Browse code

Version bump; various fixes to address issues reported by R CMD check, including documentation, use of :::, and deprecation of seqselect

git-svn-id: https://hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/bsseq@81150 bc3139a8-67e5-0310-9ffc-ced21a209358

khansen authored on 04/10/2013 15:23:24
Showing 10 changed files

... ...
@@ -1,5 +1,5 @@
1 1
 Package: bsseq
2
-Version: 0.9.10
2
+Version: 0.9.11
3 3
 Title: Analyze, manage and store bisulfite sequencing data
4 4
 Description: Tools for analyzing and visualizing bisulfite sequencing data
5 5
 Author: Kasper Daniel Hansen
... ...
@@ -1,4 +1,4 @@
1
-makeClusters <- function(hasGRanges, maxGap = 10^8, mc.cores = 1) {
1
+makeClusters <- function(hasGRanges, maxGap = 10^8) {
2 2
     chrOrder <- as.character(runValue(seqnames(hasGRanges)))
3 3
     if(anyDuplicated(chrOrder))
4 4
         stop("argument 'hasGRanges' is not properly order")
... ...
@@ -12,7 +12,7 @@ makeClusters <- function(hasGRanges, maxGap = 10^8, mc.cores = 1) {
12 12
     }))) # are the clusters ordered within the chromosome? This is probably guranteed
13 13
     clusters <- Reduce(c, clusters.sp[chrOrder])
14 14
     stopifnot(all(chrOrder == runValue(seqnames(clusters))))
15
-    ov <- bsseq:::findOverlaps_mclapply(grBase, clusters, mc.cores = mc.cores)
15
+    ov <- findOverlaps(grBase, clusters)
16 16
     clusterIdx <- split(as.matrix(ov)[,1], as.matrix(ov)[,2])
17 17
     names(clusterIdx) <- NULL
18 18
     clusterIdx
... ...
@@ -66,7 +66,7 @@ BSmooth <- function(BSseq, ns = 70, h = 1000, maxGap = 10^8, parallelBy = c("sam
66 66
     parallelBy <- match.arg(parallelBy)
67 67
     if(verbose) cat("[BSmooth] preprocessing ... ")
68 68
     ptime1 <- proc.time()
69
-    clusterIdx <- makeClusters(BSseq, maxGap = maxGap, mc.cores = mc.cores)
69
+    clusterIdx <- makeClusters(BSseq, maxGap = maxGap)
70 70
     ptime2 <- proc.time()
71 71
     stime <- (ptime2 - ptime1)[3]
72 72
     if(verbose) cat(sprintf("done in %.1f sec\n", stime))
... ...
@@ -59,7 +59,7 @@ BSmooth.tstat <- function(BSseq, group1, group2, estimate.var = c("same", "paire
59 59
     
60 60
     if(verbose) cat("[BSmooth.tstat] preprocessing ... ")
61 61
     ptime1 <- proc.time()
62
-    clusterIdx <- makeClusters(BSseq, maxGap = maxGap, mc.cores = mc.cores)
62
+    clusterIdx <- makeClusters(BSseq, maxGap = maxGap)
63 63
     ptime2 <- proc.time()
64 64
     stime <- (ptime2 - ptime1)[3]
65 65
     if(verbose) cat(sprintf("done in %.1f sec\n", stime))
... ...
@@ -20,11 +20,7 @@ collapseBSseq <- function(BSseq, columns) {
20 20
 }
21 21
 
22 22
 chrSelectBSseq <- function(BSseq, seqnames = NULL, order = FALSE) {
23
-    gr <- GRanges(seqnames = seqnames,
24
-                  ranges = IRanges(start = rep(1, length(seqnames)),
25
-                  end = rep(10^9, length(seqnames))))
26
-    BSseq <- subsetByOverlaps(BSseq, gr)
27
-    seqlevels(BSseq) <- seqlevels(BSseq)[seqlevels(BSseq) %in% seqnames]
23
+    seqlevels(BSseq, force = TRUE) <- seqnames
28 24
     if(order)
29 25
         BSseq <- orderBSseq(BSseq, seqOrder = seqnames)
30 26
     BSseq
... ...
@@ -32,18 +28,9 @@ chrSelectBSseq <- function(BSseq, seqnames = NULL, order = FALSE) {
32 28
 
33 29
 
34 30
 orderBSseq <- function(BSseq, seqOrder = NULL) {
35
-    splitNames <- splitRanges(seqnames(BSseq))
36
-    if(is.null(seqOrder))
37
-        seqOrder <- names(splitNames)
38
-    else
39
-        seqOrder <- seqOrder[seqOrder %in% names(splitNames)]
40
-    splitOd <- lapply(seqOrder, function(nam) {
41
-        seqRanges <- seqselect(ranges(granges(BSseq)), splitNames[[nam]]) 
42
-        as.integer(unlist(splitNames[[nam]])[order(start(seqRanges))])
43
-    })
44
-    BSseq <- BSseq[do.call(c, splitOd)]
45
-    seqlevels(BSseq) <- seqOrder
46
-    BSseq
31
+    if(!is.null(seqOrder))
32
+        seqlevels(BSseq, force = TRUE) <- seqOrder
33
+    BSseq[order(granges(BSseq))]
47 34
 }
48 35
 
49 36
 
... ...
@@ -1,78 +1,78 @@
1
-findOverlaps_mclapply <- function (query, subject, maxgap = 0L, minoverlap = 1L, 
2
-                                   type = c("any", "start", "end", "within", "equal"),
3
-                                   select = c("all", "first"), ignore.strand = FALSE,
4
-                                   mc.cores = 1, mc.preschedule = TRUE, verbose = FALSE, ...) {
5
-    if(!is(query, "GenomicRanges") || !is(subject, "GenomicRanges"))
6
-        stop("findOverlaps_mclapply needs 'query' and 'subject' to be 'GenomicRanges'")
7
-    if (!IRanges:::isSingleNumber(maxgap) || maxgap < 0) 
8
-        stop("'maxgap' must be a non-negative integer")
9
-    type <- match.arg(type)
10
-    select <- match.arg(select)
11
-    seqinfo <- merge(seqinfo(query), seqinfo(subject))
12
-    DIM <- c(length(query), length(subject))
13
-    if (min(DIM) == 0L) {
14
-        matchMatrix <- matrix(integer(0), nrow = 0L, ncol = 2L, 
15
-                              dimnames = list(NULL, c("queryHits", "subjectHits")))
16
-    }
17
-    else {
18
-        querySeqnames <- seqnames(query)
19
-        querySplitRanges <- splitRanges(querySeqnames)
20
-        uniqueQuerySeqnames <- names(querySplitRanges)[sapply(querySplitRanges, length) > 0] # FIX: only keep seqnames with ranges
21
-        subjectSeqnames <- seqnames(subject)
22
-        subjectSplitRanges <- splitRanges(subjectSeqnames)
23
-        uniqueSubjectSeqnames <- names(subjectSplitRanges)[sapply(subjectSplitRanges, length) > 0] # FIX: only keep seqnames with ranges
24
-        commonSeqnames <- intersect(uniqueQuerySeqnames, 
25
-                                    uniqueSubjectSeqnames)
26
-        if (ignore.strand) {
27
-            queryStrand <- rep.int(1L, length(query))
28
-            subjectStrand <- rep.int(1L, length(subject))
29
-        }
30
-        else {
31
-            queryStrand <- strand(query)
32
-            levels(queryStrand) <- c("1", "-1", "0")
33
-            queryStrand@values <- as.integer(as.character(runValue(queryStrand)))
34
-            queryStrand <- as.vector(queryStrand)
35
-            subjectStrand <- strand(subject)
36
-            levels(subjectStrand) <- c("1", "-1", "0")
37
-            subjectStrand@values <- as.integer(as.character(runValue(subjectStrand)))
38
-            subjectStrand <- as.vector(subjectStrand)
39
-        }
40
-        queryRanges <- unname(ranges(query))
41
-        subjectRanges <- unname(ranges(subject))
42
-        matchMatrix <- do.call(rbind, mclapply(commonSeqnames, 
43
-                                               function(seqnm) {
44
-                                                   if(verbose) cat(seqnm, "\n") # FIX : added verbosity
45
-                                                   if (isCircular(seqinfo)[seqnm] %in% TRUE) 
46
-                                                       circle.length <- seqlengths(seqinfo)[seqnm]
47
-                                                   else circle.length <- NA
48
-                                                   qIdxs <- querySplitRanges[[seqnm]]
49
-                                                   sIdxs <- subjectSplitRanges[[seqnm]]
50
-                                                   ## FIX: added ::: tpo get .findOverlaps.circle
51
-                                                   overlaps <- GenomicRanges:::.findOverlaps.circle(circle.length, 
52
-                                                                                                    seqselect(queryRanges, qIdxs), seqselect(subjectRanges, 
53
-                                                                                                                                             sIdxs), maxgap, minoverlap, type)
54
-                                                   qHits <- queryHits(overlaps)
55
-                                                   sHits <- subjectHits(overlaps)
56
-                                                   matches <- cbind(queryHits = as.integer(qIdxs)[qHits], 
57
-                                                                    subjectHits = as.integer(sIdxs)[sHits])
58
-                                                   matches[which(seqselect(queryStrand, qIdxs)[qHits] * 
59
-                                                                 seqselect(subjectStrand, sIdxs)[sHits] != 
60
-                                                                 -1L), , drop = FALSE]
61
-                                               }, mc.cores = mc.cores, mc.preschedule = mc.preschedule))
62
-        if (is.null(matchMatrix)) {
63
-                matchMatrix <- matrix(integer(0), nrow = 0L, 
64
-                                      ncol = 2L, dimnames = list(NULL, c("queryHits", 
65
-                                                 "subjectHits")))
66
-            }
67
-        matchMatrix <- matchMatrix[IRanges:::orderIntegerPairs(matchMatrix[, 
68
-                                                                           1L], matchMatrix[, 2L]), , drop = FALSE]
69
-    }
70
-    if (select == "all") {
71
-        new("Hits", queryHits = unname(matchMatrix[, 1L]), 
72
-            subjectHits = unname(matchMatrix[, 2L]), queryLength = DIM[1], 
73
-            subjectLength = DIM[2])
74
-    }
75
-    else {
76
-        IRanges:::.hitsMatrixToVector(matchMatrix, length(query))
77
-    }
78
-}
1
+## findOverlaps_mclapply <- function (query, subject, maxgap = 0L, minoverlap = 1L, 
2
+##                                    type = c("any", "start", "end", "within", "equal"),
3
+##                                    select = c("all", "first"), ignore.strand = FALSE,
4
+##                                    mc.cores = 1, mc.preschedule = TRUE, verbose = FALSE, ...) {
5
+##     if(!is(query, "GenomicRanges") || !is(subject, "GenomicRanges"))
6
+##         stop("findOverlaps_mclapply needs 'query' and 'subject' to be 'GenomicRanges'")
7
+##     if (!isSingleNumber(maxgap) || maxgap < 0) 
8
+##         stop("'maxgap' must be a non-negative integer")
9
+##     type <- match.arg(type)
10
+##     select <- match.arg(select)
11
+##     seqinfo <- merge(seqinfo(query), seqinfo(subject))
12
+##     DIM <- c(length(query), length(subject))
13
+##     if (min(DIM) == 0L) {
14
+##         matchMatrix <- matrix(integer(0), nrow = 0L, ncol = 2L, 
15
+##                               dimnames = list(NULL, c("queryHits", "subjectHits")))
16
+##     }
17
+##     else {
18
+##         querySeqnames <- seqnames(query)
19
+##         querySplitRanges <- splitRanges(querySeqnames)
20
+##         uniqueQuerySeqnames <- names(querySplitRanges)[sapply(querySplitRanges, length) > 0] # FIX: only keep seqnames with ranges
21
+##         subjectSeqnames <- seqnames(subject)
22
+##         subjectSplitRanges <- splitRanges(subjectSeqnames)
23
+##         uniqueSubjectSeqnames <- names(subjectSplitRanges)[sapply(subjectSplitRanges, length) > 0] # FIX: only keep seqnames with ranges
24
+##         commonSeqnames <- intersect(uniqueQuerySeqnames, 
25
+##                                     uniqueSubjectSeqnames)
26
+##         if (ignore.strand) {
27
+##             queryStrand <- rep.int(1L, length(query))
28
+##             subjectStrand <- rep.int(1L, length(subject))
29
+##         }
30
+##         else {
31
+##             queryStrand <- strand(query)
32
+##             levels(queryStrand) <- c("1", "-1", "0")
33
+##             queryStrand@values <- as.integer(as.character(runValue(queryStrand)))
34
+##             queryStrand <- as.vector(queryStrand)
35
+##             subjectStrand <- strand(subject)
36
+##             levels(subjectStrand) <- c("1", "-1", "0")
37
+##             subjectStrand@values <- as.integer(as.character(runValue(subjectStrand)))
38
+##             subjectStrand <- as.vector(subjectStrand)
39
+##         }
40
+##         queryRanges <- unname(ranges(query))
41
+##         subjectRanges <- unname(ranges(subject))
42
+##         matchMatrix <- do.call(rbind, mclapply(commonSeqnames, 
43
+##                                                function(seqnm) {
44
+##                                                    if(verbose) cat(seqnm, "\n") # FIX : added verbosity
45
+##                                                    if (isCircular(seqinfo)[seqnm] %in% TRUE) 
46
+##                                                        circle.length <- seqlengths(seqinfo)[seqnm]
47
+##                                                    else circle.length <- NA
48
+##                                                    qIdxs <- querySplitRanges[[seqnm]]
49
+##                                                    sIdxs <- subjectSplitRanges[[seqnm]]
50
+##                                                    ## FIX: added ::: tpo get .findOverlaps.circle
51
+##                                                    overlaps <- GenomicRanges:::.findOverlaps.circle(circle.length, 
52
+##                                                                                                     seqselect(queryRanges, qIdxs), seqselect(subjectRanges, 
53
+##                                                                                                                                              sIdxs), maxgap, minoverlap, type)
54
+##                                                    qHits <- queryHits(overlaps)
55
+##                                                    sHits <- subjectHits(overlaps)
56
+##                                                    matches <- cbind(queryHits = as.integer(qIdxs)[qHits], 
57
+##                                                                     subjectHits = as.integer(sIdxs)[sHits])
58
+##                                                    matches[which(seqselect(queryStrand, qIdxs)[qHits] * 
59
+##                                                                  seqselect(subjectStrand, sIdxs)[sHits] != 
60
+##                                                                  -1L), , drop = FALSE]
61
+##                                                }, mc.cores = mc.cores, mc.preschedule = mc.preschedule))
62
+##         if (is.null(matchMatrix)) {
63
+##                 matchMatrix <- matrix(integer(0), nrow = 0L, 
64
+##                                       ncol = 2L, dimnames = list(NULL, c("queryHits", 
65
+##                                                  "subjectHits")))
66
+##             }
67
+##         matchMatrix <- matchMatrix[IRanges:::orderIntegerPairs(matchMatrix[, 
68
+##                                                                            1L], matchMatrix[, 2L]), , drop = FALSE]
69
+##     }
70
+##     if (select == "all") {
71
+##         new("Hits", queryHits = unname(matchMatrix[, 1L]), 
72
+##             subjectHits = unname(matchMatrix[, 2L]), queryLength = DIM[1], 
73
+##             subjectLength = DIM[2])
74
+##     }
75
+##     else {
76
+##         IRanges:::.hitsMatrixToVector(matchMatrix, length(query))
77
+##     }
78
+## }
... ...
@@ -86,10 +86,10 @@ setMethod("subsetByOverlaps",
86 86
           function(query, subject, maxgap = 0L, minoverlap = 1L,
87 87
                    type = c("any", "start", "end", "within", "equal"),
88 88
                    ignore.strand = FALSE, ...) {
89
-              ov <- findOverlaps_mclapply(query = granges(query), subject = subject,
90
-                                          maxgap = maxgap, minoverlap = minoverlap,
91
-                                          type = match.arg(type), select = "first",
92
-                                          ignore.strand = ignore.strand, ... )
89
+              ov <- findOverlaps(query = granges(query), subject = subject,
90
+                                 maxgap = maxgap, minoverlap = minoverlap,
91
+                                 type = match.arg(type), select = "first",
92
+                                 ignore.strand = ignore.strand, ... )
93 93
               query[!is.na(ov)]
94 94
           })
95 95
 
... ...
@@ -98,10 +98,10 @@ setMethod("subsetByOverlaps",
98 98
           function(query, subject, maxgap = 0L, minoverlap = 1L,
99 99
                    type = c("any", "start", "end", "within", "equal"),
100 100
                    ignore.strand = FALSE, ...) {
101
-              ov <- findOverlaps_mclapply(query = granges(query), subject = granges(subject),
102
-                                          maxgap = maxgap, minoverlap = minoverlap,
103
-                                          type = match.arg(type), select = "first",
104
-                                          ignore.strand = ignore.strand, ... )
101
+              ov <- findOverlaps(query = granges(query), subject = granges(subject),
102
+                                 maxgap = maxgap, minoverlap = minoverlap,
103
+                                 type = match.arg(type), select = "first",
104
+                                 ignore.strand = ignore.strand, ... )
105 105
               query[!is.na(ov)]
106 106
           })
107 107
 
... ...
@@ -110,10 +110,10 @@ setMethod("subsetByOverlaps",
110 110
           function(query, subject, maxgap = 0L, minoverlap = 1L,
111 111
                    type = c("any", "start", "end", "within", "equal"),
112 112
                    ignore.strand = FALSE, ...) {
113
-              ov <- findOverlaps_mclapply(query = query, subject = granges(subject),
114
-                                          maxgap = maxgap, minoverlap = minoverlap,
115
-                                          type = match.arg(type), select = "first",
116
-                                          ignore.strand = ignore.strand, ... )
113
+              ov <- findOverlaps(query = query, subject = granges(subject),
114
+                                 maxgap = maxgap, minoverlap = minoverlap,
115
+                                 type = match.arg(type), select = "first",
116
+                                 ignore.strand = ignore.strand, ... )
117 117
               query[!is.na(ov)]
118 118
           })
119 119
 
... ...
@@ -122,10 +122,10 @@ setMethod("findOverlaps",
122 122
           function (query, subject, maxgap = 0L, minoverlap = 1L,
123 123
                     type = c("any", "start", "end", "within", "equal"),
124 124
                     select = c("all", "first"), ignore.strand = FALSE, ...) {
125
-              findOverlaps_mclapply(query = granges(query), subject = subject,
126
-                                    maxgap = maxgap, minoverlap = minoverlap,
127
-                                    type = match.arg(type), select = match.arg(select),
128
-                                    ignore.strand = ignore.strand, ...)
125
+              findOverlaps(query = granges(query), subject = subject,
126
+                           maxgap = maxgap, minoverlap = minoverlap,
127
+                           type = match.arg(type), select = match.arg(select),
128
+                           ignore.strand = ignore.strand, ...)
129 129
           })
130 130
 
131 131
 setMethod("findOverlaps",
... ...
@@ -133,10 +133,10 @@ setMethod("findOverlaps",
133 133
           function (query, subject, maxgap = 0L, minoverlap = 1L,
134 134
                     type = c("any", "start", "end", "within", "equal"),
135 135
                     select = c("all", "first"), ignore.strand = FALSE, ...) {
136
-              findOverlaps_mclapply(query = granges(query), subject = granges(subject),
137
-                                    maxgap = maxgap, minoverlap = minoverlap,
138
-                                    type = match.arg(type), select = match.arg(select),
139
-                                    ignore.strand = ignore.strand, ...)
136
+              findOverlaps(query = granges(query), subject = granges(subject),
137
+                           maxgap = maxgap, minoverlap = minoverlap,
138
+                           type = match.arg(type), select = match.arg(select),
139
+                           ignore.strand = ignore.strand, ...)
140 140
           })
141 141
 
142 142
 setMethod("findOverlaps",
... ...
@@ -144,10 +144,10 @@ setMethod("findOverlaps",
144 144
           function (query, subject, maxgap = 0L, minoverlap = 1L,
145 145
                     type = c("any", "start", "end", "within", "equal"),
146 146
                     select = c("all", "first"), ignore.strand = FALSE, ...) {
147
-              findOverlaps_mclapply(query = query, subject = granges(subject),
148
-                                    maxgap = maxgap, minoverlap = minoverlap,
149
-                                    type = match.arg(type), select = match.arg(select),
150
-                                    ignore.strand = ignore.strand, ...)
147
+              findOverlaps(query = query, subject = granges(subject),
148
+                           maxgap = maxgap, minoverlap = minoverlap,
149
+                           type = match.arg(type), select = match.arg(select),
150
+                           ignore.strand = ignore.strand, ...)
151 151
           })
152 152
 
153 153
 setMethod("[", "hasGRanges", function(x, i, ...) {
... ...
@@ -22,6 +22,8 @@
22 22
     in BSmooth.
23 23
     \item Many bugfixes made necessary by the new class representation.
24 24
     \item Better argument checking in BSmooth.tstat.
25
+    \item A few undocumented functions are now documented.
26
+    \item Rewrote orderBSseq
25 27
   }
26 28
 }
27 29
 
... ...
@@ -12,6 +12,8 @@
12 12
 \alias{sampleNames,BSseq-method}
13 13
 \alias{sampleNames<-,BSseq,ANY-method}
14 14
 \alias{updateObject,BSseq-method}
15
+\alias{assays,BSseq-method}
16
+\alias{assayNames}
15 17
 \alias{show,BSseq-method}
16 18
 \alias{getBSseq}
17 19
 \alias{collapseBSseq}
... ...
@@ -133,6 +135,15 @@ slots for representing smoothed data. This class is an extension of
133 135
   \sQuote{BSseq} objects.  You can update old serialized (saved)
134 136
   objects by invoking \code{x <- udateObject(x)}.
135 137
 }
138
+\section{Assays}{
139
+  This class overrides the default implementation of \code{assays} to
140
+  make it faster.  Per default, no names are added to the returned data
141
+  matrices.
142
+
143
+  Assay names can conveniently be obtained by the function
144
+  \code{assayNames}
145
+}
146
+  
136 147
 \author{
137 148
   Kasper Daniel Hansen \email{khansen@jhsph.edu}
138 149
 }
... ...
@@ -8,14 +8,14 @@
8 8
   object.
9 9
 }
10 10
 \usage{
11
-getStats(BSseqTstat, regions = NULL, column = "tstat.corrected")
11
+getStats(BSseqTstat, regions = NULL, stat = "tstat.corrected")
12 12
 }
13 13
 \arguments{
14 14
   \item{BSseqTstat}{An object of class \code{BSseqTstat}.}
15 15
   \item{regions}{An optional \code{data.frame} or
16 16
     \code{GenomicRanges} object specifying a number of genomic
17 17
     regions.} 
18
-  \item{column}{Which statistics column should be obtained.}
18
+  \item{stat}{Which statistics column should be obtained.}
19 19
 }
20 20
 \value{
21 21
   An object of class \code{data.frame} possible restricted to the
... ...
@@ -11,14 +11,16 @@
11 11
 \usage{
12 12
 plotRegion(BSseq, region = NULL, extend = 0, main = "",
13 13
   addRegions = NULL, annoTrack = NULL, col = NULL, lty = NULL,
14
-  lwd = NULL, BSseqTstat = NULL, mainWithWidth = TRUE,
15
-  regionCol = alpha("red", 0.1), addTicks = TRUE,
14
+  lwd = NULL, BSseqTstat = NULL,  stat = "tstat.corrected",
15
+  stat.col = "black", stat.lwd = 1, stat.lty = 1, stat.ylim = c(-8, 8),
16
+  mainWithWidth = TRUE, regionCol = alpha("red", 0.1), addTicks = TRUE,
16 17
   addPoints = FALSE, pointsMinCov = 5, highlightMain = FALSE)
17 18
 
18 19
 plotManyRegions(BSseq, regions = NULL, extend = 0, main = "",
19 20
   addRegions = NULL, annoTrack = NULL, col = NULL, lty = NULL,
20
-  lwd = NULL, BSseqTstat = NULL, mainWithWidth = TRUE,
21
-  regionCol = alpha("red", 0.1), addTicks = TRUE,
21
+  lwd = NULL, BSseqTstat = NULL, stat = "tstat.corrected",
22
+  stat.col = "black", stat.lwd = 1, stat.lty = 1, stat.ylim = c(-8, 8),
23
+  mainWithWidth = TRUE, regionCol = alpha("red", 0.1), addTicks = TRUE,
22 24
   addPoints = FALSE, pointsMinCov = 5, highlightMain = FALSE,
23 25
   verbose = TRUE)
24 26
 }
... ...
@@ -44,7 +46,13 @@ plotManyRegions(BSseq, regions = NULL, extend = 0, main = "",
44 46
   \item{lty}{The line type of the methylation estimates, see details.}
45 47
   \item{lwd}{The line width of the methylation estimates, see details.}
46 48
   \item{BSseqTstat}{An object of class \code{BSseqTstat}.  If present,
47
-  a new panel will be shown with the t-statistics.}
49
+    a new panel will be shown with the t-statistics.}
50
+  \item{stat}{Which statistics will be plotted (only used is
51
+    \code{BSseqTstat} is not \code{NULL}.)}
52
+  \item{stat.col}{color for the statistics plot.}
53
+  \item{stat.lwd}{line width for the statistics plot.}
54
+  \item{stat.lty}{line type for the statistics plot.}
55
+  \item{stat.ylim}{y-limits for the statistics plot.}
48 56
   \item{mainWithWidth}{Should the default title include information
49 57
   about width of the plot region.}
50 58
   \item{regionCol}{The color used for highlighting the region.}