... | ... |
@@ -141,11 +141,29 @@ xx <- as.list(x[mapped_genes]) |
141 | 141 |
top3 <- matrix(0, length(xx), length(genes.by.pathway)) |
142 | 142 |
rownames(top3) <- names(xx) |
143 | 143 |
colnames(top3)<- names(genes.by.pathway) |
144 |
+ |
|
145 |
+ |
|
146 |
+ |
|
147 |
+for (j in 1:length(xx)){ |
|
148 |
+ for (k in 1:length(genes.by.pathway)){ |
|
149 |
+ if (length(intersect(xx[[j]],genes.by.pathway[[k]])!=0)){ |
|
150 |
+ |
|
151 |
+ |
|
152 |
+ |
|
153 |
+ top3[j,k]<-names(xx[j]) |
|
154 |
+ } |
|
155 |
+ } |
|
156 |
+} |
|
157 |
+ |
|
158 |
+ |
|
159 |
+ |
|
144 | 160 |
for (j in 1:length(xx)){ |
145 | 161 |
for (k in 1:length(genes.by.pathway)){ |
146 | 162 |
if (length(intersect(xx[[j]],genes.by.pathway[[k]])!=0)){ |
147 | 163 |
|
148 |
- top3[j,k]<-names(xx[j]) |
|
164 |
+ |
|
165 |
+ |
|
166 |
+ # top3[j,k]<-names(xx[j]) |
|
149 | 167 |
} |
150 | 168 |
} |
151 | 169 |
} |
... | ... |
@@ -333,7 +333,7 @@ ds_score_crtlk<-function(dataFilt,pathway){ |
333 | 333 |
PEAmatrix_sd<-st_dv(dataFilt,pathway) |
334 | 334 |
df=combn(rownames(PEAmatrix_sd),2) |
335 | 335 |
df=t(df) |
336 |
- ma<-matrix(0,nrow(df),ncol(PEAmatrix_sd)) # creo matrix che conterr? le somme delle dev st |
|
336 |
+ ma<-matrix(0,nrow(df),ncol(PEAmatrix_sd)) # creo matrix che conterr le somme delle dev st |
|
337 | 337 |
colnames(ma)<-colnames(PEAmatrix_sd) # colnames conterr? il nome dei pazienti |
338 | 338 |
for ( p in 1: ncol(PEAmatrix_sd)){ # per ogni paziente |
339 | 339 |
patients <- (PEAmatrix_sd)[,p] |
... | ... |
@@ -444,7 +444,8 @@ y <- training$Target |
444 | 444 |
z<-subset(testing, select=-Target) |
445 | 445 |
|
446 | 446 |
zi<-testing$Target |
447 |
- |
|
447 |
+svm_tune <- tune(svm, train.x=x, train.y=y, |
|
448 |
+ kernel="radial", ranges=list(cost=10^(-1:2), gamma=c(.5,1,2))) |
|
448 | 449 |
auc.df<-list() |
449 | 450 |
svm_model_after_tune_COMPL<-list() |
450 | 451 |
for( k in 2: ncol(training)){ |
... | ... |
@@ -452,11 +453,10 @@ for( k in 2: ncol(training)){ |
452 | 453 |
|
453 | 454 |
|
454 | 455 |
|
455 |
- svm_tune <- tune(svm, train.x=x, train.y=y, |
|
456 |
- kernel="radial", ranges=list(cost=10^(-1:2), gamma=c(.5,1,2)),cross=10) |
|
456 |
+ |
|
457 | 457 |
#print(svm_tune) |
458 | 458 |
|
459 |
- svm_model_after_tune <- svm(Target ~ ., data=training[,c(1,k)], kernel="radial", cost=svm_tune$best.parameters$cost, gamma=svm_tune$best.parameters$gamma,cross=10,probability = TRUE) |
|
459 |
+ svm_model_after_tune <- svm(Target ~ ., data=training[,c(1,k)], kernel="radial", cost=svm_tune$best.parameters$cost, gamma=svm_tune$best.parameters$gamma,probability = TRUE) |
|
460 | 460 |
|
461 | 461 |
|
462 | 462 |
#svm_model_after_tune <- svm(Target ~ ., data=training[,c(1,k)], kernel="radial", cost=svm_tune$best.parameters[1], gamma=svm_tune$best.parameters[2],cross=10,probability = TRUE) |