Browse code

update_9_november_2018

claudia.cava authored on 09/11/2018 14:17:46
Showing 3 changed files

... ...
@@ -1,8 +1,8 @@
1 1
 Package: StarBioTrek
2 2
 Type: Package
3 3
 Title: StarBioTrek
4
-Version: 1.9.0
5
-Date: 10-16-2017
4
+Version: 1.9.1
5
+Date: 11-09-2018
6 6
 Author: Claudia Cava,
7 7
     Isabella Castiglioni
8 8
 Maintainer: Claudia Cava <claudia.cava@ibfm.cnr.it>
... ...
@@ -141,11 +141,29 @@ xx <- as.list(x[mapped_genes])
141 141
 top3 <- matrix(0, length(xx), length(genes.by.pathway))
142 142
 rownames(top3) <- names(xx)
143 143
 colnames(top3)<- names(genes.by.pathway)
144
+
145
+
146
+
147
+for (j in  1:length(xx)){
148
+  for (k in  1:length(genes.by.pathway)){
149
+    if (length(intersect(xx[[j]],genes.by.pathway[[k]])!=0)){
150
+      
151
+     
152
+      
153
+       top3[j,k]<-names(xx[j]) 
154
+    }
155
+  }
156
+}
157
+
158
+
159
+
144 160
 for (j in  1:length(xx)){
145 161
   for (k in  1:length(genes.by.pathway)){
146 162
     if (length(intersect(xx[[j]],genes.by.pathway[[k]])!=0)){
147 163
       
148
-      top3[j,k]<-names(xx[j]) 
164
+
165
+
166
+     # top3[j,k]<-names(xx[j]) 
149 167
     }
150 168
   }
151 169
 }
... ...
@@ -333,7 +333,7 @@ ds_score_crtlk<-function(dataFilt,pathway){
333 333
   PEAmatrix_sd<-st_dv(dataFilt,pathway)
334 334
   df=combn(rownames(PEAmatrix_sd),2) 
335 335
   df=t(df)
336
-  ma<-matrix(0,nrow(df),ncol(PEAmatrix_sd)) # creo matrix che conterr? le somme delle dev st
336
+  ma<-matrix(0,nrow(df),ncol(PEAmatrix_sd)) # creo matrix che conterr le somme delle dev st
337 337
   colnames(ma)<-colnames(PEAmatrix_sd) # colnames conterr? il nome dei pazienti
338 338
   for ( p in 1: ncol(PEAmatrix_sd)){ # per ogni paziente
339 339
     patients <- (PEAmatrix_sd)[,p] 
... ...
@@ -444,7 +444,8 @@ y <- training$Target
444 444
 z<-subset(testing, select=-Target)
445 445
 
446 446
 zi<-testing$Target
447
-
447
+svm_tune <- tune(svm, train.x=x, train.y=y, 
448
+                 kernel="radial", ranges=list(cost=10^(-1:2), gamma=c(.5,1,2)))
448 449
 auc.df<-list()
449 450
 svm_model_after_tune_COMPL<-list()
450 451
 for( k in 2: ncol(training)){
... ...
@@ -452,11 +453,10 @@ for( k in 2: ncol(training)){
452 453
   
453 454
 
454 455
   
455
-  svm_tune <- tune(svm, train.x=x, train.y=y, 
456
-                   kernel="radial", ranges=list(cost=10^(-1:2), gamma=c(.5,1,2)),cross=10)
456
+
457 457
   #print(svm_tune)
458 458
   
459
-  svm_model_after_tune <- svm(Target ~ ., data=training[,c(1,k)], kernel="radial", cost=svm_tune$best.parameters$cost, gamma=svm_tune$best.parameters$gamma,cross=10,probability = TRUE)
459
+  svm_model_after_tune <- svm(Target ~ ., data=training[,c(1,k)], kernel="radial", cost=svm_tune$best.parameters$cost, gamma=svm_tune$best.parameters$gamma,probability = TRUE)
460 460
   
461 461
   
462 462
   #svm_model_after_tune <- svm(Target ~ ., data=training[,c(1,k)], kernel="radial", cost=svm_tune$best.parameters[1], gamma=svm_tune$best.parameters[2],cross=10,probability = TRUE)