- Temporary workaround for https://github.com/Bioconductor/DelayedArray/issues/41
- Ensures bsseq passes checks for next BioC release
... | ... |
@@ -272,7 +272,7 @@ strandCollapse <- function(BSseq, shift = TRUE, BPPARAM = bpparam(), |
272 | 272 |
|
273 | 273 |
ol <- findOverlaps(loci, collapsed_loci, type = "equal") |
274 | 274 |
group <- subjectHits(ol) |
275 |
- M <- rowsum( |
|
275 |
+ M <- .rowsum( |
|
276 | 276 |
x = assay(BSseq, "M", withDimnames = FALSE), |
277 | 277 |
group = group, |
278 | 278 |
# NOTE: reorder = TRUE to ensure same row-order as collapsed_loci. |
... | ... |
@@ -283,7 +283,7 @@ strandCollapse <- function(BSseq, shift = TRUE, BPPARAM = bpparam(), |
283 | 283 |
chunkdim = chunkdim, |
284 | 284 |
level = level, |
285 | 285 |
type = type) |
286 |
- Cov <- rowsum( |
|
286 |
+ Cov <- .rowsum( |
|
287 | 287 |
x = assay(BSseq, "Cov", withDimnames = FALSE), |
288 | 288 |
group = group, |
289 | 289 |
# NOTE: reorder = TRUE to ensure same row-order as collapsed_loci. |
... | ... |
@@ -1,4 +1,4 @@ |
1 |
-# Functions/methods that would be good to have in DelayedArray |
|
1 |
+# Functions/methods that would be good to have in DelayedArray ----------------- |
|
2 | 2 |
|
3 | 3 |
.rowVars <- function(x, rows = NULL, cols = NULL, ...) { |
4 | 4 |
if (is(x, "DelayedArray")) { |
... | ... |
@@ -41,6 +41,176 @@ |
41 | 41 |
} |
42 | 42 |
} |
43 | 43 |
|
44 |
+# A temporary workaround to |
|
45 |
+# https://github.com/Bioconductor/DelayedArray/issues/41. |
|
46 |
+.colsum <- function(x, group, reorder = TRUE, na.rm = FALSE, filepath = NULL, |
|
47 |
+ name = NULL, chunkdim = NULL, level = NULL, |
|
48 |
+ type = c("double", "integer"), BPPARAM = bpparam()) { |
|
49 |
+ |
|
50 |
+ # NOTE: Special case for HDF5Matrix, otherwise defer to rowsum(). |
|
51 |
+ if (is(x, "HDF5Matrix")) { |
|
52 |
+ # Check arguments ------------------------------------------------------ |
|
53 |
+ |
|
54 |
+ type <- match.arg(type) |
|
55 |
+ if (any(!c(type(x), type) %in% c("integer", "double"))) { |
|
56 |
+ stop("'type(x)' must be 'integer' or 'double'.") |
|
57 |
+ } |
|
58 |
+ if (length(group) != NCOL(x)) { |
|
59 |
+ stop("incorrect length for 'group'") |
|
60 |
+ } |
|
61 |
+ if (anyNA(group)) { |
|
62 |
+ warning("missing values for 'group'") |
|
63 |
+ } |
|
64 |
+ ugroup <- unique(group) |
|
65 |
+ if (reorder) { |
|
66 |
+ ugroup <- sort(ugroup, na.last = TRUE, method = "quick") |
|
67 |
+ } |
|
68 |
+ # TODO: Default is type = "double" because rowSums2() returns numeric, |
|
69 |
+ # but it can be useful to manually override this when you know |
|
70 |
+ # the result is integer. |
|
71 |
+ |
|
72 |
+ # Construct RealizationSink -------------------------------------------- |
|
73 |
+ |
|
74 |
+ # NOTE: This is ultimately coerced to the output DelayedMatrix |
|
75 |
+ # object |
|
76 |
+ ans_nrow <- nrow(x) |
|
77 |
+ ans_ncol <- length(ugroup) |
|
78 |
+ ans_dim <- c(ans_nrow, ans_ncol) |
|
79 |
+ sink <- HDF5RealizationSink( |
|
80 |
+ dim = ans_dim, |
|
81 |
+ dimnames = list(rownames(x), as.character(ugroup)), |
|
82 |
+ type = type, |
|
83 |
+ filepath = filepath, |
|
84 |
+ name = name, |
|
85 |
+ chunkdim = chunkdim, |
|
86 |
+ level = level) |
|
87 |
+ sink_lock <- ipcid() |
|
88 |
+ on.exit(ipcremove(sink_lock), add = TRUE) |
|
89 |
+ |
|
90 |
+ # Construct ArrayGrid -------------------------------------------------- |
|
91 |
+ |
|
92 |
+ sink_grid <- colGrid(x = sink, ncol = 1L) |
|
93 |
+ list_of_cols <- split(seq_along(group), group)[ugroup] |
|
94 |
+ |
|
95 |
+ # Compute colsum() ----------------------------------------------------- |
|
96 |
+ |
|
97 |
+ bplapply( |
|
98 |
+ X = seq_along(sink_grid), |
|
99 |
+ FUN = function(b, x, sink, sink_lock, sink_grid, list_of_cols) { |
|
100 |
+ cols <- list_of_cols[[b]] |
|
101 |
+ if (length(cols) == 1L) { |
|
102 |
+ ans <- as.matrix(x[, cols, drop = FALSE]) |
|
103 |
+ if (na.rm) { |
|
104 |
+ ans[is.na(ans)] <- 0L |
|
105 |
+ } |
|
106 |
+ } else { |
|
107 |
+ ans <- matrix( |
|
108 |
+ rowSums2(x, cols = cols, na.rm = na.rm), |
|
109 |
+ ncol = 1) |
|
110 |
+ } |
|
111 |
+ ipclock(sink_lock) |
|
112 |
+ write_block(x = sink, viewport = sink_grid[[b]], block = ans) |
|
113 |
+ ipcunlock(sink_lock) |
|
114 |
+ NULL |
|
115 |
+ }, |
|
116 |
+ x = x, |
|
117 |
+ sink = sink, |
|
118 |
+ sink_lock = sink_lock, |
|
119 |
+ sink_grid = sink_grid, |
|
120 |
+ list_of_cols = list_of_cols, |
|
121 |
+ BPPARAM = BPPARAM) |
|
122 |
+ return(as(sink, "DelayedArray")) |
|
123 |
+ } |
|
124 |
+ |
|
125 |
+ colsum(x, group, reorder) |
|
126 |
+} |
|
127 |
+ |
|
128 |
+# A temporary workaround to |
|
129 |
+# https://github.com/Bioconductor/DelayedArray/issues/41. |
|
130 |
+.rowsum <- function(x, group, reorder = TRUE, na.rm = FALSE, filepath = NULL, |
|
131 |
+ name = NULL, chunkdim = NULL, level = NULL, |
|
132 |
+ type = c("double", "integer"), BPPARAM = bpparam()) { |
|
133 |
+ |
|
134 |
+ # NOTE: Special case for HDF5Matrix, otherwise defer to rowsum(). |
|
135 |
+ if (is(x, "HDF5Matrix")) { |
|
136 |
+ |
|
137 |
+ # Check arguments ------------------------------------------------------ |
|
138 |
+ |
|
139 |
+ if (any(!c(type(x), type) %in% c("integer", "double"))) { |
|
140 |
+ stop("'type(x)' must be 'integer' or 'double'.") |
|
141 |
+ } |
|
142 |
+ if (length(group) != NROW(x)) { |
|
143 |
+ stop("incorrect length for 'group'") |
|
144 |
+ } |
|
145 |
+ if (anyNA(group)) { |
|
146 |
+ warning("missing values for 'group'") |
|
147 |
+ } |
|
148 |
+ ugroup <- unique(group) |
|
149 |
+ if (reorder) { |
|
150 |
+ ugroup <- sort(ugroup, na.last = TRUE, method = "quick") |
|
151 |
+ } |
|
152 |
+ # NOTE: Default is type = "double" because colSums2() returns numeric, |
|
153 |
+ # but it can be useful to manually override this when you know the |
|
154 |
+ # result is integer. |
|
155 |
+ type <- match.arg(type) |
|
156 |
+ |
|
157 |
+ # Construct RealizationSink -------------------------------------------- |
|
158 |
+ |
|
159 |
+ # NOTE: This is ultimately coerced to the output DelayedMatrix |
|
160 |
+ # object |
|
161 |
+ ans_nrow <- length(ugroup) |
|
162 |
+ ans_ncol <- ncol(x) |
|
163 |
+ ans_dim <- c(ans_nrow, ans_ncol) |
|
164 |
+ sink <- HDF5RealizationSink( |
|
165 |
+ dim = ans_dim, |
|
166 |
+ dimnames = list(as.character(ugroup), colnames(x)), |
|
167 |
+ type = type, |
|
168 |
+ filepath = filepath, |
|
169 |
+ name = name, |
|
170 |
+ chunkdim = chunkdim, |
|
171 |
+ level = level) |
|
172 |
+ sink_lock <- ipcid() |
|
173 |
+ on.exit(ipcremove(sink_lock), add = TRUE) |
|
174 |
+ |
|
175 |
+ # Construct ArrayGrid -------------------------------------------------- |
|
176 |
+ |
|
177 |
+ sink_grid <- rowGrid(x = sink, nrow = 1L) |
|
178 |
+ list_of_rows <- split(seq_along(group), group)[as.character(ugroup)] |
|
179 |
+ |
|
180 |
+ # Compute colsum() ----------------------------------------------------- |
|
181 |
+ |
|
182 |
+ bplapply( |
|
183 |
+ X = seq_along(sink_grid), |
|
184 |
+ FUN = function(b, x, sink, sink_lock, sink_grid, list_of_rows) { |
|
185 |
+ rows <- list_of_rows[[b]] |
|
186 |
+ if (length(rows) == 1L) { |
|
187 |
+ ans <- as.matrix(x[rows, , drop = FALSE]) |
|
188 |
+ if (na.rm) { |
|
189 |
+ ans[is.na(ans)] <- 0L |
|
190 |
+ } |
|
191 |
+ } else { |
|
192 |
+ ans <- matrix( |
|
193 |
+ colSums2(x, rows = rows, na.rm = na.rm), |
|
194 |
+ nrow = 1) |
|
195 |
+ } |
|
196 |
+ ipclock(sink_lock) |
|
197 |
+ write_block(x = sink, viewport = sink_grid[[b]], block = ans) |
|
198 |
+ ipcunlock(sink_lock) |
|
199 |
+ NULL |
|
200 |
+ }, |
|
201 |
+ x = x, |
|
202 |
+ sink = sink, |
|
203 |
+ sink_lock = sink_lock, |
|
204 |
+ sink_grid = sink_grid, |
|
205 |
+ list_of_rows = list_of_rows, |
|
206 |
+ BPPARAM = BPPARAM) |
|
207 |
+ return(as(sink, "DelayedArray")) |
|
208 |
+ } |
|
209 |
+ |
|
210 |
+ rowsum(x, group, reorder) |
|
211 |
+} |
|
212 |
+ |
|
213 |
+ |
|
44 | 214 |
# Missing methods -------------------------------------------------------------- |
45 | 215 |
|
46 | 216 |
# NOTE: Copied from minfi |
... | ... |
@@ -98,7 +98,7 @@ collapseBSseq <- function(BSseq, group, BPPARAM = bpparam(), |
98 | 98 |
|
99 | 99 |
# Collapse 'M' and 'Cov' matrices ------------------------------------------ |
100 | 100 |
|
101 |
- M <- colsum( |
|
101 |
+ M <- .colsum( |
|
102 | 102 |
x = getCoverage(BSseq, type = "M", withDimnames = FALSE), |
103 | 103 |
group = group, |
104 | 104 |
reorder = FALSE, |
... | ... |
@@ -108,7 +108,7 @@ collapseBSseq <- function(BSseq, group, BPPARAM = bpparam(), |
108 | 108 |
chunkdim = chunkdim, |
109 | 109 |
level = level, |
110 | 110 |
type = type) |
111 |
- Cov <- colsum( |
|
111 |
+ Cov <- .colsum( |
|
112 | 112 |
x = getCoverage(BSseq, type = "Cov", withDimnames = FALSE), |
113 | 113 |
group = group, |
114 | 114 |
reorder = FALSE, |