4 |
+export("celdaModules<-") |
|
4 | 5 |
export("decontXcounts<-") |
5 |
-export("modules<-") |
|
6 | 6 |
export("sampleLabel<-") |
7 | 7 |
export(appendCeldaList) |
8 | 8 |
export(availableModels) |
9 | 9 |
export(bestLogLikelihood) |
10 | 10 |
export(celda) |
11 |
+export(celdaClusters) |
|
11 | 12 |
export(celdaGridSearch) |
12 | 13 |
export(celdaHeatmap) |
13 | 14 |
export(celdaModel) |
15 |
+export(celdaModules) |
|
14 | 16 |
export(celdaPerplexity) |
15 | 17 |
export(celdaProbabilityMap) |
16 | 18 |
export(celdaTsne) |
... | ... |
@@ -20,7 +22,6 @@ export(celda_CG) |
20 | 22 |
export(celda_G) |
21 | 23 |
export(celdatosce) |
22 | 24 |
export(clusterProbability) |
23 |
-export(clusters) |
|
24 | 25 |
export(compareCountMatrix) |
25 | 26 |
export(countChecksum) |
26 | 27 |
export(decontX) |
... | ... |
@@ -37,7 +38,6 @@ export(logLikelihood) |
37 | 38 |
export(logLikelihoodHistory) |
38 | 39 |
export(matrixNames) |
39 | 40 |
export(moduleHeatmap) |
40 |
-export(modules) |
|
41 | 41 |
export(normalizeCounts) |
42 | 42 |
export(params) |
43 | 43 |
export(perplexity) |
... | ... |
@@ -50,9 +50,6 @@ export(plotDimReduceFeature) |
50 | 50 |
export(plotDimReduceGrid) |
51 | 51 |
export(plotDimReduceModule) |
52 | 52 |
export(plotGridSearchPerplexity) |
53 |
-export(plotGridSearchPerplexitycelda_C) |
|
54 |
-export(plotGridSearchPerplexitycelda_CG) |
|
55 |
-export(plotGridSearchPerplexitycelda_G) |
|
56 | 53 |
export(plotHeatmap) |
57 | 54 |
export(plotMarkerDendro) |
58 | 55 |
export(plotMarkerHeatmap) |
... | ... |
@@ -70,14 +67,16 @@ export(simulateCells) |
70 | 67 |
export(simulateContamination) |
71 | 68 |
export(subsetCeldaList) |
72 | 69 |
export(topRank) |
73 |
-exportMethods("clusters<-") |
|
70 |
+exportMethods("celdaClusters<-") |
|
71 |
+exportMethods("celdaModules<-") |
|
74 | 72 |
exportMethods("decontXcounts<-") |
75 |
-exportMethods("modules<-") |
|
76 | 73 |
exportMethods("sampleLabel<-") |
77 | 74 |
exportMethods(bestLogLikelihood) |
75 |
+exportMethods(celdaClusters) |
|
78 | 76 |
exportMethods(celdaGridSearch) |
79 | 77 |
exportMethods(celdaHeatmap) |
80 | 78 |
exportMethods(celdaModel) |
79 |
+exportMethods(celdaModules) |
|
81 | 80 |
exportMethods(celdaPerplexity) |
82 | 81 |
exportMethods(celdaProbabilityMap) |
83 | 82 |
exportMethods(celdaTsne) |
... | ... |
@@ -87,19 +86,30 @@ exportMethods(celda_CG) |
87 | 86 |
exportMethods(celda_G) |
88 | 87 |
exportMethods(celdatosce) |
89 | 88 |
exportMethods(clusterProbability) |
90 |
-exportMethods(clusters) |
|
91 | 89 |
exportMethods(countChecksum) |
92 | 90 |
exportMethods(decontX) |
93 | 91 |
exportMethods(decontXcounts) |
92 |
+exportMethods(differentialExpression) |
|
94 | 93 |
exportMethods(factorizeMatrix) |
95 | 94 |
exportMethods(featureModuleLookup) |
95 |
+exportMethods(findMarkersTree) |
|
96 |
+exportMethods(geneSetEnrich) |
|
96 | 97 |
exportMethods(logLikelihood) |
97 | 98 |
exportMethods(logLikelihoodHistory) |
98 | 99 |
exportMethods(matrixNames) |
99 |
-exportMethods(modules) |
|
100 |
+exportMethods(moduleHeatmap) |
|
100 | 101 |
exportMethods(params) |
101 | 102 |
exportMethods(perplexity) |
103 |
+exportMethods(plotCeldaViolin) |
|
104 |
+exportMethods(plotDimReduceCluster) |
|
105 |
+exportMethods(plotDimReduceFeature) |
|
106 |
+exportMethods(plotDimReduceGrid) |
|
107 |
+exportMethods(plotDimReduceModule) |
|
108 |
+exportMethods(plotGridSearchPerplexity) |
|
109 |
+exportMethods(recursiveSplitCell) |
|
110 |
+exportMethods(recursiveSplitModule) |
|
102 | 111 |
exportMethods(resList) |
112 |
+exportMethods(resamplePerplexity) |
|
103 | 113 |
exportMethods(runParams) |
104 | 114 |
exportMethods(sampleLabel) |
105 | 115 |
exportMethods(selectBestModel) |
... | ... |
@@ -121,9 +131,6 @@ importFrom(MCMCprecision,fit_dirichlet) |
121 | 131 |
importFrom(RColorBrewer,brewer.pal) |
122 | 132 |
importFrom(Rtsne,Rtsne) |
123 | 133 |
importFrom(S4Vectors,mcols) |
124 |
-importFrom(SummarizedExperiment,assay) |
|
125 |
-importFrom(SummarizedExperiment,assayNames) |
|
126 |
-importFrom(SummarizedExperiment,colData) |
|
127 | 134 |
importFrom(data.table,as.data.table) |
128 | 135 |
importFrom(digest,digest) |
129 | 136 |
importFrom(doParallel,registerDoParallel) |
... | ... |
@@ -265,19 +265,19 @@ setMethod("moduleHeatmap", |
265 | 265 |
if (class(celdaMod)[1] == "celda_CG") { |
266 | 266 |
if (methods::.hasSlot(celdaMod, "clusters")) { |
267 | 267 |
cell <- |
268 |
- distinctColors(length(unique(celdaMod@clusters$z)))[ |
|
269 |
- sort(unique(celdaMod@clusters$z[cellIx])) |
|
268 |
+ distinctColors(length(unique(celdaClusters(celdaMod)$z)))[ |
|
269 |
+ sort(unique(celdaClusters(celdaMod)$z[cellIx])) |
|
270 | 270 |
] |
271 |
- names(cell) <- sort(unique(celdaMod@clusters$z[cellIx])) |
|
271 |
+ names(cell) <- sort(unique(celdaClusters(celdaMod)$z[cellIx])) |
|
272 | 272 |
anno_cell_colors <- list(cell = cell) |
273 |
- zToPlot <- celdaMod@clusters$z[cellIndices] |
|
273 |
+ zToPlot <- celdaClusters(celdaMod)$z[cellIndices] |
|
274 | 274 |
} |
275 | 275 |
} |
276 | 276 |
|
277 | 277 |
plt <- plotHeatmap( |
278 | 278 |
filteredNormCounts, |
279 | 279 |
z = zToPlot, |
280 |
- y = celdaMod@clusters$y[geneIx], |
|
280 |
+ y = celdaClusters(celdaMod)$y[geneIx], |
|
281 | 281 |
scaleRow = scaleRow, |
282 | 282 |
colorScheme = "divergent", |
283 | 283 |
showNamesFeature = showFeaturenames, |
... | ... |
@@ -682,7 +682,7 @@ setMethod("featureModuleLookup", signature(sce = "SingleCellExperiment"), |
682 | 682 |
} |
683 | 683 |
for (x in seq(length(feature))) { |
684 | 684 |
if (feature[x] %in% rownames(sce)) { |
685 |
- list[x] <- modules(sce)[which(rownames(sce) == |
|
685 |
+ list[x] <- celdaModules(sce)[which(rownames(sce) == |
|
686 | 686 |
feature[x])] |
687 | 687 |
} else { |
688 | 688 |
list[x] <- paste0( |
... | ... |
@@ -711,7 +711,7 @@ setMethod("featureModuleLookup", signature(sce = "SingleCellExperiment"), |
711 | 711 |
seq(length(feature)), |
712 | 712 |
function(x) { |
713 | 713 |
if (feature[x] %in% rownames(sce)) { |
714 |
- return(modules(sce)[which(rownames(sce) == |
|
714 |
+ return(celdaModules(sce)[which(rownames(sce) == |
|
715 | 715 |
feature[x])]) |
716 | 716 |
} else { |
717 | 717 |
return(paste0( |
... | ... |
@@ -47,7 +47,7 @@ |
47 | 47 |
#' \link[S4Vectors]{metadata} \code{"celda_grid_search"} slot. |
48 | 48 |
#' @seealso \link{celda_G} for feature clustering, \link{celda_C} for |
49 | 49 |
#' clustering of cells, and \link{celda_CG} for simultaneous clustering of |
50 |
-#' features and cells. \link{subsetCeldaList} can subset the \link{celdaList} |
|
50 |
+#' features and cells. \link{subsetCeldaList} can subset the \code{celdaList} |
|
51 | 51 |
#' object. \link{selectBestModel} can get the best model for each combination |
52 | 52 |
#' of parameters. |
53 | 53 |
#' @import foreach |
... | ... |
@@ -606,6 +606,7 @@ setMethod("selectBestModel", signature(x = "SingleCellExperiment"), |
606 | 606 |
) |
607 | 607 |
|
608 | 608 |
|
609 |
+#' @rdname selectBestModel |
|
609 | 610 |
#' @examples |
610 | 611 |
#' data(celdaCGGridSearchRes) |
611 | 612 |
#' ## Returns same result as running celdaGridSearch with "bestOnly = TRUE" |
... | ... |
@@ -2729,7 +2729,7 @@ subUnderscore <- function(x, n) { |
2729 | 2729 |
#' # Get features matrix and cluster assignments |
2730 | 2730 |
#' factorized <- factorizeMatrix(sim_counts$counts, cm) |
2731 | 2731 |
#' features <- factorized$proportions$cell |
2732 |
-#' class <- clusters(cm)$z |
|
2732 |
+#' class <- celdaClusters(cm) |
|
2733 | 2733 |
#' |
2734 | 2734 |
#' # Generate Decision Tree |
2735 | 2735 |
#' DecTree <- findMarkersTree(features, class, threshold = 1) |
... | ... |
@@ -81,7 +81,7 @@ |
81 | 81 |
verbose = FALSE, |
82 | 82 |
reorder = FALSE |
83 | 83 |
) |
84 |
- overallZ <- as.integer(as.factor(res@clusters$z)) |
|
84 |
+ overallZ <- as.integer(as.factor(celdaClusters(res)$z)) |
|
85 | 85 |
currentK <- max(overallZ) |
86 | 86 |
|
87 | 87 |
counter <- 0 |
... | ... |
@@ -112,7 +112,7 @@ |
112 | 112 |
splitOnIter = -1, |
113 | 113 |
splitOnLast = FALSE, |
114 | 114 |
verbose = FALSE) |
115 |
- tempZ <- as.integer(as.factor(clustLabel@clusters$z)) |
|
115 |
+ tempZ <- as.integer(as.factor(celdaClusters(clustLabel)$z)) |
|
116 | 116 |
|
117 | 117 |
# Reassign clusters with label > 1 |
118 | 118 |
splitIx <- tempZ > 1 |
... | ... |
@@ -245,7 +245,7 @@ |
245 | 245 |
splitOnLast = FALSE, |
246 | 246 |
verbose = FALSE, |
247 | 247 |
reorder = FALSE) |
248 |
- overallY <- as.integer(as.factor(res@clusters$y)) |
|
248 |
+ overallY <- as.integer(as.factor(celdaClusters(res)$y)) |
|
249 | 249 |
currentL <- max(overallY) |
250 | 250 |
|
251 | 251 |
counter <- 0 |
... | ... |
@@ -281,7 +281,7 @@ |
281 | 281 |
splitOnLast = FALSE, |
282 | 282 |
verbose = FALSE |
283 | 283 |
) |
284 |
- tempY <- as.integer(as.factor(clustLabel@clusters$y)) |
|
284 |
+ tempY <- as.integer(as.factor(celdaClusters(clustLabel)$y)) |
|
285 | 285 |
|
286 | 286 |
# Reassign clusters with label > 1 |
287 | 287 |
splitIx <- tempY > 1 |
... | ... |
@@ -1196,10 +1196,9 @@ setMethod("recursiveSplitModule", |
1196 | 1196 |
gamma = gamma, |
1197 | 1197 |
delta = delta, |
1198 | 1198 |
verbose = FALSE, |
1199 |
- reorder = reorder |
|
1200 |
- ) |
|
1201 |
- currentL <- length(unique(celdaClusters(modelInitial)y)) + 1 |
|
1202 |
- overallY <- celdaClusters(modelInitial)y |
|
1199 |
+ reorder = reorder) |
|
1200 |
+ currentL <- length(unique(celdaClusters(modelInitial)$y)) + 1 |
|
1201 |
+ overallY <- celdaClusters(modelInitial)$y |
|
1203 | 1202 |
|
1204 | 1203 |
resList <- list(modelInitial) |
1205 | 1204 |
while (currentL <= maxL) { |
1206 | 1205 |
similarity index 69% |
1207 | 1206 |
rename from man/clusters.Rd |
1208 | 1207 |
rename to man/celdaClusters.Rd |
... | ... |
@@ -1,24 +1,24 @@ |
1 | 1 |
% Generated by roxygen2: do not edit by hand |
2 | 2 |
% Please edit documentation in R/accessors.R |
3 |
-\name{clusters} |
|
4 |
-\alias{clusters} |
|
5 |
-\alias{clusters,SingleCellExperiment-method} |
|
6 |
-\alias{clusters,celdaModel-method} |
|
7 |
-\alias{clusters<-} |
|
8 |
-\alias{clusters<-,SingleCellExperiment-method} |
|
3 |
+\name{celdaClusters} |
|
4 |
+\alias{celdaClusters} |
|
5 |
+\alias{celdaClusters,SingleCellExperiment-method} |
|
6 |
+\alias{celdaClusters,celdaModel-method} |
|
7 |
+\alias{celdaClusters<-} |
|
8 |
+\alias{celdaClusters<-,SingleCellExperiment-method} |
|
9 | 9 |
\title{Get or set the cell cluster labels from a celda |
10 | 10 |
\linkS4class{SingleCellExperiment} object or celda model |
11 | 11 |
object.} |
12 | 12 |
\usage{ |
13 |
-clusters(x) |
|
13 |
+celdaClusters(x) |
|
14 | 14 |
|
15 |
-\S4method{clusters}{SingleCellExperiment}(x) |
|
15 |
+\S4method{celdaClusters}{SingleCellExperiment}(x) |
|
16 | 16 |
|
17 |
-\S4method{clusters}{celdaModel}(x) |
|
17 |
+\S4method{celdaClusters}{celdaModel}(x) |
|
18 | 18 |
|
19 |
-clusters(x) <- value |
|
19 |
+celdaClusters(x) <- value |
|
20 | 20 |
|
21 |
-\S4method{clusters}{SingleCellExperiment}(x) <- value |
|
21 |
+\S4method{celdaClusters}{SingleCellExperiment}(x) <- value |
|
22 | 22 |
} |
23 | 23 |
\arguments{ |
24 | 24 |
\item{x}{Can be one of |
... | ... |
@@ -45,7 +45,7 @@ Return or set the cell cluster labels determined |
45 | 45 |
} |
46 | 46 |
\examples{ |
47 | 47 |
data(sceCeldaCG) |
48 |
-clusters(sceCeldaCG) |
|
48 |
+celdaClusters(sceCeldaCG) |
|
49 | 49 |
data(celdaCGMod) |
50 |
-clusters(celdaCGMod) |
|
50 |
+celdaClusters(celdaCGMod) |
|
51 | 51 |
} |
... | ... |
@@ -75,12 +75,12 @@ TRUE.} |
75 | 75 |
\item{seed}{Integer. Passed to \link[withr]{with_seed}. For reproducibility, |
76 | 76 |
a default value of 12345 is used. Seed values |
77 | 77 |
\code{seq(seed, (seed + nchains - 1))} will be supplied to each chain in |
78 |
-\code{nchains} If NULL, no calls to |
|
78 |
+\code{nchains}. If NULL, no calls to |
|
79 | 79 |
\link[withr]{with_seed} are made.} |
80 | 80 |
|
81 | 81 |
\item{perplexity}{Logical. Whether to calculate perplexity for each model. |
82 | 82 |
If FALSE, then perplexity can be calculated later with |
83 |
-`resamplePerplexity()`. Default TRUE.} |
|
83 |
+\link{resamplePerplexity}. Default TRUE.} |
|
84 | 84 |
|
85 | 85 |
\item{verbose}{Logical. Whether to print log messages during celda chain |
86 | 86 |
execution. Default TRUE.} |
87 | 87 |
similarity index 66% |
88 | 88 |
rename from man/modules.Rd |
89 | 89 |
rename to man/celdaModules.Rd |
... | ... |
@@ -1,20 +1,20 @@ |
1 | 1 |
% Generated by roxygen2: do not edit by hand |
2 | 2 |
% Please edit documentation in R/accessors.R |
3 |
-\name{modules} |
|
4 |
-\alias{modules} |
|
5 |
-\alias{modules,SingleCellExperiment-method} |
|
6 |
-\alias{modules<-} |
|
7 |
-\alias{modules<-,SingleCellExperiment-method} |
|
3 |
+\name{celdaModules} |
|
4 |
+\alias{celdaModules} |
|
5 |
+\alias{celdaModules,SingleCellExperiment-method} |
|
6 |
+\alias{celdaModules<-} |
|
7 |
+\alias{celdaModules<-,SingleCellExperiment-method} |
|
8 | 8 |
\title{Get or set the feature module labels from a celda |
9 | 9 |
\linkS4class{SingleCellExperiment} object.} |
10 | 10 |
\usage{ |
11 |
-modules(sce) |
|
11 |
+celdaModules(sce) |
|
12 | 12 |
|
13 |
-\S4method{modules}{SingleCellExperiment}(sce) |
|
13 |
+\S4method{celdaModules}{SingleCellExperiment}(sce) |
|
14 | 14 |
|
15 |
-modules(sce) <- value |
|
15 |
+celdaModules(sce) <- value |
|
16 | 16 |
|
17 |
-\S4method{modules}{SingleCellExperiment}(sce) <- value |
|
17 |
+\S4method{celdaModules}{SingleCellExperiment}(sce) <- value |
|
18 | 18 |
} |
19 | 19 |
\arguments{ |
20 | 20 |
\item{sce}{A \linkS4class{SingleCellExperiment} object returned by |
... | ... |
@@ -32,5 +32,5 @@ Return or set the feature module cluster labels determined |
32 | 32 |
} |
33 | 33 |
\examples{ |
34 | 34 |
data(celdaCGMod) |
35 |
-modules(celdaCGMod) |
|
35 |
+celdaModules(celdaCGMod) |
|
36 | 36 |
} |
... | ... |
@@ -43,7 +43,7 @@ Default NULL.} |
43 | 43 |
threshold. Default 100.} |
44 | 44 |
|
45 | 45 |
\item{modules}{Integer vector. Determines which features modules to use for |
46 |
-tSNE. If NULL, all modules will be used. Default NULL.} |
|
46 |
+UMAP. If NULL, all modules will be used. Default NULL.} |
|
47 | 47 |
|
48 | 48 |
\item{seed}{Integer. Passed to \link[withr]{with_seed}. For reproducibility, |
49 | 49 |
a default value of 12345 is used. If NULL, no calls to |
... | ... |
@@ -67,7 +67,7 @@ Rows represent features and columns represent cells.} |
67 | 67 |
|
68 | 68 |
\item{useAssay}{A string specifying which \link[SummarizedExperiment]{assay} |
69 | 69 |
slot to use if \code{x} is a |
70 |
-\link[SingleCellExperiment]{SingleCellExperiment} object. Default "counts".} |
|
70 |
+\linkS4class{SingleCellExperiment} object. Default "counts".} |
|
71 | 71 |
|
72 | 72 |
\item{sampleLabel}{Vector or factor. Denotes the sample label for each cell |
73 | 73 |
(column) in the count matrix.} |
... | ... |
@@ -2,10 +2,24 @@ |
2 | 2 |
% Please edit documentation in R/diffExp.R |
3 | 3 |
\name{differentialExpression} |
4 | 4 |
\alias{differentialExpression} |
5 |
+\alias{differentialExpression,SingleCellExperiment-method} |
|
6 |
+\alias{differentialExpression,matrix-method} |
|
5 | 7 |
\title{Differential expression for cell subpopulations using MAST} |
6 | 8 |
\usage{ |
7 |
-differentialExpression( |
|
8 |
- counts, |
|
9 |
+differentialExpression(x, ...) |
|
10 |
+ |
|
11 |
+\S4method{differentialExpression}{SingleCellExperiment}( |
|
12 |
+ x, |
|
13 |
+ useAssay = "counts", |
|
14 |
+ c1, |
|
15 |
+ c2 = NULL, |
|
16 |
+ onlyPos = FALSE, |
|
17 |
+ log2fcThreshold = NULL, |
|
18 |
+ fdrThreshold = 1 |
|
19 |
+) |
|
20 |
+ |
|
21 |
+\S4method{differentialExpression}{matrix}( |
|
22 |
+ x, |
|
9 | 23 |
celdaMod, |
10 | 24 |
c1, |
11 | 25 |
c2 = NULL, |
... | ... |
@@ -15,11 +29,16 @@ differentialExpression( |
15 | 29 |
) |
16 | 30 |
} |
17 | 31 |
\arguments{ |
18 |
-\item{counts}{Integer matrix. Rows represent features and columns represent |
|
19 |
-cells. This matrix should be the same as the one used to generate |
|
20 |
-`celdaMod`.} |
|
32 |
+\item{x}{A numeric \link{matrix} of counts or a |
|
33 |
+\linkS4class{SingleCellExperiment} |
|
34 |
+with the matrix located in the assay slot under \code{useAssay}. |
|
35 |
+Rows represent features and columns represent cells. Must contain cluster |
|
36 |
+labels in \code{celdaClusters(x)} if \code{x} is a |
|
37 |
+\linkS4class{SingleCellExperiment} object.} |
|
21 | 38 |
|
22 |
-\item{celdaMod}{Celda object of class `celda_C` or `celda_CG`.} |
|
39 |
+\item{useAssay}{A string specifying which \link[SummarizedExperiment]{assay} |
|
40 |
+slot to use if \code{x} is a |
|
41 |
+\link[SingleCellExperiment]{SingleCellExperiment} object. Default "counts".} |
|
23 | 42 |
|
24 | 43 |
\item{c1}{Integer vector. Cell populations to include in group 1 for the |
25 | 44 |
differential expression analysis.} |
... | ... |
@@ -39,6 +58,8 @@ applied. Default NULL.} |
39 | 58 |
\item{fdrThreshold}{Numeric. A number between 0 and 1 that specifies the |
40 | 59 |
false discovery rate (FDR) threshold. Only features below this threshold |
41 | 60 |
will be returned. Default 1.} |
61 |
+ |
|
62 |
+\item{celdaMod}{Celda object of class `celda_C` or `celda_CG`.} |
|
42 | 63 |
} |
43 | 64 |
\value{ |
44 | 65 |
Data frame containing MAST results including statistics such as |
... | ... |
@@ -49,9 +70,10 @@ Uses MAST to find differentially expressed features for |
49 | 70 |
specified cell subpopulations. |
50 | 71 |
} |
51 | 72 |
\examples{ |
73 |
+data(sceCeldaCG) |
|
74 |
+clusterDiffexpRes <- differentialExpression(sceCeldaCG, c1 = c(1, 2)) |
|
52 | 75 |
data(celdaCGSim, celdaCGMod) |
53 | 76 |
clusterDiffexpRes <- differentialExpression(celdaCGSim$counts, |
54 | 77 |
celdaCGMod, |
55 |
- c1 = c(1, 2) |
|
56 |
-) |
|
78 |
+ c1 = c(1, 2)) |
|
57 | 79 |
} |
... | ... |
@@ -2,10 +2,31 @@ |
2 | 2 |
% Please edit documentation in R/findMarkersTree.R |
3 | 3 |
\name{findMarkersTree} |
4 | 4 |
\alias{findMarkersTree} |
5 |
+\alias{findMarkersTree,SingleCellExperiment-method} |
|
6 |
+\alias{findMarkersTree,matrix-method} |
|
5 | 7 |
\title{Generate marker decision tree from single-cell clustering output} |
6 | 8 |
\usage{ |
7 |
-findMarkersTree( |
|
8 |
- features, |
|
9 |
+findMarkersTree(x, ...) |
|
10 |
+ |
|
11 |
+\S4method{findMarkersTree}{SingleCellExperiment}( |
|
12 |
+ x, |
|
13 |
+ useAssay = "counts", |
|
14 |
+ class, |
|
15 |
+ oneoffMetric = c("modified F1", "pairwise AUC"), |
|
16 |
+ metaclusters, |
|
17 |
+ featureLabels, |
|
18 |
+ counts, |
|
19 |
+ seurat, |
|
20 |
+ threshold = 0.9, |
|
21 |
+ reuseFeatures = FALSE, |
|
22 |
+ altSplit = TRUE, |
|
23 |
+ consecutiveOneoff = FALSE, |
|
24 |
+ autoMetaclusters = TRUE, |
|
25 |
+ seed = 12345 |
|
26 |
+) |
|
27 |
+ |
|
28 |
+\S4method{findMarkersTree}{matrix}( |
|
29 |
+ x, |
|
9 | 30 |
class, |
10 | 31 |
oneoffMetric = c("modified F1", "pairwise AUC"), |
11 | 32 |
metaclusters, |
... | ... |
@@ -22,7 +43,14 @@ findMarkersTree( |
22 | 43 |
) |
23 | 44 |
} |
24 | 45 |
\arguments{ |
25 |
-\item{features}{features-by-samples numeric matrix, e.g. counts matrix.} |
|
46 |
+\item{x}{A numeric \link{matrix} of counts or a |
|
47 |
+\linkS4class{SingleCellExperiment} |
|
48 |
+with the matrix located in the assay slot under \code{useAssay}. |
|
49 |
+Rows represent features and columns represent cells.} |
|
50 |
+ |
|
51 |
+\item{useAssay}{A string specifying which \link[SummarizedExperiment]{assay} |
|
52 |
+slot to use if \code{x} is a |
|
53 |
+\link[SingleCellExperiment]{SingleCellExperiment} object. Default "counts".} |
|
26 | 54 |
|
27 | 55 |
\item{class}{Vector of cell cluster labels.} |
28 | 56 |
|
... | ... |
@@ -41,10 +69,8 @@ modules).} |
41 | 69 |
\item{counts}{Numeric counts matrix. Useful when using clusters |
42 | 70 |
of features (e.g. gene modules) and user wishes to expand tree results to |
43 | 71 |
individual features (e.g. score individual genes within marker gene |
44 |
-modules). Row names should be individual feature names.} |
|
45 |
- |
|
46 |
-\item{celda}{A \emph{celda_CG} or \emph{celda_C} object. |
|
47 |
-Counts matrix has to be provided as well.} |
|
72 |
+modules). Row names should be individual feature names. Ignored if |
|
73 |
+\code{x} is a \linkS4class{SingleCellExperiment} object.} |
|
48 | 74 |
|
49 | 75 |
\item{seurat}{A seurat object. Note that the seurat functions |
50 | 76 |
\emph{RunPCA} and \emph{FindClusters} must have been run on the object.} |
... | ... |
@@ -68,6 +94,9 @@ cluster that includes several clusters within it. Default is TRUE.} |
68 | 94 |
|
69 | 95 |
\item{seed}{Numeric. Seed used to enable reproducible UMAP results |
70 | 96 |
for identifying metaclusters. Default is 12345.} |
97 |
+ |
|
98 |
+\item{celda}{A \emph{celda_CG} or \emph{celda_C} object. |
|
99 |
+Counts matrix has to be provided as well.} |
|
71 | 100 |
} |
72 | 101 |
\value{ |
73 | 102 |
A named list with six elements: |
... | ... |
@@ -122,15 +151,15 @@ Create a decision tree that identifies gene markers for given |
122 | 151 |
\examples{ |
123 | 152 |
\dontrun{ |
124 | 153 |
# Generate simulated single-cell dataset using celda |
125 |
-sim_counts <- celda::simulateCells("celda_CG", K = 4, L = 10, G = 100) |
|
154 |
+sim_counts <- simulateCells("celda_CG", K = 4, L = 10, G = 100) |
|
126 | 155 |
|
127 | 156 |
# Celda clustering into 5 clusters & 10 modules |
128 |
-cm <- celda_CG(sim_counts$counts, K = 5, L = 10, verbose = FALSE) |
|
157 |
+cm <- celda_CG(sim_counts, K = 5, L = 10, verbose = FALSE) |
|
129 | 158 |
|
130 | 159 |
# Get features matrix and cluster assignments |
131 |
-factorized <- factorizeMatrix(sim_counts$counts, cm) |
|
160 |
+factorized <- factorizeMatrix(cm) |
|
132 | 161 |
features <- factorized$proportions$cell |
133 |
-class <- clusters(cm)$z |
|
162 |
+class <- celdaClusters(cm) |
|
134 | 163 |
|
135 | 164 |
# Generate Decision Tree |
136 | 165 |
DecTree <- findMarkersTree(features, class) |
... | ... |
@@ -2,22 +2,35 @@ |
2 | 2 |
% Please edit documentation in R/geneSetEnrich.R |
3 | 3 |
\name{geneSetEnrich} |
4 | 4 |
\alias{geneSetEnrich} |
5 |
+\alias{geneSetEnrich,SingleCellExperiment-method} |
|
6 |
+\alias{geneSetEnrich,matrix-method} |
|
5 | 7 |
\title{Gene set enrichment} |
6 | 8 |
\usage{ |
7 |
-geneSetEnrich(counts, celdaModel, databases, fdr = 0.05) |
|
9 |
+geneSetEnrich(x, ...) |
|
10 |
+ |
|
11 |
+\S4method{geneSetEnrich}{SingleCellExperiment}(x, useAssay = "counts", databases, fdr = 0.05) |
|
12 |
+ |
|
13 |
+\S4method{geneSetEnrich}{matrix}(x, celdaModel, databases, fdr = 0.05) |
|
8 | 14 |
} |
9 | 15 |
\arguments{ |
10 |
-\item{counts}{Integer count matrix. Rows represent genes and columns |
|
11 |
-represent cells. Row names of the matrix should be gene names.} |
|
16 |
+\item{x}{A numeric \link{matrix} of counts or a |
|
17 |
+\linkS4class{SingleCellExperiment} |
|
18 |
+with the matrix located in the assay slot under \code{useAssay}. |
|
19 |
+Rows represent features and columns represent cells. Rownames of the |
|
20 |
+matrix or \linkS4class{SingleCellExperiment} object should be gene names.} |
|
12 | 21 |
|
13 |
-\item{celdaModel}{Celda object of class `celda_G` or `celda_CG`.} |
|
22 |
+\item{useAssay}{A string specifying which \link[SummarizedExperiment]{assay} |
|
23 |
+slot to use if \code{x} is a |
|
24 |
+\linkS4class{SingleCellExperiment} object. Default "counts".} |
|
14 | 25 |
|
15 | 26 |
\item{databases}{Character vector. Name of reference database. Available |
16 |
-databases can be viewed by running \code{enrichR::listEnrichrDbs()}.} |
|
27 |
+databases can be viewed by \link[enrichR]{listEnrichrDbs}.} |
|
17 | 28 |
|
18 | 29 |
\item{fdr}{False discovery rate (FDR). Numeric. Cutoff value for adjusted |
19 | 30 |
p-value, terms with FDR below this value are considered significantly |
20 | 31 |
enriched.} |
32 |
+ |
|
33 |
+\item{celdaModel}{Celda object of class \code{celda_G} or \code{celda_CG}.} |
|
21 | 34 |
} |
22 | 35 |
\value{ |
23 | 36 |
List of length 'L' where each member contains the significantly |
... | ... |
@@ -25,21 +38,20 @@ List of length 'L' where each member contains the significantly |
25 | 38 |
} |
26 | 39 |
\description{ |
27 | 40 |
Identify and return significantly-enriched terms for each gene |
28 |
- module in a Celda object. Performs gene set enrichment analysis for Celda |
|
29 |
- identified modules using the enrichR package. |
|
41 |
+ module in a Celda object or a \linkS4class{SingleCellExperiment} object. |
|
42 |
+ Performs gene set enrichment analysis for Celda |
|
43 |
+ identified modules using the \link[enrichR]{enrichr}. |
|
30 | 44 |
} |
31 | 45 |
\examples{ |
32 | 46 |
library(M3DExampleData) |
33 | 47 |
counts <- M3DExampleData::Mmus_example_list$data |
34 |
-# subset 100 genes for fast clustering |
|
35 |
-counts <- counts[1500:2000, ] |
|
48 |
+# subset 500 genes for fast clustering |
|
49 |
+counts <- counts[seq(1501, 2000), ] |
|
36 | 50 |
# cluster genes into 10 modules for quick demo |
37 |
-cm <- celda_G(counts = as.matrix(counts), L = 10, verbose = FALSE) |
|
38 |
-gse <- geneSetEnrich(counts, |
|
39 |
- cm, |
|
40 |
- databases = c("GO_Biological_Process_2018", "GO_Molecular_Function_2018") |
|
41 |
-) |
|
51 |
+sce <- celda_G(counts = as.matrix(counts), L = 10, verbose = FALSE) |
|
52 |
+gse <- geneSetEnrich(sce, |
|
53 |
+ databases = c("GO_Biological_Process_2018", "GO_Molecular_Function_2018")) |
|
42 | 54 |
} |
43 | 55 |
\author{ |
44 |
-Ahmed Youssef |
|
56 |
+Ahmed Youssef, Zhe Wang |
|
45 | 57 |
} |
... | ... |
@@ -10,10 +10,11 @@ getDecisions(rules, features) |
10 | 10 |
getDecisions(rules, features) |
11 | 11 |
} |
12 | 12 |
\arguments{ |
13 |
-\item{rules}{List object. The `rules` element from `findMarkers` |
|
14 |
-output. Returns NA if cluster estimation was ambiguous.} |
|
13 |
+\item{rules}{List object. The \code{rules} element from |
|
14 |
+\code{findMarkersTree} output. Returns NA if cluster estimation was |
|
15 |
+ambiguous.} |
|
15 | 16 |
|
16 |
-\item{features}{A L(features) by N(samples) numeric matrix.} |
|
17 |
+\item{features}{A L (features) by N (samples) numeric matrix.} |
|
17 | 18 |
} |
18 | 19 |
\value{ |
19 | 20 |
A character vector of label predicitions. |
... | ... |
@@ -32,21 +33,19 @@ Get decisions for a matrix of features. Estimate cell |
32 | 33 |
library(M3DExampleData) |
33 | 34 |
counts <- M3DExampleData::Mmus_example_list$data |
34 | 35 |
# Subset 500 genes for fast clustering |
35 |
-counts <- as.matrix(counts[1501:2000, ]) |
|
36 |
-# Cluster genes ans samples each into 10 modules |
|
37 |
-cm <- celda_CG(counts = counts, L = 10, K = 5, verbose = FALSE) |
|
36 |
+counts <- as.matrix(counts[seq(1501, 2000), ]) |
|
37 |
+# Cluster genes and samples each into 10 modules |
|
38 |
+sce <- celda_CG(counts = counts, L = 10, K = 5, verbose = FALSE) |
|
38 | 39 |
# Get features matrix and cluster assignments |
39 |
-factorized <- factorizeMatrix(counts, cm) |
|
40 |
+factorized <- factorizeMatrix(sce) |
|
40 | 41 |
features <- factorized$proportions$cell |
41 |
-class <- clusters(cm)$z |
|
42 |
+class <- celdaClusters(sce) |
|
42 | 43 |
# Generate Decision Tree |
43 |
-DecTree <- findMarkers(features, |
|
44 |
+DecTree <- findMarkersTree(features, |
|
44 | 45 |
class, |
45 | 46 |
oneoffMetric = "modified F1", |
46 | 47 |
threshold = 1, |
47 |
- consecutiveOneoff = FALSE |
|
48 |
-) |
|
49 |
- |
|
48 |
+ consecutiveOneoff = FALSE) |
|
50 | 49 |
# Get sample estimates in training data |
51 | 50 |
getDecisions(DecTree$rules, features) |
52 | 51 |
} |
... | ... |
@@ -2,10 +2,25 @@ |
2 | 2 |
% Please edit documentation in R/StateHeatmap.R |
3 | 3 |
\name{moduleHeatmap} |
4 | 4 |
\alias{moduleHeatmap} |
5 |
+\alias{moduleHeatmap,SingleCellExperiment-method} |
|
6 |
+\alias{moduleHeatmap,matrix-method} |
|
5 | 7 |
\title{Heatmap for featureModules} |
6 | 8 |
\usage{ |
7 |
-moduleHeatmap( |
|
8 |
- counts, |
|
9 |
+moduleHeatmap(x, ...) |
|
10 |
+ |
|
11 |
+\S4method{moduleHeatmap}{SingleCellExperiment}( |
|
12 |
+ x, |
|
13 |
+ useAssay = "counts", |
|
14 |
+ featureModule = 1, |
|
15 |
+ topCells = 100, |
|
16 |
+ topFeatures = NULL, |
|
17 |
+ normalizedCounts = NA, |
|
18 |
+ scaleRow = scale, |
|
19 |
+ showFeaturenames = TRUE |
|
20 |
+) |
|
21 |
+ |
|
22 |
+\S4method{moduleHeatmap}{matrix}( |
|
23 |
+ x, |
|
9 | 24 |
celdaMod, |
10 | 25 |
featureModule = 1, |
11 | 26 |
topCells = 100, |
... | ... |
@@ -16,11 +31,14 @@ moduleHeatmap( |
16 | 31 |
) |
17 | 32 |
} |
18 | 33 |
\arguments{ |
19 |
-\item{counts}{Integer matrix. Rows represent features and columns represent |
|
20 |
-cells. This matrix should be the same as the one used to generate |
|
21 |
-`celdaMod`.} |
|
34 |
+\item{x}{A numeric \link{matrix} of counts or a |
|
35 |
+\linkS4class{SingleCellExperiment} |
|
36 |
+with the matrix located in the assay slot under \code{useAssay}. |
|
37 |
+Rows represent features and columns represent cells.} |
|
22 | 38 |
|
23 |
-\item{celdaMod}{Celda object of class `celda_G` or `celda_CG`.} |
|
39 |
+\item{useAssay}{A string specifying which \link[SummarizedExperiment]{assay} |
|
40 |
+slot to use if \code{x} is a |
|
41 |
+\linkS4class{SingleCellExperiment} object. Default "counts".} |
|
24 | 42 |
|
25 | 43 |
\item{featureModule}{Integer Vector. The featureModule(s) to display. |
26 | 44 |
Multiple modules can be included in a vector.} |
... | ... |
@@ -50,6 +68,9 @@ Default `scale`.} |
50 | 68 |
|
51 | 69 |
\item{showFeaturenames}{Logical. Wheter feature names should be displayed. |
52 | 70 |
Default TRUE.} |
71 |
+ |
|
72 |
+\item{celdaMod}{Celda object of class \link{celda_G} or \link{celda_CG}. Used |
|
73 |
+only if \code{x} is a matrix object.} |
|
53 | 74 |
} |
54 | 75 |
\value{ |
55 | 76 |
A list containing row and column dendrograms as well as a gtable for |
... | ... |
@@ -66,4 +87,6 @@ Renders a heatmap for selected featureModules. Cells are |
66 | 87 |
\examples{ |
67 | 88 |
data(celdaCGSim, celdaCGMod) |
68 | 89 |
moduleHeatmap(celdaCGSim$counts, celdaCGMod) |
90 |
+data(celdaCGSim, celdaCGMod) |
|
91 |
+moduleHeatmap(celdaCGSim$counts, celdaCGMod) |
|
69 | 92 |
} |
... | ... |
@@ -2,10 +2,23 @@ |
2 | 2 |
% Please edit documentation in R/plot_dr.R |
3 | 3 |
\name{plotCeldaViolin} |
4 | 4 |
\alias{plotCeldaViolin} |
5 |
+\alias{plotCeldaViolin,SingleCellExperiment-method} |
|
6 |
+\alias{plotCeldaViolin,matrix-method} |
|
5 | 7 |
\title{Feature Expression Violin Plot} |
6 | 8 |
\usage{ |
7 |
-plotCeldaViolin( |
|
8 |
- counts, |
|
9 |
+plotCeldaViolin(x, ...) |
|
10 |
+ |
|
11 |
+\S4method{plotCeldaViolin}{SingleCellExperiment}( |
|
12 |
+ x, |
|
13 |
+ useAssay = "counts", |
|
14 |
+ features, |
|
15 |
+ exactMatch = TRUE, |
|
16 |
+ plotDots = TRUE, |
|
17 |
+ dotSize = 0.1 |
|
18 |
+) |
|
19 |
+ |
|
20 |
+\S4method{plotCeldaViolin}{matrix}( |
|
21 |
+ x, |
|
9 | 22 |
celdaMod, |
10 | 23 |
features, |
11 | 24 |
exactMatch = TRUE, |
... | ... |
@@ -14,10 +27,13 @@ plotCeldaViolin( |
14 | 27 |
) |
15 | 28 |
} |
16 | 29 |
\arguments{ |
17 |
-\item{counts}{Integer matrix. Rows represent features and columns represent |
|
18 |
-cells.} |
|
30 |
+\item{x}{Numeric matrix or a \linkS4class{SingleCellExperiment} object |
|
31 |
+with the matrix located in the assay slot under \code{useAssay}. Rows |
|
32 |
+represent features and columns represent cells.} |
|
19 | 33 |
|
20 |
-\item{celdaMod}{Celda object of class "celda_G" or "celda_CG".} |
|
34 |
+\item{useAssay}{A string specifying which \link[SummarizedExperiment]{assay} |
|
35 |
+slot to use if \code{x} is a |
|
36 |
+\linkS4class{SingleCellExperiment} object. Default "counts".} |
|
21 | 37 |
|
22 | 38 |
\item{features}{Character vector. Uses these genes for plotting.} |
23 | 39 |
|
... | ... |
@@ -31,6 +47,9 @@ curve. Default \code{TRUE}.} |
31 | 47 |
|
32 | 48 |
\item{dotSize}{Numeric. Size of points if \code{plotDots = TRUE}. |
33 | 49 |
Default \code{0.1}.} |
50 |
+ |
|
51 |
+\item{celdaMod}{Celda object of class "celda_G" or "celda_CG". Used only if |
|
52 |
+\code{x} is a matrix object.} |
|
34 | 53 |
} |
35 | 54 |
\value{ |
36 | 55 |
Violin plot for each feature, grouped by celda cluster |
... | ... |
@@ -39,9 +58,9 @@ Violin plot for each feature, grouped by celda cluster |
39 | 58 |
Outputs a violin plot for feature expression data. |
40 | 59 |
} |
41 | 60 |
\examples{ |
61 |
+data(sceCeldaCG) |
|
62 |
+plotCeldaViolin(x = sceCeldaCG, features = "Gene_1") |
|
42 | 63 |
data(celdaCGSim, celdaCGMod) |
43 |
-plotCeldaViolin( |
|
44 |
- counts = celdaCGSim$counts, |
|
45 |
- celdaMod = celdaCGMod, features = "Gene_1" |
|
46 |
-) |
|
64 |
+plotCeldaViolin(counts = celdaCGSim$counts, celdaMod = celdaCGMod, |
|
65 |
+ features = "Gene_1") |
|
47 | 66 |
} |
... | ... |
@@ -2,12 +2,29 @@ |
2 | 2 |
% Please edit documentation in R/plot_dr.R |
3 | 3 |
\name{plotDimReduceCluster} |
4 | 4 |
\alias{plotDimReduceCluster} |
5 |
+\alias{plotDimReduceCluster,SingleCellExperiment-method} |
|
6 |
+\alias{plotDimReduceCluster,vector-method} |
|
5 | 7 |
\title{Plotting the cell labels on a dimensionality reduction plot} |
6 | 8 |
\usage{ |
7 |
-plotDimReduceCluster( |
|
9 |
+plotDimReduceCluster(x, ...) |
|
10 |
+ |
|
11 |
+\S4method{plotDimReduceCluster}{SingleCellExperiment}( |
|
12 |
+ dim1, |
|
13 |
+ dim2, |
|
14 |
+ x, |
|
15 |
+ size = 1, |
|
16 |
+ xlab = "Dimension_1", |
|
17 |
+ ylab = "Dimension_2", |
|
18 |
+ specificClusters = NULL, |
|
19 |
+ labelClusters = FALSE, |
|
20 |
+ groupBy = NULL, |
|
21 |
+ labelSize = 3.5 |
|
22 |
+) |
|
23 |
+ |
|
24 |
+\S4method{plotDimReduceCluster}{vector}( |
|
8 | 25 |
dim1, |
9 | 26 |
dim2, |
10 |
- cluster, |
|
27 |
+ x, |
|
11 | 28 |
size = 1, |
12 | 29 |
xlab = "Dimension_1", |
13 | 30 |
ylab = "Dimension_2", |
... | ... |
@@ -18,14 +35,17 @@ plotDimReduceCluster( |
18 | 35 |
) |
19 | 36 |
} |
20 | 37 |
\arguments{ |
38 |
+\item{x}{Integer vector of cell cluster labels or a |
|
39 |
+\linkS4class{SingleCellExperiment} object |
|
40 |
+containing cluster labels for each cell in \code{"celda_cell_cluster"} |
|
41 |
+column in \code{colData(x)}.} |
|
42 |
+ |
|
21 | 43 |
\item{dim1}{Numeric vector. First dimension from data |
22 | 44 |
dimensionality reduction output.} |
23 | 45 |
|
24 | 46 |
\item{dim2}{Numeric vector. Second dimension from data |
25 | 47 |
dimensionality reduction output.} |
26 | 48 |
|
27 |
-\item{cluster}{Integer vector. Contains cluster labels for each cell.} |
|
28 |
- |
|
29 | 49 |
\item{size}{Numeric. Sets size of point on plot. Default 1.} |
30 | 50 |
|
31 | 51 |
\item{xlab}{Character vector. Label for the x-axis. Default "Dimension_1".} |
... | ... |
@@ -45,6 +65,8 @@ If NULL, all samples will be plotted together. Default NULL.} |
45 | 65 |
|
46 | 66 |
\item{labelSize}{Numeric. Sets size of label if labelClusters is TRUE. |
47 | 67 |
Default 3.5.} |
68 |
+ |
|
69 |
+\item{cluster}{Integer vector. Contains cluster labels for each cell.} |
|
48 | 70 |
} |
49 | 71 |
\value{ |
50 | 72 |
The plot as a ggplot object |
... | ... |
@@ -57,16 +79,21 @@ Create a scatterplot for each row of a normalized |
57 | 79 |
} |
58 | 80 |
\examples{ |
59 | 81 |
\donttest{ |
60 |
-data(celdaCGSim, celdaCGMod) |
|
61 |
-celdaTsne <- celdaTsne( |
|
62 |
- counts = celdaCGSim$counts, |
|
63 |
- celdaMod = celdaCGMod |
|
64 |
-) |
|
82 |
+data(sceCeldaCG) |
|
83 |
+celdaTsne <- celdaTsne(sceCeldaCG) |
|
65 | 84 |
plotDimReduceCluster( |
66 | 85 |
dim1 = celdaTsne[, 1], |
67 | 86 |
dim2 = celdaTsne[, 2], |
68 |
- cluster = as.factor(celdaCGMod@clusters$z), |
|
69 |
- specificClusters = c(1, 2, 3) |
|
70 |
-) |
|
87 |
+ x = sceCeldaCG, |
|
88 |
+ specificClusters = c(1, 2, 3)) |
|
89 |
+} |
|
90 |
+\donttest{ |
|
91 |
+data(sceCeldaCG, celdaCGMod) |
|
92 |
+celdaTsne <- celdaTsne(sceCeldaCG) |
|
93 |
+plotDimReduceCluster( |
|
94 |
+ dim1 = celdaTsne[, 1], |
|
95 |
+ dim2 = celdaTsne[, 2], |
|
96 |
+ x = celdaClusters(celdaCGMod), |
|
97 |
+ specificClusters = c(1, 2, 3)) |
|
71 | 98 |
} |
72 | 99 |
} |
... | ... |
@@ -2,12 +2,37 @@ |
2 | 2 |
% Please edit documentation in R/plot_dr.R |
3 | 3 |
\name{plotDimReduceFeature} |
4 | 4 |
\alias{plotDimReduceFeature} |
5 |
+\alias{plotDimReduceFeature,SingleCellExperiment-method} |
|
6 |
+\alias{plotDimReduceFeature,matrix-method} |
|
5 | 7 |
\title{Plotting feature expression on a dimensionality reduction plot} |
6 | 8 |
\usage{ |
7 |
-plotDimReduceFeature( |
|
9 |
+plotDimReduceFeature(x, ...) |
|
10 |
+ |
|
11 |
+\S4method{plotDimReduceFeature}{SingleCellExperiment}( |
|
12 |
+ dim1, |
|
13 |
+ dim2, |
|
14 |
+ x, |
|
15 |
+ useAssay = "counts", |
|
16 |
+ features, |
|
17 |
+ headers = NULL, |
|
18 |
+ normalize = FALSE, |
|
19 |
+ zscore = TRUE, |
|
20 |
+ exactMatch = TRUE, |
|
21 |
+ trim = c(-1, 1), |
|
22 |
+ size = 1, |
|
23 |
+ xlab = "Dimension_1", |
|
24 |
+ ylab = "Dimension_2", |
|
25 |
+ colorLow = "blue4", |
|
26 |
+ colorMid = "white", |
|
27 |
+ colorHigh = "firebrick1", |
|
28 |
+ midpoint = NULL, |
|
29 |
+ ncol = NULL |
|
30 |
+) |
|
31 |
+ |
|
32 |
+\S4method{plotDimReduceFeature}{matrix}( |
|
8 | 33 |
dim1, |
9 | 34 |
dim2, |
10 |
- counts, |
|
35 |
+ x, |
|
11 | 36 |
features, |
12 | 37 |
headers = NULL, |
13 | 38 |
normalize = FALSE, |
... | ... |
@@ -25,14 +50,19 @@ plotDimReduceFeature( |
25 | 50 |
) |
26 | 51 |
} |
27 | 52 |
\arguments{ |
53 |
+\item{x}{Numeric matrix or a \linkS4class{SingleCellExperiment} object |
|
54 |
+with the matrix located in the assay slot under \code{useAssay}. Rows |
|
55 |
+represent features and columns represent cells.} |
|
56 |
+ |
|
28 | 57 |
\item{dim1}{Numeric vector. First dimension from data |
29 | 58 |
dimensionality reduction output.} |
30 | 59 |
|
31 | 60 |
\item{dim2}{Numeric vector. Second dimension from data dimensionality |
32 | 61 |
reduction output.} |
33 | 62 |
|
34 |
-\item{counts}{Integer matrix. Rows represent features and columns |
|
35 |
-represent cells.} |
|
63 |
+\item{useAssay}{A string specifying which \link[SummarizedExperiment]{assay} |
|
64 |
+slot to use if \code{x} is a |
|
65 |
+\linkS4class{SingleCellExperiment} object. Default "counts".} |
|
36 | 66 |
|
37 | 67 |
\item{features}{Character vector. Features in the rownames of counts to plot.} |
38 | 68 |
|
... | ... |
@@ -86,18 +116,25 @@ Create a scatterplot for each row of a normalized gene |
86 | 116 |
} |
87 | 117 |
\examples{ |
88 | 118 |
\donttest{ |
89 |
-data(celdaCGSim, celdaCGMod) |
|
90 |
-celdaTsne <- celdaTsne( |
|
91 |
- counts = celdaCGSim$counts, |
|
92 |
- celdaMod = celdaCGMod |
|
93 |
-) |
|
119 |
+data(sceCeldaCG) |
|
120 |
+celdaTsne <- celdaTsne(sceCeldaCG) |
|
94 | 121 |
plotDimReduceFeature( |
95 | 122 |
dim1 = celdaTsne[, 1], |
96 | 123 |
dim2 = celdaTsne[, 2], |
97 |
- counts = celdaCGSim$counts, |
|
124 |
+ x = sceCeldaCG, |
|
98 | 125 |
normalize = TRUE, |
99 | 126 |
features = c("Gene_99"), |
100 |
- exactMatch = TRUE |
|
101 |
-) |
|
127 |
+ exactMatch = TRUE) |
|
128 |
+} |
|
129 |
+\donttest{ |
|
130 |
+data(sceCeldaCG) |
|
131 |
+celdaTsne <- celdaTsne(sceCeldaCG) |
|
132 |
+plotDimReduceFeature( |
|
133 |
+ dim1 = celdaTsne[, 1], |
|
134 |
+ dim2 = celdaTsne[, 2], |
|
135 |
+ x = counts(sceCeldaCG), |
|
136 |
+ normalize = TRUE, |
|
137 |
+ features = c("Gene_99"), |
|
138 |
+ exactMatch = TRUE) |
|
102 | 139 |
} |
103 | 140 |
} |
... | ... |
@@ -2,18 +2,39 @@ |
2 | 2 |
% Please edit documentation in R/plot_dr.R |
3 | 3 |
\name{plotDimReduceGrid} |
4 | 4 |
\alias{plotDimReduceGrid} |
5 |
+\alias{plotDimReduceGrid,SingleCellExperiment-method} |
|
6 |
+\alias{plotDimReduceGrid,matrix-method} |
|
5 | 7 |
\title{Mapping the dimensionality reduction plot} |
6 | 8 |
\usage{ |
7 |
-plotDimReduceGrid( |
|
9 |
+plotDimReduceGrid(x, ...) |
|
10 |
+ |
|
11 |
+\S4method{plotDimReduceGrid}{SingleCellExperiment}( |
|
12 |
+ dim1, |
|
13 |
+ dim2, |
|
14 |
+ x, |
|
15 |
+ useAssay = "counts", |
|
16 |
+ size = 1, |
|
17 |
+ xlab = "Dimension_1", |
|
18 |
+ ylab = "Dimension_2", |
|
19 |
+ colorLow = "blue4", |
|
20 |
+ colorMid = "white", |
|
21 |
+ colorHigh = "firebrick1", |
|
22 |
+ midpoint = NULL, |
|
23 |
+ varLabel = NULL, |
|
24 |
+ ncol = NULL, |
|
25 |
+ headers = NULL |
|
26 |
+) |
|
27 |
+ |
|
28 |
+\S4method{plotDimReduceGrid}{matrix}( |
|
8 | 29 |
dim1, |
9 | 30 |
dim2, |
10 |
- matrix, |
|
31 |
+ x, |
|
11 | 32 |
size = 1, |
12 | 33 |
xlab = "Dimension_1", |
13 | 34 |
ylab = "Dimension_2", |
14 |
- colorLow = "grey", |
|
15 |
- colorMid = NULL, |
|
16 |
- colorHigh = "blue", |
|
35 |
+ colorLow = "blue4", |
|
36 |
+ colorMid = "white", |
|
37 |
+ colorHigh = "firebrick1", |
|
17 | 38 |
midpoint = NULL, |
18 | 39 |
varLabel = NULL, |
19 | 40 |
ncol = NULL, |
... | ... |
@@ -21,14 +42,19 @@ plotDimReduceGrid( |
21 | 42 |
) |
22 | 43 |
} |
23 | 44 |
\arguments{ |
45 |
+\item{x}{Numeric matrix or a \linkS4class{SingleCellExperiment} object |
|
46 |
+with the matrix located in the assay slot under \code{useAssay}. Each |
|
47 |
+row of the matrix will be plotted as a separate facet.} |
|
48 |
+ |
|
24 | 49 |
\item{dim1}{Numeric vector. First dimension from data dimensionality |
25 | 50 |
reduction output.} |
26 | 51 |
|
27 | 52 |
\item{dim2}{Numeric vector. Second dimension from data dimensionality |
28 | 53 |
reduction output.} |
29 | 54 |
|
30 |
-\item{matrix}{Numeric matrix. Each row of the matrix will be plotted as |
|
31 |
-a separate facet.} |
|
55 |
+\item{useAssay}{A string specifying which \link[SummarizedExperiment]{assay} |
|
56 |
+slot to use if \code{x} is a |
|
57 |
+\linkS4class{SingleCellExperiment} object. Default "counts".} |
|
32 | 58 |
|
33 | 59 |
\item{size}{Numeric. Sets size of point on plot. Default 1.} |
34 | 60 |
|
... | ... |
@@ -38,14 +64,15 @@ a separate facet.} |
38 | 64 |
|
39 | 65 |
\item{colorLow}{Character. A color available from `colors()`. |
40 | 66 |
The color will be used to signify the lowest values on the scale. |
41 |
-Default 'grey'.} |
|
67 |
+Default "blue4".} |
|
42 | 68 |
|
43 | 69 |
\item{colorMid}{Character. A color available from `colors()`. |
44 |
-The color will be used to signify the midpoint on the scale.} |
|
70 |
+The color will be used to signify the midpoint on the scale. Default |
|
71 |
+"white".} |
|
45 | 72 |
|
46 | 73 |
\item{colorHigh}{Character. A color available from `colors()`. |
47 | 74 |
The color will be used to signify the highest values on the scale. |
48 |
-Default 'blue'.} |
|
75 |
+Default "firebrick1".} |
|
49 | 76 |
|
50 | 77 |
\item{midpoint}{Numeric. The value indicating the midpoint of the |
51 | 78 |
diverging color scheme. If \code{NULL}, defaults to the mean |
... | ... |
@@ -67,20 +94,20 @@ Creates a scatterplot given two dimensions from a data |
67 | 94 |
dimensionality reduction tool (e.g tSNE) output. |
68 | 95 |
} |
69 | 96 |
\examples{ |
70 |
-data(celdaCGSim, celdaCGMod) |
|
71 |
-celdaTsne <- celdaTsne( |
|
72 |
- counts = celdaCGSim$counts, |
|
73 |
- celdaMod = celdaCGMod |
|
74 |
-) |
|
97 |
+data(sceCeldaCG) |
|
98 |
+celdaTsne <- celdaTsne(sceCeldaCG) |
|
75 | 99 |
plotDimReduceGrid(celdaTsne[, 1], |
76 | 100 |
celdaTsne[, 2], |
77 |
- matrix = celdaCGSim$counts, |
|
101 |
+ x = sceCeldaCG, |
|
78 | 102 |
xlab = "Dimension1", |
79 | 103 |
ylab = "Dimension2", |
80 |
- varLabel = "tsne", |
|
81 |
- size = 1, |
|
82 |
- colorLow = "grey", |
|
83 |
- colorMid = NULL, |
|
84 |
- colorHigh = "blue" |
|
85 |
-) |
|
104 |
+ varLabel = "tSNE") |
|
105 |
+data(sceCeldaCG) |
|
106 |
+celdaTsne <- celdaTsne(sceCeldaCG) |
|
107 |
+plotDimReduceGrid(celdaTsne[, 1], |
|
108 |
+ celdaTsne[, 2], |
|
109 |
+ x = counts(sceCeldaCG), |
|
110 |
+ xlab = "Dimension1", |
|
111 |
+ ylab = "Dimension2", |
|
112 |
+ varLabel = "tSNE") |
|
86 | 113 |
} |
... | ... |
@@ -2,37 +2,59 @@ |
2 | 2 |
% Please edit documentation in R/plot_dr.R |
3 | 3 |
\name{plotDimReduceModule} |
4 | 4 |
\alias{plotDimReduceModule} |
5 |
+\alias{plotDimReduceModule,SingleCellExperiment-method} |
|
6 |
+\alias{plotDimReduceModule,matrix-method} |
|
5 | 7 |
\title{Plotting the Celda module probability on a |
6 | 8 |
dimensionality reduction plot} |
7 | 9 |
\usage{ |
8 |
-plotDimReduceModule( |
|
10 |
+plotDimReduceModule(x, ...) |
|
11 |
+ |
|
12 |
+\S4method{plotDimReduceModule}{SingleCellExperiment}( |
|
13 |
+ dim1, |
|
14 |
+ dim2, |
|
15 |
+ x, |
|
16 |
+ useAssay = "counts", |
|
17 |
+ modules = NULL, |
|
18 |
+ rescale = TRUE, |
|
19 |
+ size = 1, |
|
20 |
+ xlab = "Dimension_1", |
|
21 |
+ ylab = "Dimension_2", |
|
22 |
+ colorLow = "blue4", |
|
23 |
+ colorMid = "white", |
|
24 |
+ colorHigh = "firebrick1", |
|
25 |
+ ncol = NULL |
|
26 |
+) |
|
27 |
+ |
|
28 |
+\S4method{plotDimReduceModule}{matrix}( |
|
9 | 29 |
dim1, |
10 | 30 |
dim2, |
11 |
- counts, |
|
31 |
+ x, |
|
12 | 32 |
celdaMod, |
13 | 33 |
modules = NULL, |
14 | 34 |
rescale = TRUE, |
15 | 35 |
size = 1, |
16 | 36 |
xlab = "Dimension_1", |
17 | 37 |
ylab = "Dimension_2", |
18 |
- colorLow = "grey", |
|
19 |
- colorMid = NULL, |
|
20 |
- colorHigh = "blue", |
|
38 |
+ colorLow = "blue4", |
|
39 |
+ colorMid = "white", |
|
40 |
+ colorHigh = "firebrick1", |
|
21 | 41 |
ncol = NULL |
22 | 42 |
) |
23 | 43 |
} |
24 | 44 |
\arguments{ |
45 |
+\item{x}{Numeric matrix or a \linkS4class{SingleCellExperiment} object |
|
46 |
+with the matrix located in the assay slot under \code{useAssay}. Rows |
|
47 |
+represent features and columns represent cells.} |
|
48 |
+ |
|
25 | 49 |
\item{dim1}{Numeric vector. |
26 | 50 |
First dimension from data dimensionality reduction output.} |
27 | 51 |
|
28 | 52 |
\item{dim2}{Numeric vector. |
29 | 53 |
Second dimension from data dimensionality reduction output.} |
30 | 54 |
|
31 |
-\item{counts}{Integer matrix. |
|
32 |
-Rows represent features and columns represent cells. |
|
33 |
-This matrix should be the same as the one used to generate `celdaMod`.} |
|
34 |
- |
|
35 |
-\item{celdaMod}{Celda object of class "celda_G" or "celda_CG".} |
|
55 |
+\item{useAssay}{A string specifying which \link[SummarizedExperiment]{assay} |
|
56 |
+slot to use if \code{x} is a |
|
57 |
+\linkS4class{SingleCellExperiment} object. Default "counts".} |
|
36 | 58 |
|
37 | 59 |
\item{modules}{Character vector. Module(s) from celda model to be plotted. |
38 | 60 |
e.g. c("1", "2").} |
... | ... |
@@ -48,17 +70,21 @@ Whether rows of the matrix should be rescaled to [0, 1]. Default TRUE.} |
48 | 70 |
|
49 | 71 |
\item{colorLow}{Character. A color available from `colors()`. |
50 | 72 |
The color will be used to signify the lowest values on the scale. |
51 |
-Default 'grey'.} |
|
73 |
+Default "blue4".} |
|
52 | 74 |
|
53 | 75 |
\item{colorMid}{Character. A color available from `colors()`. |
54 |
-The color will be used to signify the midpoint on the scale.} |
|
76 |
+The color will be used to signify the midpoint on the scale. Default |
|
77 |
+"white".} |
|
55 | 78 |
|
56 | 79 |
\item{colorHigh}{Character. A color available from `colors()`. |
57 | 80 |
The color will be used to signify the highest values on the scale. |
58 |
-Default 'blue'.} |
|
81 |
+Default "firebrick1".} |
|
59 | 82 |
|
60 | 83 |
\item{ncol}{Integer. Passed to \link[ggplot2]{facet_wrap}. Specify the |
61 | 84 |
number of columns for facet wrap.} |
85 |
+ |
|
86 |
+\item{celdaMod}{Celda object of class "celda_G" or "celda_CG". Used only if |
|
87 |
+\code{x} is a matrix object.} |
|
62 | 88 |
} |
63 | 89 |
\value{ |
64 | 90 |
The plot as a ggplot object |
... | ... |
@@ -71,15 +97,22 @@ Create a scatterplot for each row of a normalized |
71 | 97 |
} |
72 | 98 |
\examples{ |
73 | 99 |
\donttest{ |
74 |
-data(celdaCGSim, celdaCGMod) |
|
75 |
-celdaTsne <- celdaTsne( |
|
76 |
- counts = celdaCGSim$counts, |
|
77 |
- celdaMod = celdaCGMod |
|
78 |
-) |
|
100 |
+data(sceCeldaCG) |
|
101 |
+celdaTsne <- celdaTsne(sceCeldaCG) |
|
79 | 102 |
plotDimReduceModule( |
80 |
- dim1 = celdaTsne[, 1], dim2 = celdaTsne[, 2], |
|
81 |
- counts = celdaCGSim$counts, celdaMod = celdaCGMod, |
|
82 |
- modules = c("1", "2") |
|
83 |
-) |
|
103 |
+ dim1 = celdaTsne[, 1], |
|
104 |
+ dim2 = celdaTsne[, 2], |
|
105 |
+ x = sceCeldaCG, |
|
106 |
+ modules = c("1", "2")) |
|
107 |
+} |
|
108 |
+\donttest{ |
|
109 |
+data(sceCeldaCG, celdaCGMod) |
|
110 |
+celdaTsne <- celdaTsne(sceCeldaCG) |
|
111 |
+plotDimReduceModule( |
|
112 |
+ dim1 = celdaTsne[, 1], |
|
113 |
+ dim2 = celdaTsne[, 2], |
|
114 |
+ x = counts(sceCeldaCG), |
|
115 |
+ celdaMod = celdaCGMod, |
|
116 |
+ modules = c("1", "2")) |
|
84 | 117 |
} |
85 | 118 |
} |
... | ... |
@@ -2,14 +2,21 @@ |
2 | 2 |
% Please edit documentation in R/model_performance.R |
3 | 3 |
\name{plotGridSearchPerplexity} |
4 | 4 |
\alias{plotGridSearchPerplexity} |
5 |
+\alias{plotGridSearchPerplexity,SingleCellExperiment-method} |
|
6 |
+\alias{plotGridSearchPerplexity,celdaList-method} |
|
5 | 7 |
\title{Visualize perplexity of a list of celda models} |
6 | 8 |
\usage{ |
7 |
-plotGridSearchPerplexity(celdaList, sep = 1) |
|
9 |
+plotGridSearchPerplexity(x, ...) |
|
10 |
+ |
|
11 |
+\S4method{plotGridSearchPerplexity}{SingleCellExperiment}(x, sep = 1) |
|
12 |
+ |
|
13 |
+\S4method{plotGridSearchPerplexity}{celdaList}(x, sep = 1) |
|
8 | 14 |
} |
9 | 15 |
\arguments{ |
10 |
-\item{celdaList}{Object of class 'celdaList'.} |
|
16 |
+\item{x}{A \linkS4class{SingleCellExperiment} object returned from |
|
17 |
+\link{celdaGridSearch} or an object of class \code{celdaList}.} |
|
11 | 18 |
|
12 |
-\item{sep}{Numeric. Breaks in the x axis of the resulting plo.t.} |
|
19 |
+\item{sep}{Numeric. Breaks in the x axis of the resulting plot.} |
|
13 | 20 |
} |
14 | 21 |
\value{ |
15 | 22 |
A ggplot plot object showing perplexity as a function of clustering |
... | ... |
@@ -20,11 +27,13 @@ Visualize perplexity of every model in a celdaList, by unique |
20 | 27 |
K/L combinations |
21 | 28 |
} |
22 | 29 |
\examples{ |
30 |
+data(sceCeldaCGGridSearch) |
|
31 |
+sce <- resamplePerplexity(sceCeldaCGGridSearch) |
|
32 |
+plotGridSearchPerplexity(sce) |
|
23 | 33 |
data(celdaCGSim, celdaCGGridSearchRes) |
24 | 34 |
## Run various combinations of parameters with 'celdaGridSearch' |
25 | 35 |
celdaCGGridSearchRes <- resamplePerplexity( |
26 | 36 |
celdaCGSim$counts, |
27 |
- celdaCGGridSearchRes |
|
28 |
-) |
|
37 |
+ celdaCGGridSearchRes) |
|
29 | 38 |
plotGridSearchPerplexity(celdaCGGridSearchRes) |
30 | 39 |
} |
31 | 40 |
deleted file mode 100644 |
... | ... |
@@ -1,29 +0,0 @@ |
1 |
-% Generated by roxygen2: do not edit by hand |
|
2 |
-% Please edit documentation in R/model_performance.R |
|
3 |
-\name{plotGridSearchPerplexitycelda_C} |
|
4 |
-\alias{plotGridSearchPerplexitycelda_C} |
|
5 |
-\title{Plot perplexity as a function of K from celda_C models} |
|
6 |
-\usage{ |
|
7 |
-plotGridSearchPerplexitycelda_C(celdaList, sep) |
|
8 |
-} |
|
9 |
-\arguments{ |
|
10 |
-\item{celdaList}{Object of class 'celdaList'.} |
|
11 |
- |
|
12 |
-\item{sep}{Numeric. Breaks in the x axis of the resulting plot.} |
|
13 |
-} |
|
14 |
-\value{ |
|
15 |
-A ggplot plot object showing perplexity as a function of clustering |
|
16 |
- parameters. |
|
17 |
-} |
|
18 |
-\description{ |
|
19 |
-Plots perplexity as a function of the cell (K) clusters as |
|
20 |
- generated by celdaGridSearch(). |
|
21 |
-} |
|
22 |
-\examples{ |
|
23 |
-data(celdaCGSim, celdaCGGridSearchRes) |
|
24 |
-celdaCGGridSearchRes <- resamplePerplexity( |
|
25 |
- celdaCGSim$counts, |
|
26 |
- celdaCGGridSearchRes |
|
27 |
-) |
|
28 |
-plotGridSearchPerplexity(celdaCGGridSearchRes) |
|
29 |
-} |
30 | 0 |
deleted file mode 100644 |
... | ... |
@@ -1,29 +0,0 @@ |
1 |
-% Generated by roxygen2: do not edit by hand |
|
2 |
-% Please edit documentation in R/model_performance.R |
|
3 |
-\name{plotGridSearchPerplexitycelda_CG} |
|
4 |
-\alias{plotGridSearchPerplexitycelda_CG} |
|
5 |
-\title{Plot perplexity as a function of K and L from celda_CG models} |
|
6 |
-\usage{ |
|
7 |
-plotGridSearchPerplexitycelda_CG(celdaList, sep) |
|
8 |
-} |
|
9 |
-\arguments{ |
|
10 |
-\item{celdaList}{Object of class 'celdaList'.} |
|
11 |
- |
|
12 |
-\item{sep}{Numeric. Breaks in the x axis of the resulting plot.} |
|
13 |
-} |
|
14 |
-\value{ |
|
15 |
-A ggplot plot object showing perplexity as a function of clustering |
|
16 |
- parameters. |
|
17 |
-} |
|
18 |
-\description{ |
|
19 |
-This function plots perplexity as a function of the cell/gene |
|
20 |
- (K/L) clusters as generated by celdaGridSearch(). |
|
21 |
-} |
|
22 |
-\examples{ |
|
23 |
-data(celdaCGSim, celdaCGGridSearchRes) |
|
24 |
-celdaCGGridSearchRes <- resamplePerplexity( |
|
25 |
- celdaCGSim$counts, |
|
26 |
- celdaCGGridSearchRes |
|
27 |
-) |
|
28 |
-plotGridSearchPerplexity(celdaCGGridSearchRes) |
|
29 |
-} |
30 | 0 |
deleted file mode 100644 |
... | ... |
@@ -1,29 +0,0 @@ |
1 |
-% Generated by roxygen2: do not edit by hand |
|
2 |
-% Please edit documentation in R/model_performance.R |
|
3 |
-\name{plotGridSearchPerplexitycelda_G} |
|
4 |
-\alias{plotGridSearchPerplexitycelda_G} |
|
5 |
-\title{Plot perplexity as a function of L from a celda_G model} |
|
6 |
-\usage{ |
|
7 |
-plotGridSearchPerplexitycelda_G(celdaList, sep) |
|
8 |
-} |
|
9 |
-\arguments{ |
|
10 |
-\item{celdaList}{Object of class 'celdaList'.} |
|
11 |
- |
|
12 |
-\item{sep}{Numeric. Breaks in the x axis of the resulting plot.} |
|
13 |
-} |
|
14 |
-\value{ |
|
15 |
-A ggplot plot object showing perplexity as a function of clustering |
|
16 |
- parameters. |
|
17 |
-} |
|
18 |
-\description{ |
|
19 |
-Plots perplexity as a function of the gene (L) clusters as |
|
20 |
- generated by celdaGridSearch(). |
|
21 |
-} |
|
22 |
-\examples{ |
|
23 |
-data(celdaCGSim, celdaCGGridSearchRes) |
|
24 |
-celdaCGGridSearchRes <- resamplePerplexity( |
|
25 |
- celdaCGSim$counts, |
|
26 |
- celdaCGGridSearchRes |
|
27 |
-) |
|
28 |
-plotGridSearchPerplexity(celdaCGGridSearchRes) |
|
29 |
-} |
... | ... |
@@ -149,6 +149,6 @@ Renders a heatmap based on a matrix of counts where rows are |
149 | 149 |
\examples{ |
150 | 150 |
data(celdaCGSim, celdaCGMod) |
151 | 151 |
plotHeatmap(celdaCGSim$counts, |
152 |
- z = celdaCGMod@clusters$z, y = celdaCGMod@clusters$y |
|
152 |
+ z = celdaCGMod@celdaClusters$z, y = celdaCGMod@celdaClusters$y |
|
153 | 153 |
) |
154 | 154 |
} |
... | ... |
@@ -50,7 +50,7 @@ cm <- celda_CG(sim_counts$counts, K = 5, L = 10, verbose = FALSE) |
50 | 50 |
# Get features matrix and cluster assignments |
51 | 51 |
factorized <- factorizeMatrix(sim_counts$counts, cm) |
52 | 52 |
features <- factorized$proportions$cell |
53 |
-class <- clusters(cm)$z |
|
53 |
+class <- celdaClusters(cm) |
|
54 | 54 |
|
55 | 55 |
# Generate Decision Tree |
56 | 56 |
DecTree <- findMarkersTree(features, class, threshold = 1) |
... | ... |
@@ -14,7 +14,7 @@ plotMarkerHeatmap( |
14 | 14 |
) |
15 | 15 |
} |
16 | 16 |
\arguments{ |
17 |
-\item{tree}{A decision tree from CELDA's \emph{findMarkersTree} function.} |
|
17 |
+\item{tree}{A decision tree returned from \link{findMarkersTree} function.} |
|
18 | 18 |
|
19 | 19 |
\item{counts}{Numeric matrix. Gene-by-cell counts matrix.} |
20 | 20 |
|
... | ... |
@@ -43,23 +43,22 @@ Creates heatmap for a specified branch point in a marker tree. |
43 | 43 |
\examples{ |
44 | 44 |
\dontrun{ |
45 | 45 |
# Generate simulated single-cell dataset using celda |
46 |
-sim_counts <- celda::simulateCells("celda_CG", K = 4, L = 10, G = 100) |
|
46 |
+sim_counts <- simulateCells("celda_CG", K = 4, L = 10, G = 100) |
|
47 | 47 |
|
48 | 48 |
# Celda clustering into 5 clusters & 10 modules |
49 |
-cm <- celda_CG(sim_counts$counts, K = 5, L = 10, verbose = FALSE) |
|
49 |
+cm <- celda_CG(sim_counts, K = 5, L = 10, verbose = FALSE) |
|
50 | 50 |
|
51 | 51 |
# Get features matrix and cluster assignments |
52 |
-factorized <- factorizeMatrix(sim_counts$counts, cm) |
|
52 |
+factorized <- factorizeMatrix(cm) |
|
53 | 53 |
features <- factorized$proportions$cell |
54 |
-class <- clusters(cm)$z |
|
54 |
+class <- celdaClusters(cm) |
|
55 | 55 |
|
56 | 56 |
# Generate Decision Tree |
57 | 57 |
DecTree <- findMarkersTree(features, class, threshold = 1) |
58 | 58 |
|
59 | 59 |
# Plot example heatmap |
60 |
-plotMarkerHeatmap(DecTree, sim_counts$counts, |
|
60 |
+plotMarkerHeatmap(DecTree, assay(sim_counts), |
|
61 | 61 |
branchPoint = "top_level", |
62 |
- featureLabels = paste0("L", clusters(cm)$y) |
|
63 |
-) |
|
62 |
+ featureLabels = paste0("L", celdaModules(cm))) |
|
64 | 63 |
} |
65 | 64 |
} |
... | ... |
@@ -12,11 +12,11 @@ recodeClusterY(sce, from, to) |
12 | 12 |
\code{celda_feature_module} in \link[SummarizedExperiment]{rowData}.} |
13 | 13 |
|
14 | 14 |
\item{from}{Numeric vector. Unique values in the range of |
15 |
-\code{seq(modules(sce))} that correspond to the original module labels |
|
15 |
+\code{seq(celdaModules(sce))} that correspond to the original module labels |
|
16 | 16 |
in \code{sce}.} |
17 | 17 |
|
18 | 18 |
\item{to}{Numeric vector. Unique values in the range of |
19 |
-\code{seq(modules(sce))} that correspond to the new module labels.} |
|
19 |
+\code{seq(celdaModules(sce))} that correspond to the new module labels.} |
|
20 | 20 |
} |
21 | 21 |
\value{ |
22 | 22 |
@return \linkS4class{SingleCellExperiment} object with recoded |